00/00/00	DELUGOD	OFT ITO	D D 4 = 1 (
03/27/08	REVISOR	CEL/JC	RD3719

03/27/08	KE VISOK	CEL/JC	KD3/15
Labor and Industry			
Proposed Permanent R	ules Relating to Commercial E	Energy Code	
1323.0001 TITLE.			
This chapter is known	as the Minnesota Commercial E	Energy Code.	
1323.0005 ADMINIST	RATION AND PURPOSE.		
Subpart 1. Administ	ration. This code shall be admir	nistered in accordanc	e with
chapter 1300.			
Subp. 2. Purpose. T	The purpose of this chapter is to	establish a minimum	code
of standards for the cons	struction, reconstruction, alteration	on, and repair of buil	dings
governing matters includ	ling design and construction stan	dards regarding heat	loss control
illumination, and climate	control pursuant to Minnesota S	statutes, sections 16B	.59, 16B.61
and 16B.64.			
1323.0010 INCORPOR	RATION BY REFERENCE.		
For purposes of this	chapter, "ASHRAE Standard 90).1" means	
ANSI/ASHRAE/IESNA	Standard 90.1-2004, version PC	1/06, titled Energy S	Standard
for Buildings Except Lo	w-Rise Residential Buildings, pr	omulgated by the Ar	nerican
Society of Heating, Refr	igerating and Air-Conditioning I	Engineers, Inc., 1791	Tullie
Circle, N.E., Atlanta, GA	A 30329. ASHRAE Standard 90.	.1-2004, version PC	1/06, is
incorporated by referenc	e and made part of the Minnesot	a Commercial Energ	y Code, as
amended in this chapter.	Portions of this chapter reproduc	ce text and tables from	m ASHRAI
Standard 90.1. ASHRAI	E Standard 90.1 is not subject to	frequent change and	a copy
of ASHRAE Standard 90	0.1 is available in the office of the	ne commissioner of la	abor and
industry. ASHRAE Stan	dard 90.1 is copyright 2004 by th	ne American Society	of Heating,
Refrigerating and Air-Co	onditioning Engineers, Inc. All ri	ights reserved.	

1.25 **1323.0230 SECTION 2, SCOPE.**

2.1 ASHRAE Standard 90.1, Section 2, subsection 2.3, is amended to read:

1

03/27/08	REVISOR	CEL/JC	RD3719

	2.3 Applicability. The provisions of this standard apply to structures that are not
	regulated by Minnesota Rules, chapter 1322.
	Exceptions:
	(a) Buildings that do not use either electricity or fossil fuel; and
	(b) Equipment and portions of building systems that use energy primarily to provide
	for industrial or manufacturing processes.
<u>1</u> .	323.0320 SECTION 3.2, DEFINITIONS.
	ASHRAE Standard 90.1, Section 3.2, is amended by adding the following definitions:
D	emand Control Ventilation (DCV): A ventilation system capability that provides
<u>fc</u>	or the automatic reduction of outdoor air intake below design rates when the actual
00	ccupancy of spaces served by the system is less than design occupancy.
$\underline{\mathbf{L}}$	amp wattage, rated: The power consumption of a lamp as published in the
m	anufacturers' literature.
R	-value computation for concrete masonry block wall assembly with integral
<u>ir</u>	sulation: The thermal performance of a concrete masonry block wall assembly with
in	tegral insulation must be determined by one of the following methods. Foundation wall
as	ssembly R-values must exclude air film coefficients and the R-value of the surrounding
SC	<u>oil.</u>
	(a) Thermal performance must be calculated in accordance with ASHRAE Handbook
	of Fundamentals isothermal planes calculation method. The calculation must be
	certified by a professional engineer licensed in Minnesota.
	(b) Thermal performance must be measured in accordance with ASTM C 236
	test procedure for thermal transmittance measurement performed by an approved
	laboratory as defined by Minnesota Rules, chapter 7640.
<u>C</u>	limate zone 6: Climate zone 6 includes Anoka, Benton, Big Stone, Blue Earth, Brown,
<u>C</u>	arver, Chippewa, Chisago, Cottonwood, Dodge, Dakota, Faribault, Fillmore, Freeborn,
\underline{G}	oodhue, Hennepin, Houston, Isanti, Jackson, Kandiyohi, La Qui Parle, Le Sueur, Lincoln,

1323.0320 2

03/27/08	REVISOR	CEL/JC	RD3719
113/77//18	REVISOR	('E1 /1('	P114/10
03/27/08	KE VISOK	CEL/JC	1103/13

3.2	Lyon, Martin, Mc Leod, Meeker, Mower, Murray, Nicollet, Nobles, Olmsted, Pipestone,
3.3	Pope, Ramsey, Renville, Rice, Rock, Scott, Sherburne, Sibley, Stearns, Steele, Stevens,
3.4	Swift, Yellow Medicine, Wabasha, Waseca, Watonwan, Winona, and Wright Counties.
3.5	Climate zone 7: Climate zone 7 includes Aitkin, Becker, Beltrami, Carlton, Cass, Clay,
3.6	Clearwater, Cook, Crow Wing, Douglas, Grant, Hubbard, Itasca, Kanabec, Kittson,
3.7	Koochiching, Lake, Lake of the Woods, Mahnomen, Marshall, Mille Lacs, Morrison,
3.8	Norman, Otter Tail, Pennington, Pine, Polk, Red Lake, Roseau, St. Louis, Todd, Traverse
3.9	Wadena, and Wilkin Counties.
3.10	Northern climate zone: Climate zone 7.
3.11	Southern climate zone: Climate zone 6.
3.12	1323.0513 SECTION 5.1.3, ENVELOPE ALTERATIONS.
3.13	ASHRAE Standard 90.1, Section 5.1.3, is amended to read:
3.14	5.1.3 Envelope alterations. Alterations to the building envelope shall comply
3.15	with the requirements of Section 5 for insulation, air leakage, and fenestration
3.16	applicable to those specific portions of the building being altered. When the wal
3.17	cavity of the building envelope is exposed due to the removal of the interior wal
3.18	finish materials, the wall cavity shall be insulated to full depth, or to a depth that
3.19	provides insulating values as required for new wall construction.
3.20	Exceptions:
3.21	1. The following alterations need not comply with the requirements of Section 5
3.22	for insulation, air leakage, and fenestration, provided such alterations will not
3.23	increase the energy usage of the building:
3.24	(a) Installation of storm windows over existing glazing.
3.25	(b) Replacement of glazing in existing sash and frame provided the U-factor and
3.26	SHGC will be equal to or lower than before the glass replacement.
4.1	(c) Alterations to roof/ceiling, wall, or floor cavities, which are insulated to full
4.2	depth with insulations having a nominal value of not less than R-3.0/in.

03/27/08	REVISOR	CEL/JC	RD3719
03/27/00	ILL VIDOR	CLLIC	KD3/17

1.3	(d) Alterations to walls and floor, where the existing structure is without framing
1.4	cavities and no new framing cavities are created.
1.5	(e) Removal of less than 50 percent of a roof membrane or built-up roof covering
1.6	or the existing roof insulation is at least R-16 for buildings that are conditioned, o
1.7	the existing roof insulation is at least R-10 for buildings that are semiconditioned
4.8	(f) Replacement of existing doors that separate conditioned space from the
1.9	exterior shall not require the insulation of a vestibule or revolving door, provided
1.10	however, that an existing vestibule that separates a conditioned space from the
.11	exterior shall not be removed.
1.12	(g) Replacement of existing fenestration, provided, however, that the area of the
1.13	replacement fenestration does not exceed 25 percent of the total fenestration area
1.14	of an existing building and that the U-factor and SHGC will be equal to or lower
1.15	than before the fenestration replacement.
1.16	(h) Walls that are back-plastered, walls that are more than 50 percent filled with
1.17	insulation, walls without framing cavities.
1.18	(i) Small openings for purposes including installing, altering, or repairing
1.19	plumbing, electrical, and mechanical systems, control, and expansion joints.
1.20	2. A vapor retarder is not required if the interior finish is not removed.
1.21	1323.0543 SECTION 5.4.3, AIR LEAKAGE.
1.22	Subpart 1. Building envelope sealing. ASHRAE Standard 90.1, Section 5.4.3.1, is
1.23	amended and subsections added to read:
1.24	5.4.3.1 Building envelope air sealing. The building envelope shall contain
1.25	an air barrier consisting of a material or combination of materials to
1.26	resist the passage of air into or out of the conditioned or semiconditioned
1.27	space. The following areas of the building envelope shall be sealed in a
5.1	permanent manner to minimize air leakage at all edges, joints, openings,
5.2	and penetrations:

1323.0543 4

0.2 /2.7 /0.0	DELUCOD	CEL /IC	DD 2510
03/27/08	REVISOR	CEL/JC	RD3719
U3/////UA	N E. V LOUN	V . F. L ./ IV .	N 1 1 1 1 1 9

5.3	(a) joints around fenestration and door frames;
5.4	(b) junctions between walls and foundations, between walls at building
5.5	corners, between walls and structural floors or roofs, and between walls and
5.6	roof or wall panels;
5.7	(c) openings at penetrations of utility services through walls, roofs, and
5.8	floors;
5.9	(d) site-built fenestration and doors;
5.10	(e) building assemblies used as ducts or plenums;
5.11	(f) joints, seams, and penetrations of vapor retarders;
5.12	(g) across construction, control, and expansion joints;
5.13	(h) across junctions between different building assemblies; and
5.14	(i) around all other penetrations through the building envelope.
5.15	5.4.3.1.1 The air barrier shall be located between the warm in winter
5.16	surface and the winter design dew point location within the building
5.17	component or assembly.
5.18	Exception: When the building component or assembly is either
5.19	integrally insulated concrete or integrally insulated concrete masonry.
5.20	5.4.3.1.2 Drawings shall indicate the location of the air barrier system.
5.21	Subp. 2. Fenestration and doors. ASHRAE Standard 90.1, Section 5.4.3.2, is
5.22	amended to read:
5.23	5.4.3.2 Fenestration and doors. Air leakage for fenestration and doors shall
5.24	be determined in accordance with National Fenestration Rating Council 400
5.25	(NFRC 400). Air leakage shall be determined by an independent laboratory
5.26	accredited by a nationally recognized accreditation organization, such as the
5.27	National Fenestration Rating Council, and shall be labeled and certified by
6.1	the manufacturer. Air leakage under a pressure differential of 75 Pa (1.57

1323.0543 5

6.2	psf) shall not exceed 1.0 cfm/ft ² for glazed swinging entrance doors and for
6.3	revolving doors and 0.4 cfm/ft ² for all other products.
6.4	Subp. 3. Recessed lighting fixtures. ASHRAE Standard 90.1, Section 5.4.3, is
6.5	amended by adding a subsection to read:
6.6	5.4.3.5 Recessed lighting fixtures. Recessed luminaires installed in the
6.7	building thermal envelope shall be sealed to limit air leakage between
6.8	conditioned and unconditioned spaces by being:
6.9	1. IC-rated and labeled with enclosures that are sealed or gasketed to preven
6.10	air leakage to the ceiling cavity or unconditioned space;
6.11	2. IC-rated and labeled as meeting ASTM E 283 when tested at 1.57 pounds
6.12	per square foot (75 Pa) pressure differential with no more than 2.0 cubic
6.13	feet per minute (0.944 L/s) of air movement from the conditioned space to
6.14	the ceiling cavity; or
6.15	3. located inside an airtight sealed box with clearances of at least 0.5 inch (13
6.16	mm) from combustible material and three inches (76 mm) from insulation.
6.17	1323.0550 SECTION 5.5, PRESCRIPTIVE BUILDING ENVELOPE OPTION.
6.18	Subpart 1. Roof insulation. ASHRAE Standard 90.1, Section 5.5.3.1, is amended to
6.19	read:
6.20	5.5.3.1 Roof insulation. All roofs shall comply with the insulation values
6.21	specified in Tables 5.5-1 through 5.5-8. Skylight curbs shall be insulated to
6.22	the level of roofs with insulation entirely above deck or R-5, whichever is
6.23	<u>less.</u>
6.24	Subp. 2. Table 5.5-6. ASHRAE Standard 90.1, Table 5.5-6, Building Envelope
6.25	Requirements for the Southern Minnesota Climate Zone is amended to read:
6.26	TABLE 5.5-6 Building Envelope Requirements For
6.27	Southern Minnesota Climate Zone (Zone 6)

REVISOR

RD3719

CEL/JC

1323.0550 6

03/27/08

03/27/08 REVISOR CEL/JC RD3719

	Nonres	<u>sidential</u>	Resid	<u>lential</u>	<u>Semil</u>	<u>neated</u>
Opaque Elements	Assembly Max.	Insulation Min. R-Value	Assembly Max.	Insulation Min. R-Value	Assembly Max.	Insulation Min. R-Value
Roofs, Insu	lation					
Entirely Above Deck	<u>U-0.043</u>	<u>R-23 ci</u>	<u>U-0.043</u>	<u>R-23 ci</u>	<u>U-0.06</u>	<u>R-16.6 ci</u>
Metal Building	<u>U-0.043</u>	<u>R-30</u>	<u>U-0.043</u>	<u>R-30</u>	<u>U-0.06</u>	<u>R-19</u>
Attic and Other	<u>U-0.027</u>	<u>R-30</u>	<u>U-0.027</u>	<u>R-30</u>	<u>U-0.06</u>	<u>R-19</u>
Walls, Abov	ve Grade					
Mass	<u>U-0.104</u>	R-9.5 ci	<u>U-0.09</u>	R-11.4 ci	<u>U-0.58</u>	NR
Metal Building	<u>U-0.113</u>	<u>R-13</u>	<u>U-0.057</u>	13 + R-13	<u>U-0.113</u>	<u>R-13</u>
Steel Framed	<u>U-0.084</u>	$\frac{\text{R-13 ci +}}{\text{R-3.8 ci}}$	<u>U-0.064</u>	$\frac{R-13 + R-7.5 \text{ ci}}{R-7.5 \text{ ci}}$	<u>U-0.124</u>	<u>R-13</u>
Wood Framed and Other	<u>U-0.089</u>	<u>R-13</u>	<u>U-0.064</u>	$\frac{R-13+}{R-3.8 \text{ ci}}$	<u>U-0.089</u>	<u>R-13</u>
Wall, Belov	v Grade					
Below- Grade Wall	<u>C-0.085</u>	<u>R-10 ci</u>	<u>C-0.085</u>	<u>R-10 ci</u>	<u>C-0.085</u>	<u>R-10 ci</u>
Floors						
Mass	<u>U-0.087</u>	R-8.3 ci	<u>U-0.064</u>	<u>R-12.5 ci</u>	<u>U-0.322</u>	<u>NR</u>
Steel Joist	<u>U-0.038</u>	<u>R-30</u>	<u>U-0.038</u>	<u>R-30</u>	<u>U-0.069</u>	<u>R-13</u>
Wood Framed and Other	<u>U-0.033</u>	<u>R-30</u>	<u>U-0.033</u>	<u>R-30</u>	<u>U0066</u>	<u>R-13</u>
Slab-On-Gr	ade Floors			1		
Unheated	F-0.520	R-10 to footing*	F-0.520	R-10 to footing*	F-0.520	R-10 to footing*

03/27/08	REVISOR	CEL/JC	RD3719
03/21/00	TCE VIDOIC	CLL/3C	1000110

Heated	F-0.520	R-10 to footing*	F-0.520	R-10 to footing*	F-0.520	R-10 to footing*
Opaque Do	ors					
Swinging	<u>U-0.700</u>		<u>U-0.500</u>		<u>U-0.700</u>	
Non- swinging	<u>U-0.500</u>		<u>U-0.500</u>		<u>U-1.450</u>	
Fene- stration	Assembly Max. U (Fixed/ Operable)	Assembly Max. SHGC (All Orienta- tions/ North- Oriented)	Assembly Max. U (Fixed/ Operable)	Assembly Max. SHGC (All Orienta- tions/ North- Oriented)	Assembly Max. U (Fixed Operable)	Assembly Max. SHGC (All Orienta- tions/ North- Oriented)
Vertical Gla	zing, Percen	t of Wall				
0-10.0	$\frac{U_{\text{fixed}}}{-0.57}$	<u>SHGC</u> _{all} -0.49	$\frac{U_{\text{fixed}}}{-0.57}$	<u>SHGC</u> _{all} -0.49	$U_{\underline{\text{fixed}}}$ -1.22	SHGC _{all} -NR
	$\frac{U_{oper}}{-0.67}$	SHGC <u>north</u> -0.49	<u>U_{oper} -0.67</u>	<u>SHGC</u> <u>north</u> <u>-0.64</u>	<u>U_{oper} -1.27</u>	SHGC _{north}
10.1- 20.0	$\frac{U_{\text{fixed}}}{-0.57}$	<u>SHGC</u> _{all} -0.39	$\frac{U_{\text{fixed}}}{-0.57}$	<u>SHGC</u> _{all} -0.39	$U_{\underline{\text{fixed}}}$ -1.22	SHGC _{all} -NR
	<u>U</u> oper -0.67	SHGC north	<u>U_oper0.67</u>	SHGC north	<u>U_{oper} -1.27</u>	SHGC _{north}
20.1-30.0	$\frac{U_{\text{fixed}}}{-0.57}$	<u>SHGC</u> _{all} -0.39	$\frac{U_{\text{fixed}}}{-0.57}$	<u>SHGC</u> _{all} -0.39	$U_{\underline{\text{fixed}}}$ -1.22	SHGC _{all} -NR
	<u>U</u> oper -0.67	SHGC north	<u>U_oper0.67</u>	SHGC north	<u>U_{oper} -1.27</u>	SHGC _{north}
30.1-40.0	$\frac{U_{\text{fixed}}}{-0.57}$	SHGC _{all} -0.39	$\frac{U_{\underline{\text{fixed}}}}{-0.57}$	<u>SHGC</u> _{all} -0.39	$U_{\underline{\text{fixed}}}$ -1.22	SHGC _{all} -NR
	<u>U_oper</u> -0.67	SHGC _{north}	<u>U_oper_</u> -0.67	SHGC _{north}	<u>U_oper1.27</u>	SHGC _{north}
40.1 -50.0	<u>U</u> _{fixed} -0.46	SHGC _{all} -0.26	<u>U</u> fixed -0.46	SHGC _{all} -0.26	<u>U_{fixed} -0.98</u>	SHGC _{all} -NR
	<u>U</u> oper -0.47	SHGC north	<u>U_{oper} -0.47</u>	SHGC north	<u>U_oper1.02</u>	SHGC _{north}

03/27/08	REVISOR	CEL/JC	RD3719
112/7//119		('L / ('	D114/10

9.1	Skylight, Pe	ercent of Roc	<u>of</u>				
9.2 9.3	0-2.0	<u>U_{all} -0.69</u>	SHGC _{all} -0.49	<u>U_{all} -0.58</u>	<u>SHGC</u> _{all}	—all——	SHGC _{all}
9.4	Greater	<u>U_{all}-0.69</u>	SHGC _{all}	<u>U_{all}-0.58</u>	SHGC _{all}		SHGC _{all}
9.5 9.6	than 2 to 5.0	an	<u>-0.49</u>	<u>un</u>	<u>-0.39</u>	<u>un</u>	<u>-NR</u>

 ^{*&}quot;To footing" means to the top of the footing if the insulation is on the exterior, or to the top of the slab if the insulation is on the interior.

9.9 <u>Subp. 3.</u> **Table 5.5-7.** ASHRAE Standard 90.1, Table 5.5-7, Building envelope requirements for the northern Minnesota climate zone is amended to read:

	Nonres	<u>idential</u>	Resid	<u>ential</u>	Semil	<u>neated</u>
Opaque Elements	Assembly Max.	Insulation Min. R-Value	Assembly Max.	Insulation Min. R-Value	Assembly Max.	Insulation Min. R-Value
Roofs, Insulation						
Entirely Above Deck	<u>U-0.043</u>	<u>R-23 ci</u>	<u>U-0.043</u>	<u>R-23 ci</u>	<u>U-0.06</u>	<u>R-16.6 ci</u>
<u>Metal</u> Building	<u>U-0.043</u>	<u>R-23</u>	<u>U-0.043</u>	<u>R-23</u>	<u>U-0.06</u>	<u>R-16.6</u>
Attic and Other	<u>U-0.043</u>	<u>R-30</u>	<u>U-0.043</u>	<u>R-30</u>	<u>U06</u>	<u>R-19</u>
Walls, Abov	ve Grade					
Mass	<u>U-0.09</u>	<u>R-9.5 ci</u>	<u>U-0.08</u>	$\frac{\text{R-}13.3 \text{ ci}}{\text{R-}13.0 +}$	<u>U-0.58</u>	NR
Metal Building	<u>U-0.057</u>	R-13	<u>U-0.057</u>	$\frac{R-13}{R-13} + \frac{R-13}{R-13}$	<u>U-0.113</u>	<u>R-13</u>
Steel Framed	<u>U-0.064</u>	$\frac{R-13 + R-3.8 \text{ ci}}{R-3.8 \text{ ci}}$	<u>U-0.064</u>	R-13 + R-7.5 ci	<u>U-0.124</u>	<u>R-13</u>

03/27/08 REVISOR CEL/IC RD371	

Wood Framed and Other	<u>U-0.089</u>	<u>R-13</u>	<u>U-0.051</u>	R-13 + R-7.5 ci	<u>U-0.089</u>	<u>R-13</u>
Walls, Belo	ow Grade				<u> </u>	
Below- Grade Wall	<u>C-0.085</u>	<u>R-10 ci</u>	<u>C-0.085</u>	R-10 ci	<u>C-0.085</u>	<u>R-10 ci</u>
Floors						
Mass	<u>U-0.087</u>	R-8.3 ci	<u>U-0.064</u>	<u>R-12.5 ci</u>	<u>U-0.137</u>	<u>R-4.2 ci</u>
Steel Joist	<u>U-0.038</u>	<u>R-30</u>	<u>U-0.038</u>	<u>R-30</u>	<u>U-0.052</u>	<u>R-19</u>
Wood Framed and Other	<u>U-0.033</u>	<u>R-30</u>	<u>U-0.033</u>	<u>R-30</u>	<u>U0066</u>	<u>R-13</u>
Slab-On-G	rade Floors					
Unheated	F-0.52	R-10 to footing*	<u>F-0.52</u>	R-10 to footing*	<u>F-0.52</u>	R-10 to footing*
Heated	F-0.52	R-10 to footing*	<u>F-0.52</u>	R-10 to footing*	<u>F-0.52</u>	R-10 to footing*
Opaque Do	ors					
Swinging	<u>U-0.70</u>		<u>U-0.50</u>		<u>U-0.70</u>	
Non- swinging	<u>U-0.50</u>		<u>U-0.50</u>		<u>U-1.45</u>	
Fene- stration	Assembly Max. U (Fixed/ Operable)	Assembly Max. SHGC (All Orienta- tions/ North- Oriented)	Assembly Max. U (Fixed/ Operable)	Assembly Max. SHGC (All Orienta- tions/ North- Oriented)	Assembly Max. U (Fixed/ Operable)	Assembly Max. SHGC (All Orienta- tions/ North- Oriented)
Vertical Gla	azing, Percen	t of Wall		,		
0-10.0	$\frac{\underline{U}_{\underline{\text{fixed}}}}{-0.57}$	SHGC _{all} -0.49	$U_{\underline{\text{fixed}}}$ -0.57	SHGC _{all} -0.49	<u>U</u> fixed -1.22	SHGC _{all}
	$\frac{U_{oper}}{-0.67}$	SHGC north	<u>U_{oper} -0.67</u>	SHGC north	<u>U_{oper} -1.27</u>	$\frac{\text{SHGC}}{-\text{NR}}_{\text{north}}$

02/27/09	DEVICOD	CEL/IC	DD2710
03/27/08	REVISOR	CEL/JC	RD3719

11.1 11.2	10.1-20.0	$\frac{U_{\text{fixed}}}{-0.57}$	SHGC _{all} -0.49	<u>U_{fixed} -0.57</u>	SHGC _{all} -0.49	$\frac{U_{\text{fixed}}}{-1.22}$	SHGC _{all} -NR
11.3 11.4		<u>U_oper</u> -0.67	$\frac{\text{SHGC}}{-0.64}_{\text{north}}$	<u>U_oper0.67</u>	SHGC north	<u>U_{oper} -1.27</u>	$\frac{\text{SHGC}}{\text{-NR}}$
11.5 11.6	20.1- 30.0	$\frac{U_{\text{fixed}}}{-0.57}$	SHGC _{all} -0.49	<u>U_{fixed} -0.57</u>	SHGC _{all} -0.49	$\frac{U_{\text{fixed}}}{-1.22}$	SHGC _{all} -NR
11.7 11.8		<u>U</u> oper -0.67	SHGC north	<u>U_{oper} -0.67</u>	SHGC north	<u>U_oper1.27</u>	SHGC _{north}
11.9 11.10	30.1-40.0	$\frac{U_{\text{fixed}}}{-0.57}$	<u>SHGC</u> _{all} -0.49	$U_{\underline{\text{fixed}}}$ -0.57	<u>SHGC</u> _{all} -0.49	$\frac{U_{\text{fixed}}}{-1.22}$	SHGC _{all} -NR
11.11 11.12		<u>U</u> oper -0.67	$\frac{\text{SHGC}}{-0.64}_{\text{north}}$		SHGC north	<u>U_{oper} -1.27</u>	SHGC _{north}
11.13 11.14	40.1 -50.0	$\frac{U_{\text{fixed}}}{-0.46}$	<u>SHGC</u> _{all} -0.36	$U_{\underline{\text{fixed}}}$ -0.46	<u>SHGC</u> _{all} -0.36	$\frac{U_{\underline{\text{fixed}}}}{-0.98}$	SHGC _{all} -NR
11.15 11.16		<u>U_oper</u> -0.47	SHGC _{north}	<u>U_oper</u> -0.47	SHGC north	<u>U_oper1.02</u>	SHGC _{north}
11.17	Skylight, Pe	ercent of Roc	<u>of</u>				
11.18 11.19	0-2.0	<u>U_{all}-0.69</u>	<u>SHGC</u> _{all} -0.68	<u>U_{all}-0.69</u>	SHGC _{all} -0.64	<u>U_{all}-1.36</u>	SHGC _{all} NR
11.20 11.21 11.22	Greater than 2.1 to 5.0	<u>U_{all}-0.69</u>	<u>SHGC</u> _{all} -0.64	<u>U_{all} -0.69</u>	<u>SHGC</u> _{all} -0.64	<u>U_{all} -1.36</u>	SHGC _{all} -NR

*"To footing" means to the top of the footing if the insulation is on the exterior, or to the top of the slab if the insulation is on the interior.

1323.0562 SECTION 5.6.2, COMCHECK OPTION.

11.25

11.27

11.28

11.29

11.30

11.31

11.26 ASHRAE Standard 90.1, Section 5.6, is amended by adding a subsection to read:

5.6.2 COMcheck option. Buildings shall be deemed to comply with Section

5.5 if the COMcheck computer program published by the Pacific National

Laboratories demonstrates it to be in compliance with envelope requirements.

1323.0581 SECTION 5.8.1.5, SUBSTANTIAL CONTACT.

ASHRAE Standard 90.1, Section 5.8.1.5, is amended to read:

03/27/08	REVISOR	CEL/JC	RD3719
03/21/00	KL VISOK	CLLIC	KD3/1/

12.1	5.8.1.5 Substantial contact. Insulation shall be installed in a permanent
12.2	manner and in substantial contact with either the air barrier materials
12.3	or building element making up the interior surface in accordance with
12.4	manufacturer's recommendations for the framing system used. Exposed
12.5	flexible batt insulation installed in floor cavities and walls shall be supported
12.6	in a permanent manner by supports no greater than 24 inches on center.
12.7	Exception: Insulation materials that rely on air spaces adjacent to reflective
12.8	surfaces for their rated performance.

1323.0642 SECTION 6.4.2, LOAD CALCULATIONS.

12.9

12.10

12.11

12.12

12.13

12.14

12.15

12.16

12.17

12.18

12.19

ASHRAE Standard 90.1, Section 6.4.2, is deleted and replaced with the following Section 6.4.2 and Table 6.4.2:

6.4.2 Load calculations. Heating and cooling system design loads for the purpose of sizing systems and equipment shall be determined in accordance with Minnesota Mechanical Code, chapter 1346.

6.4.2.1 Outdoor design conditions. Outdoor design conditions shall be selected from Table 6.4.2.1. Locations not listed in Table 6.4.2.1 shall use those of the listed city with geographical proximity and similar climate conditions as approved by the building official.

TABLE 6.4.2.1 Outdoor Design Conditions

12.20	City	Summer Db/Wb °F	Winter Db °F
12.21	<u>Aitkin</u>	82/72	<u>-24</u>
12.22	Albert Lea	85/72	<u>-15</u>
12.23	Alexandria	86/70	<u>-21</u>
12.24	Bemidji	84/68	<u>-24</u>
12.25	Brainerd	86/71	<u>-20</u>
12.26	Cloquet	82/68	<u>-20</u>
12.27	Crookston	<u>84/70</u>	<u>-27</u>
13.1	<u>Duluth</u>	81/67	<u>-20</u>

	03/27/08	REVISOR	CEL/JC	RD3719
13.2	Ely	82/68	<u>-29</u>	
13.3	Eveleth	82/68	<u>-26</u>	
13.4	<u>Faribault</u>	86/73	<u>-16</u>	
13.5	Fergus Falls	86/71	<u>-21</u>	
13.6	Grand Rapids	<u>81/67</u>	<u>-23</u>	
13.7	Hibbing	82/68	<u>-19</u>	
13.8	International Falls	83/67	<u>-28</u>	
13.9	Litchfield	<u>85/71</u>	<u>-18</u>	
13.10	Little Falls	86/71	<u>-20</u>	
13.11	Mankato	86/72	<u>-15</u>	
13.12	Minneapolis/St. Paul	88/72	<u>-15</u>	
13.13	Montevideo	86/72	<u>-17</u>	
13.14	Mora	84/70	<u>-21</u>	
13.15	Morris	84/72	<u>-21</u>	
13.16	New Ulm	87/73	<u>-15</u>	
13.17	Owatonna	86/73	<u>-16</u>	
13.18	Pequot Lakes	84/68	<u>-23</u>	
13.19	<u>Pipestone</u>	85/73	<u>-15</u>	
13.20	Redwood Falls	89/73	<u>-17</u>	
13.21	Rochester	85/72	<u>-17</u>	
13.22	Roseau	82/70	<u>-29</u>	
13.23	St. Cloud	86/71	<u>-20</u>	
13.24	Thief River Falls	82/68	<u>-25</u>	
13.25	<u>Tofte</u>	<u>75/61</u>	<u>-14</u>	
13.26	Warroad	83/67	<u>-29</u>	
13.27	Wheaton	84/71	<u>-20</u>	
13.28	Willmar	85/71	<u>-20</u>	
13.29	Winona	88/74	<u>-13</u>	
13.30	Worthington	84/71	<u>-14</u>	

03/27/08	REVISOR	CEL/JC	RD3719

1323.0643	SECTION 6.4.3	CONTROLS.

14.1

14.2	Subpart 1.	Setback controls. ASHRAE Standard 90.1, Section 6.4.3.2, is amended
14.3	by adding a si	ubsection to read:
14.4		6.4.3.2.1 Setback controls. Heating systems shall be equipped with
14.5		controls that have the capacity to automatically restart and temporarily
14.6		operate the system as required to maintain zone temperatures above a
14.7		heating set point adjustable down to 55 degrees Fahrenheit or lower.
14.8		Cooling systems shall be equipped with controls that have the capacity
14.9		to automatically restart and temporarily operate the system as required
14.10		to maintain zone temperatures below a cooling set point adjustable up
14.11		to 90 degrees Fahrenheit or higher or to prevent high space humidity
14.12		<u>levels.</u>
14.13		Exceptions:
14.14		(a) Radiant floor and radiant ceiling heating systems; and
14.15		(b) Spaces where constant temperature conditions must be maintained.
14.16	Subp. 2. (Optimum start controls. ASHRAE Standard 90.1, Section 6.4.3.3.3,
14.17	is amended to	read:
14.18		6.4.3.3.3 Optimum start controls. Individual heating and cooling air
14.19		distribution systems with a total design supply air capacity exceeding
14.20		10,000 cfm, served by one or more supply fans that are connected
14.21		together into a common system, shall have optimum start controls. The
14.22		control algorithm shall, as a minimum, be a function of the difference
14.23		between space temperature and occupied setpoint and the amount of
14.24		time prior to scheduled occupancy.
14.25	Subp. 3. Z	Zone isolation. ASHRAE Standard 90.1, Section 6.4.3.3.4, is amended to
14.26	icau.	

03/27/08 REVISOR CEL/JC RD3719

15.1

15.2

15.3

15.4

15.5

15.6

15.7

15.8

15.9

15.10

15.11

15.12

15.13

15.14

15.15

15.16

15.17

15.18

15.19

15.20

15.21

15.22

15.23

15.24

15.25

15.26

15.27

6.4.3.3.4 Zone isolation. HVAC systems serving zones that are intended to operate or be occupied nonsimultaneously shall be divided into isolation areas. Zones may be grouped into a single isolation area provided it does not exceed 25,000 feet of conditioned floor area nor include more than one floor. Each isolation area shall be equipped with isolation devices capable of automatically shutting off the supply of conditioned air and outside air to and exhaust from the area. Each isolation area shall be controlled independently by a device meeting the requirements of Sections 6.4.3.3.1 (Automatic shutdown) and 6.4.3.3.2 (Setback controls). For central systems and plants, controls and devices shall be provided to allow stable system and equipment operation for any length of time while serving only the smallest isolation area served by the system or plant.

Subp. 4. Freeze protection and snow/ice melting systems. ASHRAE Standard 90.1, Section 6.4.3.8, is amended to read:

6.4.3.8 Freeze protection and snow/ice melting systems. Freeze protection systems, such as heat tracing of outdoor piping and heat exchangers, including self-regulating heat tracing, shall include automatic controls capable of shutting off the systems when outdoor air temperatures are above 40 degrees Fahrenheit or when the conditions of the protected fluid will prevent freezing. Snow and ice melting systems shall only be used where required for life safety. Snow and ice melting systems shall include automatic controls capable of shutting off the systems when the pavement temperature is above 50 degrees Fahrenheit and no precipitation is falling and an automatic or manual control that will allow shutoff when the outdoor temperature is above 40 degrees Fahrenheit so that the potential for snow or ice accumulation is negligible.

0.2 /2.7 /0.0	DELUCOD	CEL /IC	DD 2510
03/27/08	REVISOR	CEL/JC	RD3719
U3/////UA	N E. V LOUN	V . F. L ./ IV .	N 1 1 1 1 1 9

16.1	<u>Subp. 5.</u>	Ventilation controls for high-occupancy areas. ASHRAE Standard 90.1,
16.2	Section 6.4.3	3.9, is amended to read:
16.3		6.4.3.9 Ventilation controls for high-occupancy areas. Demand control
16.4		ventilation (DCV) is required for spaces larger than 500 feet (46.45 m ²)
16.5		and with a design occupancy for ventilation of greater than 40 people per
16.6		1,000 feet (92.90 m ²) of floor area and served by systems with one or
16.7		more of the following:
16.8		(a) an air-side economizer;
16.9		(b) automatic modulating control of the outdoor air damper; or
16.10		(c) a design outdoor air flow greater than 300 cfm (141.58 L/s).
16.11		Exceptions:
16.12		(a) Systems with energy recovery complying with 6.5.6.1.
16.13		(b) Multiple-zone systems without direct-digital control of individual zones
16.14		communicating with a central control panel.
16.15		(c) System with a design outdoor air flow less than 1,200 cfm (566.34 L/s).
16.16		(d) Spaces where the supply air flow rate minus any makeup or outgoing
16.17		transfer air requirement is less than 1,200 cfm (566.34 L/s).
16.18 16.19	1323.0644 INSULATIO	SECTION 6.4.4, HVAC SYSTEM CONSTRUCTION AND ON.
16.20	<u>ASHRAE</u>	E Standard 90.1, Section 6.4.4, all subsections, and Tables 6.4.4.2A and
16.21	6.4.4.2B are	deleted in their entirety and replaced with the following:
16.22	<u>6.4</u>	.4 HVAC system construction and insulation.
16.23		6.4.4.1 Insulation. Duct insulation must comply with Minnesota Rules,
16.24		chapter 1346.
16.25		6.4.4.2 Duct and plenum sealing. Duct and plenum sealing must comply
16.26		with Minnesota Rules, chapter 1346.

1323.0644 16

	03/27/08		REVISOR	CEL/JC	RD3719
17.1		6.4.4.3 Pipe insulation.	Pipe insulation m	ust comply with Minnes	sota Rules,
17.2		chapter 1346.			
17.3 17.4		46 SECTION 6.4.6, PROHING FACILITIES.	BITION OF HE	ATED COMMERCIA	<u>L</u>
17.5	ASHI	RAE Standard 90.1, Section 6.	4, is amended by	adding a section to read	<u>:</u>
17.6		6.4.6 Prohibition of heated	commercial park	ting facilities. An enclo	osed
17.7		structure or portion of an enc	losed structure us	ed primarily as a parking	g garage
17.8		or ramp for three or more mo	tor vehicles shall	not be heated.	
17.9		Exceptions:			
17.10		(a) Parking facilities where a	majority of parki	ng spaces are within the	same
17.11		building structure as dwelling	g unit occupancies	<u>s.</u>	
17.12		(b) Parking facilities used exc	clusively to house	vehicles for public eme	ergency,
17.13		ambulance, or public utility e	mergency respons	se.	
17.14		(c) Parking facilities that are	incidentally heat	ed by building relief or	
17.15		environmental exhaust air, pr	ovided that it does	s not create a safety haza	ard.
17.16	1323.065	51 SECTION 6.5.1, ECONO	OMIZERS.		
17.17	Subpa	art 1. Economizers. ASHRA	E Standard 90.1, S	Section 6.5.1, is amended	d to read:
17.18		6.5.1 Economizers. Econom	izers are required	on cooling systems have	ving
17.19		a fan system capacity of 3,00	0 cfm or greater.	Economizers must mee	t the
17.20		requirements of Sections 6.5.	1.1 through 6.5.1.	<u>4.</u>	
17.21		Exceptions: Economizers are	e not required for	the systems listed below	<u>V.</u>
17.22		(a) Systems that include nonp	articulate air treat	ment as required by Sec	etion 6.2.1
17.23		of ASHRAE Standard 62.1.			
17.24		(b) Where more than 25 percentage (b)	ent of the air desig	gned to be supplied by the	he system

is to spaces that are designed to be humidified above 35 degrees Fahrenheit dew

1323.0651 17

point temperature to satisfy process needs.

17.25

03/27/08	REVISOR	CEL/JC	RD3719
03/27/00	KL VISOK	CLL/JC	ND3/17

18.1	<u>(c)</u>	Systems that include a condenser heat recovery system complying with
18.2	Sec	etion 6.5.6.2.
18.3	<u>(d)</u>	Systems that serve spaces with a sensible cooling load at design conditions,
18.4	exc	eluding transmission and infiltration loads, that is less than or equal to
18.5	tran	nsmission and infiltration losses at an outdoor temperature of 60 degrees
18.6	<u>Fal</u>	nrenheit.
18.7	<u>(e)</u>	Systems expected to operate less than 20 hours per week.
18.8	<u>(f)</u>	Where the use of outdoor air for cooling will affect supermarket open
18.9	refi	rigerated display casework systems.
18.10	<u>(g)</u>	The use of outdoor air cooling may affect the operation of other systems so as
18.11	<u>to i</u>	increase the overall energy consumption of the building.
18.12	<u>(h)</u>	Energy recovery from an internal/external zone energy recovery system
18.13	exc	eeeds the energy conserved by outdoor air cooling on an annual basis.
18.14	<u>(i)</u>	The quality of the outdoor air is so poor as to require extensive treatment
18.15	of t	the air.
18.16	Subp. 2.	High-limit shutoff. ASHRAE Standard 90.1, Section 6.5.1.1.3, is amended
18.17	to read:	
18.18		6.5.1.1.3 High-limit shutoff. All air economizers shall be capable
18.19		of automatically reducing outdoor air intake to the design minimum
18.20		outdoor air quality when outdoor air intake will no longer reduce
18.21		cooling energy usage. High-limit shutoff control types for specific
18.22		climates shall be chosen from Table 6.5.1.1.3A, All Other Climates.
18.23		High-limit shutoff control settings for these control types shall be those
18.24		listed in Table 6.5.1.1.3B.
18.25	TABLE	2 6.5.1.1.3A High-Limit Shutoff Control Options for Air Economizers

1323.0651 18

03/27/08	REVISOR	CEL/JC	RD3719

19.1 19.2	Climate Zones	Allowed Control Types	Prohibited Control Types
19.3	1b, 2b, 3b, 3c, 4b, 4c,	Fixed Dry Bulb	Fixed Enthalpy
19.4	5b, 5c, 6b, 7, 8	Differential Dry Bulb	
19.5		Electronic Enthalpy ^a	
19.6		Differential Enthalpy	
19.7 19.8		Dew Point and Dry Bulb Temperature	
19.9	<u>1a, 2a, 3a, 4a</u>	Fixed Dry Bulb	Differential Dry Bulb
19.10		Fixed Enthalpy	
19.11		Electronic Enthalpy ^a	
19.12		Differential Enthalpy	
19.13 19.14		Dew Point and Dry Bulb Temperature	
19.15	All Other Climates	Fixed Dry Bulb	
19.16		Differential Dry Bulb	
19.17		Fixed Enthalpy	
19.18		Electronic Enthalpy ^a	
19.19		Differential Enthalpy	
19.20		Dew Point and Dry Bulb	
19.21		<u>Temperature</u>	
19.22 19.23	Note: ^a Electronic enthalpy cordry bulb temperature in their s	ntrollers are devices that use a conwitching algorithm.	nbination of humidity and

TABLE 6.5.1.1.3B High-Limit Shutoff Control Settings for Air Economizers

19.25 19.26 19.27	Device Type	<u>Climate</u>	Equation	Required High-Limit (Economizer Off When): Description
19.28 19.29 19.30	Fixed Dry Bulb	1b, 2b, 3b, 3c, 4b, 4c, 5b, 5c, 6b, 7, 8	<u>T_{OA}>75°F</u>	Outdoor air temperature exceeds 75°F
19.31 19.32		<u>5a, 6a, 7a</u>	<u>T_{OA}>70°F</u>	Outdoor air temperature exceeds 70°F

1323.0651

	03/27/08		REVISOR	CEL/JC	RD3719
20.1 20.2		All Other Zones	<u>T_04</u> >65°F	Outdoor air temperat exceeds 65°F	ure
20.3 20.4 20.5	Differential Dry Bulb	1b, 2b, 3b, 3c, 4b, 4c, 5a, 5b, 5c, 6a, 6b, 7, 8	<u>T_04</u> >T_ <u>R4</u>	Outdoor air temperat exceeds return air temperature	<u>ure</u>
20.6 20.7	Fixed Enthalpy	All	<u>h_OA</u> >28 Btu/lb_a	Outdoor air enthalpy 28 Btu/lb of dry air_a	exceeds
20.8 20.9 20.10	Electronic Enthalpy	<u>All</u>	$\frac{(\underline{T}_{OA^2})}{\underline{RH}_{OA}}) > \underline{A}$	Outdoor air temperature exceeds the "A" set procurve b	
20.11 20.12	Differential Enthalpy	All	$\underline{h}_{\underline{OA}} \geq \underline{h}_{\underline{RA}}$	Outdoor air enthalpy return air enthalpy	exceeds
20.13 20.14 20.15	Dew Point and Dry Bulb Temperature	All	$\frac{DP_{OA} > 55^{\circ}F \text{ or}}{T_{OA} > 75^{\circ}F}$	Outdoor air dry bulb 75°F or outside dew exceeds 55°F (65 gr/l	point
20.16 20.17 20.18	set to the enthalpy val	lue at 75°F and 50	percent relative h	ed Enthalpy limit shall umidity. As an example t is approximately 30.7	le, at
20.19 20.20 20.21	at approximately 75°F	and 40 percent re	elative humidity ar	e chart that goes throughd is nearly parallel to on lines at high humidity	dry bulb
20.22	1323.0652 SECTION	N 6.5.2.1, ZONE	CONTROLS.		
20.23	ASHRAE Standard	1 90.1, Section 6.5	.2.1, is amended to	o read:	
20.24	6.5.2.1	Zone controls. Zo	one thermostatic co	ontrols shall be capable	e of
20.25	operatin	g in sequence the	supply of heating	and cooling energy to t	he zone.
20.26	Such co	ntrols shall prever	nt:		
20.27	1. rehea	nting;			
20.28	<u>2. recoo</u>	oling <u>;</u>			
20.29	3. mixii	ng or simultaneou	sly supplying air t	hat has been previously	<u>y</u>
20.30	mechan	ically heated and a	air that has been p	reviously cooled, either	r by
20.31	mechan	ical cooling or by	economizer system	ns; and	

1323.0652 20

03/27/08	REVISOR	CEL/JC	RD3719

21.1	4. other simultaneous operation of heating and cooling systems to the same
21.2	zone.
21.3	Exceptions:
21.4	(a) Zones for which the volume of air that is reheated, recooled, or mixed is
21.5	no greater than the larger of the following:
21.6	1. the volume of outdoor air required to meet the ventilation requirements of
21.7	Section 6.2 of ASHRAE Standard 62.1-2004 for the zone;
21.8	2. 0.4 cfm/ft ² of the zone conditioned floor area;
21.9	3. 30 percent of the zone design peak supply rate;
21.10	4. 300 cfm- this exception is for zones whose peak flow rate totals no more
21.11	than ten percent of the total fan system flow rate; and
21.12	5. any higher rate that can be demonstrated, to the satisfaction of the
21.13	authority having jurisdiction, to reduce overall system annual energy usage
21.14	by offsetting reheat/recool energy losses through a reduction in outdoor air
21.15	intake for the system.
21.16	(b) Zones where special pressurization relationships, cross-contamination
21.17	requirements, or code-required minimum circulation rates are such that
21.18	variable air volume systems are impractical.
21.19	(c) Zones where at least 75 percent of the energy for reheating or for
21.20	providing warm air in mixing systems is provided from a site-recovered,
21.21	including condenser heat, or site-solar energy source.
21.22	(d) Recovered energy in excess of the new energy expended in the recovery
21.23	process may be used for control of temperature and humidity.
21.24	(e) New energy may be used to prevent relative humidity from rising above
21.25	60 percent or to prevent condensation on terminal units or outlets, or
21.26	functioning of special equipment. New energy may be used for temperature
21.27	control if minimized in accordance with this subitem.

1323.0652 21

03/27/08 REVISOR CEL/JC RD3719

22.1	1. Systems employing reheat and serving multiple zones, other than those
22.2	employing variable air volume for temperature control, must be provided
22.3	with a control that will automatically reset the system cold-air supply to the
22.4	highest temperature level that will satisfy the zone requiring the highest
22.5	cooling load.
22.6	2. Single-zone reheat systems must be controlled to sequence reheat and
22.7	cooling.
22.8	3. Dual duct and multizone systems, other than those employing variable air
22.9	volume for temperature control, must be provided with a control that will
22.10	automatically reset:
22.11	a. the cold-deck air supply to the highest temperature that will satisfy the
22.12	zone requiring the highest cooling load; and
22.13	b. the hot-deck air supply to the lowest temperature that will satisfy the zone
22.14	requiring the highest heating load.
22.15	4. Systems in which heated air is recooled, directly or indirectly, to maintain
22.16	space temperature must be provided with a control that will automatically
22.17	reset the temperature to which the supply air is heated to the lowest level
22.18	that will satisfy the zone requiring the highest heating load.
22.19	5. For systems with multiple zones, one or more zones may be chosen to
22.20	represent a number of zones with similar heating and cooling characteristics.
22.21	A multiple zone system that employs reheating or recooling for control
22.22	of not more than 5,000 cfm, or 20 percent of the total supply air of the
22.23	system, whichever is less, is exempt from the supply air temperature reset
22.24	requirements in subitems 1 to 4.
22.25	6. Concurrent operation of independent heating and cooling systems serving
22.26	common spaces and requiring the use of new energy for heating or cooling
22.27	must be minimized by:

1323.0652 22

03/27/08		REVISOR	CEL/JC	RD3719
	a. providing sequenti	al temperature control	of both heating an	d cooling
	capacity in each zone	e; or		

b. limiting the heat energy input through automatic reset control of the

heating medium temperature, or energy input rate, to only that necessary to

offset heat loss due to transmission and infiltration and, where applicable, to

heat the ventilation air supply to the space.

1323.0653 SECTION 6.5.3, AIR SYSTEM DESIGN AND CONTROL.

Subpart 1. Table 6.5.3.1 fan power limitation. ASHRAE Standard 90.1, Section

23.9 <u>6.5.3.1</u>, Table 6.5.3.1, is amended to read:

23.10 TABLE 6.5.3.1 Fan Power Limitation

23.11 Allowable Brake Motor Power

23.12	Supply Air Volume	Constant Volume	<u>Variable Volume</u>
23.13	<20,000 cfm	1.2 Bhp/1000 cfm	1.7 Bhp/1000 cfm
23.14	≥20,000 cfm	1.1 Bhp/1000 cfm	1.5 Bhp/1000 cfm

- 23.15 Allowable Fan System Power = [Table 6.5.3.1 Fan Power Limitation x (Temperature
- 23.16 Ratio) + Pressure Credit + Relief Fan Credit] where
- 23.17 <u>Table 6.5.3.1 Fan Power Limitation = Table Value x $CF_{Mn}/1000$ </u>
- 23.18 <u>Temperature Ratio = $(T_{t-stat} T_S)/20$ </u>
- Pressure Credit (hp) = Sum of $[CFM_{\underline{n}} \times (SP_{\underline{n}} 1.0)/3718] + Sum of [CFM_{\underline{HR}} \times SP_{\underline{HR}}/3718]$
- 23.20 Relief Fan Credit HP (kW) = $F_R HP$ (kW) x [1 (CFM_{RF}/CFM_n)]
- 23.21 \underline{CF}_{Mn} = supply air volume of the unit with the filtering system (cfm)
- 23.22 \underline{CFM}_{HR} = supply air volume of heat recovery coils or direct evaporative humidified/cooler
- 23.23 (cfm)

23.1

23.2

23.7

- 23.24 \underline{CFM}_{RF} = relief fan air volume at normal cooling design operation
- 23.25 \underline{SP}_n = air pressure drop of the filtering system when filters are clean (in. w.g.)
- 24.1 \underline{SP}_{HR} = air pressure drop of heat recover coils or direct evaporative humidifier/cooler

24.2 <u>(in. w.g.)</u>

	03/27/08	REVISOR	CEL/JC	RD3719
24.3	$T_{\underline{t\text{-stat}}}$ = room thermostat set point			
24.4	$\underline{T}_{\underline{S}}$ = design supply air temperature for	the zone in which	the thermostat is locat	<u>ed</u>
24.5	$F_{\rm p}$ = relief fan in horse power			

24.4	$\underline{T}_{\underline{S}}$ = design supply air temperature for the zone in which the thermostat is located
24.5	$\underline{F_R}$ = relief fan in horse power
24.6	Subp. 2. Part-load fan power limitation. ASHRAE Standard 90.1, Section
24.7	6.5.3.2.1, is amended to read:
24.8	6.5.3.2.1 Part-load fan power limitation. Individual VAV fans with
24.9	motors 7-1/2 hp and larger shall meet one of the following:
24.10	(a) The fan shall be driven by a mechanical or electrical variable-speed
24.11	drive.
24.12	(b) The fan shall be a vane-axial fan with variable-pitch blades.
24.13	(c) The fan shall have other controls and devices that will result in
24.14	fan motor demand of no more than 30 percent of design wattage at
24.15	50 percent of design air volume when static pressure set point equals
24.16	one-third of the total design static pressure, based on manufacturer's
24.17	certified fan data.
24.18	Subp. 3. Static pressure sensor location. ASHRAE Standard 90.1, Section
24.19	6.5.3.2.2, is amended to read:
24.20	6.5.3.2.2 Static pressure sensor location. Static pressure sensors used
24.21	to control variable air volume fans shall be placed in a position such
24.22	that the controller set point is optimized to maintain the minimum static
24.23	pressure required for proper system operation throughout its range.
24.24	Exception: Systems with zone reset control complying with Section
24 25	65323

1323.0657 SECTION 6.5.7.2, FUME HOODS.

24.26

25.1

ASHRAE Standard 90.1, Section 6.5.7.2, is amended to read:

1323.0657 24

0.0 /0.0	DELUGOD	OFT ITO	D D 4 = 4 4
03/27/08	REVISOR	CEL/JC	RD3719

25.2	6.5.7.2 Fume hoods. Buildings with fume hood systems having a total
25.3	exhaust rate greater than 15,000 cfm shall include at least one of the
25.4	following features:
25.5	(a) Variable air volume hood exhaust and room supply systems capable of
25.6	reducing exhaust and makeup air volume to 50 percent or less of design
25.7	values except when higher volumes are required to maintain safe operating
25.8	conditions.
25.9	(b) Direct makeup (auxiliary) air supply equal to at least 75 percent of the
25.10	exhaust rate, heated no warmer than two degrees Fahrenheit below room
25.11	set point, cooled to no cooler than three degrees Fahrenheit above room set
25.12	point, no humidification added, and no simultaneous heating and cooling
25.13	used for dehumidification control.
25.14	(c) Heat recovery systems to precondition makeup air from fume hood
25.15	exhaust in accordance with Section 6.5.6.1 (Exhaust air energy recovery)
25.16	without using any exception.
25.17	1323.0672 SECTION 6.7.2, COMPLETION REQUIREMENTS.
25.18	Subpart 1. Drawings. ASHRAE Standard 90.1, Section 6.7.2.1, is amended to read:
25.19	6.7.2.1 Drawings. Construction documents shall require that within 60 days
25.20	after the date of system acceptance, record drawings of the actual installation
25.21	be provided to the building owner or the designated representative of the
25.22	building owner. Record drawings shall include as a minimum the location
25.23	and performance data on each piece of equipment, general configuration
25.24	of duct and pipe distribution system including sizes, and the terminal air
25.25	or water design flow rates.

Subp. 2. Manuals. ASHRAE Standard 90.1, Section 6.7.2.2, is amended to read:

1323.0672 25

03/27/08	REVISOR	CEL/JC	RD3719
03/27/00	KL VISOK	CLL/JC	1103/17

26.1		6.7.2.2 Manuals. Construction documents shall require that an operating
26.2		manual and a maintenance manual be provided to the building owner or
26.3		the designated representative of the building owner within 60 days after
26.4		the date of system acceptance. These manuals shall be in accordance
26.5		with industry-accepted standards (see Appendix E) and shall include, at
26.6		a minimum, the following:
26.7		(a) Submittal data stating equipment size and selected options for each piece
26.8		of equipment requiring maintenance.
26.9		(b) Operation manuals and maintenance manuals for each piece of
26.10		equipment requiring maintenance, except equipment not furnished as part of
26.11		the project. Required routine maintenance actions shall be clearly identified.
26.12		(c) Names and addresses of at least one service agency.
26.13		(d) HVAC controls system maintenance and calibration information,
26.14		including wiring diagrams, schematics, and control sequence descriptions.
26.15		Desired or field-determined setpoints shall be permanently recorded on
26.16		control drawings at control devices or, for digital control systems, in
26.17		programming comments.
26.18		(e) A complete narrative of how each system is intended to operate,
26.19		including suggested setpoints.
26.20	<u>Subp. 3.</u>	HVAC system acceptance testing. ASHRAE Standard 90.1, Section
26.21	6.7.2.4, is an	mended to read:
26.22		6.7.2.4 HVAC system acceptance testing. HVAC systems shall be tested
26.23		and adjusted for function and performance to ensure that control elements
26.24		are calibrated, and in proper working condition and that components,
26.25		equipment, systems, and interfaces between systems conform to the
26.26		construction documents. Acceptance testing and documentation shall be
26.27		completed in accordance with Sections 7.2.9. 7.2.10, 7.2.13, and 7.2.15

1323.0672 26

02/25/00	DELUCOB	OFT /IO	DD0510
03/27/08	REVISOR	CEL/IC	RD3719

27.1	of ASHRAE Guideline 0-2005, "The Commissioning Process," and the
27.2	documentation shall be submitted to the building official upon request.
27.3	Exceptions:
27.4	(a) Semiconditioned spaces within buildings.
27.5	(b) Buildings complying with the HVAC provisions in Appendix A of
27.6	Acceptance Requirements from "Advanced Buildings: Energy Benchmark
27.7	for High Performance Buildings," 2004, New Buildings Institute and
27.8	documented as required by Section 6.7.2.4.

1323.0681 SECTION 6.8, MINIMUM EQUIPMENT EFFICIENCY TABLES.

ASHRAE Standard 90.1, Table 6.8.1C, is amended to read:

27.9

27.10

27.11

27.28

27.29

TABLE 6.8.1C Water Chilling Packages - Minimum Efficiency Requirements

27.12	Equipment Type	Size Category
27.13	Air Cooled, with Condenser, Electrically Operated	All Capacities
27.14	Air Cooled, without Condenser, Electrically Operated	All Capacities
27.15 27.16	Water Cooled, Electrically Operated, Positive Displacement (Reciprocating)	All Capacities
27.17 27.18	Water Cooled, Electrically Operated, Positive Displacement (Rotary Screw and Scroll)	<150 tons
27.19		\geq 150 tons and <300 tons
27.20		<u>≥300 tons</u>
27.21	Water Cooled, Electrically Operated, Centrifugal	<150 tons
27.22		\geq 150 tons and \leq 300 tons
27.23		<u>≥300 tons</u>
27.24	<u>Air-Cooled Absorption Single Effect</u> ^c	All Capacities
27.25	Water-Cooled Absorption Single Effect ^c	All Capacities
27.26	Absorption Double Effect, Indirect-Fired	All Capacities
27.27	Absorption Double Effect, Direct-Fired	All Capacities

^aThe chiller equipment requirements do not apply for chillers used in low-temperature applications where the design leaving fluid temperature is <40F.

1323.0681 27

	03/27/08	REVISOR	CEL/JC	RD3719
28.1 28.2	_Section 12 contains a complete s the reference year version of the t		enced test procedure	, including
28.3	^c See Section 6.9.1.			
28.4 28.5	1323.0690 SECTION 6.9, WAT ONCE-THROUGH COOLING		KAGES AND	
28.6	ASHRAE Standard 90.1, Secti	on 6, is amended by ad	ding a new section 6	.9 and
28.7	subsections to read:			
28.8	6.9 Single effect absorption	water chilling packag	es and once-through	h cooling
28.9	systems.			
28.10	6.9.1 Single effect absor	rption water chillers.	Single effect absorpti	ion water
28.11	chilling systems shall on	ly be used when all the	energy input is from	waste heat
28.12	or renewable energy sou	rces.		
28.13	6.9.2 Prohibition of one	ce-through cooling sys	tems. Once-through	cooling
28.14	systems as defined by M	innesota Rules, chapter	7685, are prohibited	d when
28.15	proscribed by Minnesota	Statutes, section 103G	.271, subdivision 5.	
28.16	1323.0741 SECTION 7.4.1, LO	AD CALCULATIONS	<u>S.</u>	
28.17	ASHRAE Standard 90.1, Section	on 7.4.1, is amended to	read:	
28.18	7.4.1 Load calculations	. Service water heating	system design loads	for the
28.19	purpose of sizing system	s and equipment shall b	e determined in acco	ordance with
28.20	the procedures described	in the ASHRAE Hand	book-HVAC Applica	ations or
28.21	an equivalent computation	on procedure.		
28.22	1323.0745 SECTION 7.4.5, PO	OLS.		
28.23	ASHRAE Standard 90.1, Section	on 7.4.5, and all subsec	tions are deleted and	replaced

1323.0745 28

with the following:

7.4.5 Pools.

28.24

03/27/08	REVISOR	CEL/JC	RD3719
03/21/00	ICL VISOR	CLLIC	KD3/1/

29.1	7.4.5.1 Pool heaters. Pool heaters shall be equipped with a readily
29.2	accessible on-off switch to allow shutting off the heater without adjusting
29.3	the thermostat setting.
29.4	7.4.5.2 Pool covers. Heated swimming pools shall be equipped with a vapor
29.5	retardant pool cover in compliance with Minnesota Rules, part 4717.1575,
29.6	the Minnesota Department of Health pool cover safety standard. Pools
29.7	heated to more than 90 degrees Fahrenheit shall have a pool cover with a
29.8	minimum insulation value of R-12.
29.9	Exception: Pools deriving over 60 percent of the energy for heating from
29.10	site-recovered energy or renewable energy source.

1323.0780 TABLE 7.8, PERFORMANCE REQUIREMENTS FOR WATER HEATING EQUIPMENT.

ASHRAE Standard 90.1, Section 7, Table 7.8, is amended to read:

29.11

29.12

29.13

29.14

TABLE 7.8 Performance Requirements for Water Heating Equipment

Equipment Type	Size Category (Input)	Subcategory or Rating Condition	Performance Required ^a
Electric Water Heaters	<u>≤12 kW</u>	Resistance ≥20 gal	0.97-0.00132V EF
	>12 kW	Resistance ≥20 gal	$20+35 \sqrt{\text{V SL, Btu/h}}$
	≤24 Amps and ≤250 Volts	Heat Pump	0.97-0.00132V EF
Gas Storage Water Heaters	≤75,000 Btu/h	<u>≥20 gal</u>	0.67-0.0019V EF
	>75,000 Btu/h	<4,000(Btu/h)/gal	$\frac{80\% \text{ E}_{t}(\text{Q/800+110})}{\sqrt{\text{V}} \text{ SL}, \text{ Btu/h}}$
Gas Instantaneous Water	>50,000 Btu/h	\geq 4,000(Btu/h)/gal and	0.67-0.0019V EF
<u>Heaters</u>	and <200,000 Btu/h	<2 gal	
	$ \geq 200,000 $ Btu/h ^c	≥4,000(Btu/h)/gal and <10 gal	<u>80% E</u> _t

03/27/08	REVISOR	CEL/JC	RD3719
03/21/00	TCE VIDOIC	CLL/3C	1000110

		Ī		Ī Ī
30.1		<u>≥200,000</u>		$80\% E_{t}(Q/800+110)$
30.2		Btu/h	<u>≥10 gal</u>	\sqrt{V} SL, Btu/h
30.3	Oil Storage Water	<u>≤105,000</u>	≥20 gal	0.59-0.0019V EF
30.4	<u>Heaters</u>	Btu/h		
30.5		>105,000	<4,000(Btu/h)/gal	$\frac{78\% \text{ E}_{t}(\text{Q}/800+110)}{\text{ E}_{t}}$
30.6		Btu/h		\sqrt{V} SL, Btu/h
30.7	Oil Instantaneous Water	<u>≤210,000</u>	\geq 4,000(Btu/h)/gal and	0.59-0.0019V EF
30.8	<u>Heaters</u>	Btu/h	<2 gal	
30.9		>210,000	\geq 4,000(Btu/h)/gal and	80% E _t
30.10		Btu/h	<10 gal	-
30.11		>210,000	\geq 4,000(Btu/h)/gal and	$\frac{78\% \text{ E}_{t}(\text{Q/800+110}}{\sqrt{\text{V}) \text{ SL}}, \text{ Btu/h}}$
30.12		Btu/h	<u>≥10 gal</u>	\sqrt{V} SL, Btu/h
30.13	Hot Water Supply	<u>≥300,000</u>	\geq 4,000(Btu/h)/gal and	80% E _t
30.14	Boilers, Gas and Oil	Btu/h and	<10 gal	-
30.15		<12,500,000		
30.16		Btu/h		
30.17	Hot Water Supply		\geq 4,000(Btu/h)/gal and	$80\% E_{t}(Q/800+110)$
30.18	Boilers, Gas		<u>≥10 gal</u>	\sqrt{V} SL, Btu/h
30.19	Hot Water Supply		\geq 4,000(Btu/h)/gal and	$\frac{78\% \text{ E}_{\underline{t}}(Q/800+110)}{}$
30.20	Boilers, Oil		<u>≥10 gal</u>	\sqrt{V} SL, Btu/h
30.21	Pool Heaters Oil and	All		<u>78% E</u> _t
30.22	Gas			2
30.23	Heat Pump Pool Heaters	<u>All</u>		4.0 COP
30.24	Unfired Storage Tanks	All		<u>R-12.5</u>

a Energy factor (EF) and thermal efficiency (Et) are minimum requirements, while standby loss (SL) is maximum Btu/h based on a 70° F temperature difference between stored water and ambient requirements. In the EF equation, V is the rated volume in gallons. In the SL equation, V is the rated volume in gallons and Q is the nameplate input rate in Btu/h.

1323.0871 SECTION 8.7.1, DRAWINGS.

30.33

ASHRAE Standard 90.1, Section 8.7.1, is amended to read:

1323.0871 30

^{30.29 &}lt;u>b</u> Section 12 contains a complete specification, including the year version, of the referenced test procedure.

^{20.31} Calculation Instantaneous water heaters with input rates below 200,000 Btu/h must comply with these requirements if the water heater is designed to heat water to temperatures 180° F or higher.

03/27/08	REVISOR	CEL/JC	RD3719

31.2	8.7.1 Drawings. Construction documents shall require that within 60 days after
31.3	the date of system acceptance, record drawings of the actual installation be
31.4	provided to the building owner or the designated representative of the building
31.5	owner. Record drawings shall include at a minimum the following information:
31.6	(a) a single-line diagram of the building electrical distribution system; and
31.7	(b) floor plans indicating location and area served for all distribution.
31.8	1323.0872 SECTION 8.7.2, MANUALS.
31.9	ASHRAE Standard 90.1, Section 8.7.2, is amended to read:
31.10	8.7.2 Manuals. Construction documents shall require that operating and
31.11	maintenance manuals be provided to the building owner or the designated
31.12	representative of the building owner within 60 days after the date of system
31.13	acceptance. These manuals shall include, at a minimum, the following:
31.14	(a) Submittal data stating equipment rating and selected options for each piece
31.15	of equipment requiring maintenance.
31.16	(b) Operation manuals and maintenance manuals for each new piece of
31.17	equipment requiring maintenance, except equipment not furnished as part of the
31.18	project. Required routine maintenance actions shall be clearly identified.
31.19	(c) Names and addresses of at least one qualified service agency.
31.20	(d) A complete narrative of how each system is intended to operate.
31.21	1323.0891 SECTION 8.9.1, ELECTRICAL ENERGY DETERMINATION.
31.22	ASHRAE Standard 90.1, Section 8, is amended by adding a section to read:
31.23	8.9 Electrical energy determination.
31.24	8.9.1 Electrical energy determination. In new multifamily dwellings, the
31.25	electrical energy consumed by each individual dwelling unit must be separately
31.26	metered with individual metering readily accessible to the individual occupants.
32.1	Exception: Motels, hotels, college dormitories, other transient facilities, and
32.2	buildings intended for occupancy primarily by persons who are 62 years of age

1323.0891 31

	03/27/08		REVISOR	CEL/JC	RD3719
32.3		or older or handicapped, or whi	ch contain a ma	njority of units not equi	pped with
32.4		complete kitchen facilities.			
32.5	1323.09	11 SECTION 9.1.1, LIGHTIN	G SCOPE.		
32.6	ASH	RAE Standard 90.1, Section 9.1.	1, is amended t	o read:	
32.7		9.1.1 Scope. This section shall	apply to the fol	lowing:	
32.8		(a) interior spaces of buildings;	<u>.</u>		
32.9		(b) exterior building features, in	ncluding facade	s, illuminated roofs, arc	chitectural
32.10		features, entrances, exits, loading	ng docks, and il	luminated canopies; an	<u>d</u>
32.11		(c) exterior building grounds pr	ovided through	the building's electrica	l service.
32.12		Exceptions:			
32.13		(a) emergency lighting that is at	utomatically off	during normal building	goperation;
32.14		(b) lighting within living units;			
32.15		(c) lighting that is specifically of	lesignated as re	quired by a health or lin	fe safety
32.16		statute, ordinance, or regulation	n; and/or		
32.17		(d) decorative gas lighting syst	ems that meet tl	ne requirements of Min	nesota
32.18		Statutes, section 216C.19.			
32.19	1323.09	44 SECTION 9.4.4, EXTERIO	OR BUILDING	GROUNDS LIGHTI	NG.
32.20	ASH	RAE Standard 90.1, Section 9.4.	4, is amended t	o read:	
32.21		9.4.4 Exterior building groun	ds lighting. Al	l exterior building grou	<u>unds</u>
32.22		luminaries that operate at great	er than 100 wat	ts, except parking lot li	ghting,
32.23		shall contain lamps having a m	inimum efficacy	of 60 lm/W unless the	luminaire
32.24		is controlled by a motion senso	r or qualifies fo	r one of the exceptions	under
32.25		Section 9.1.1 or 9.4.5. Parking	lot lighting shal	l be in accordance with	Minnesota
32.26		Rules, chapter 8885.			
	1222.00	01 CECTION 0.01 CONC.			
33.1	1323.09	91 SECTION 9.9.1, COMCHI	LCK OPTION	<u>•</u>	

ASHRAE Standard 90.1, Section 9, is amended by adding a section to read:

1323.0991 32

03/27/08	REVISOR	CEL/JC	RD3719
114/7///18	REVISOR	('HI / I('	R114/19
03/27/00	KE VISOK	CLL/JC	$\mathbf{RD}_{J}(1)$

9.9 COMcheck option.		
9.9.1 COMcheck of	ption. Buildings sha	all be deemed to comply with
requirements of Sect	ions 9.5 and 9.6 if the	he COMcheck program published by the
Pacific National Lab	oratories demonstra	tes it to be in compliance.
323.1114 SECTION 11.1.4	, COMPLIANCE.	
ASHRAE Standard 90.1, S	Section 11.1.4, is am	ended to read:
11.1.4 Compliance. Con	npliance with Section	n 11 will be achieved if:
(a) all requirements	of Sections 5.4, 6.4,	7.4, 8.4, 9.4, and 10.4 are met;
(b) the design energy	y cost, as calculated	in Section 11.3 does not exceed the
energy cost budget, a	as calculated by the	simulation program described in Section
11.2; and		
(c) the energy efficient	ency level of compo	nents specified in the building design
meet or exceed the e	fficiency levels used	d to calculate the design energy cost.
323.1121 SECTION 11.2.1	, SIMULATION P	ROGRAM.
ASHRAE Standard 90.1, S	Section 11.2.1, is am	ended to read:
11.2.1 Simulation p	rogram. The simula	ation program shall be a computer-based
program for the anal	ysis of energy consu	umption in buildings (a program such
as, but not limited to	, DOE-2 or BLAST). The simulation program shall include
calculation methodo	logies for the building	ng components being modeled.
1323.1132 SECTION 11.3.2	, HVAC SYSTEMS	S.
ASHRAE Standard 90.1, S		_
	BLE 11.3.2C Water	
Individual Chiller Plant	Electric Chiller	Fossil Fuel Chiller Type
Capacity	Type	D 11 00 1 1
<u>≤100 tons</u>	Reciprocating	Double-effect absorption direct/indirect fired or Single-effect
		absorption using waste heat

1323.1132 33

		and the second s	
03/27/08	REVISOR	CEL/JC	RD3719
U3/ / //U8	REVISUR	(F1 / I(K111/19

34.6	>100 tons, <300 tons	Screw	Double-effect absorption, direct fired
34.7	<u>≥300 tons</u>	Centrifugal	Double-effect absorption, direct fired
34.8	1323.1300 SECTION 13, C	THER BUILDIN	NGS.
34.9	ASHRAE Standard 90.1,	is amended by add	ing a section to read:
34.10	Section 13. Other building	<u>s.</u>	
34.11	13.1 Greenhouse struc	tures. Greenhouse	structures that require heating for cold
34.12	weather protection are re	egulated by this sec	ction. A greenhouse structure is a structure
34.13	that is used for plant gro	owth.	
34.14	13.1.1 Envelope re	quirements for gr	reenhouse structures.
34.15	13.1.1.1 Found	lation walls; slab-	on-grade floors. Foundation walls and
34.16	slab-on-grade f	loors must comply	with the requirements of ASHRAE
34.17	Standard 90.1,	Section 5.	
34.18	13.1.1.2 Trans	parent and transl	ucent components. Transparent and
34.19	translucent con	nponents are exem	pt from the requirements of Section 5
34.20	provided that the	hey are either sing	le-pane glass, twin wall polycarbonate,
34.21	two-ply polyet	hylene or equivale	<u>nt.</u>
4.22	13.1.1.3 Cover	ings. Greenhouse	structures must have either an exterior
34.23	anti-infrared co	overing or internal	thermal blanket that reduces nighttime
34.24	radiation in con	mpliance with this	section.

35.3 <u>that provides both plant shading and retards nighttime radiation in</u>

minimum energy saving rating of 20 percent.

13.1.1.3.1 Anti-infrared covering. The anti-infrared covering must be

not less than 4-mill thick polyethylene greenhouse covering film that

retards nighttime heat radiation from greenhouse structures and has a

13.1.1.3.2 Thermal blanket. The thermal blanket must be not less than

4-mill thick internally installed material used in greenhouse structures

1323.1300 34

34.25

34.26

34.27

34.28

35.1

03/27/08	REVISOR	CEL/JC	RD3719
33/27/00	ILL VIDOIC	CLLISC	1005/17

35.4	greenhouse structures and has a minimum energy saving rating of 20
35.5	percent.
35.6	13.1.1.3.3 Energy saving rating. The energy saving rating shall
35.7	be determined by comparing the heating energy required by similar
35.8	greenhouse structures having similar plant contents; either adjusted for
35.9	weather or co-located during the same heating season. A greenhouse
35.10	structure covered with an anti-infrared polyethylene covering is
35.11	compared to a similar structure covered with a polyethylene covering
35.12	not having anti-infrared characteristics. A greenhouse structure having
35.13	an internally installed thermal blanket material is compared to a similar
35.14	structure not having a thermal blanket installed.
35.15	13.1.2 Heating requirements for greenhouse structures. Mechanical
35.16	components of greenhouse structures must comply with the ASHRAE Standard
35.17	90.1, Section 6. In addition, unit heating systems must be power vented or
35.18	direct vented.
35.19	13.1.3 Additional requirements for greenhouse structures. Greenhouse
35.20	structures must comply with the requirements of ASHRAE Standard 90.1,
35.21	Sections 7, 8, 9, and 10.
35.22	13.2 Inflated structures. Inflated structures that require heating for cold weather
35.23	protection are regulated by this section. An inflated structure is a structure that is
35.24	air supported.
35.25	13.2.1 Envelope requirements for inflated structures. Foundation walls and
35.26	slab-on-grade floors must meet the requirements of ASHRAE Standard 90.1,
35.27	Section 5.
36.1	13.2.1.1 Minimum insulation. The structure membrane must have a
36.2	minimum insulation value of R-12.

1323.1300 35

03/27/08	REVISOR	CEL/JC	RD3719
03/2//00	KL VISOK	CLL/JC	RDJ/1J

36.3	Exception: Inflated structures that are designed to deflate during the
36.4	summer months.
36.5	13.2.2 Requirements for inflated structures. Inflated structures must comply
36.6	with the requirements of ASHRAE Standard 90.1, Section 6. Air pressure
36.7	controls for inflated structures must have the capability for manual and automated
36.8	control with respect to outdoor wind speed.
36.9	13.2.3 Additional requirements for inflated structures. Inflated structures
36.10	must comply with the requirements of ASHRAE Standard 90.1, Sections 7,
36.11	8, 9, and 10.
36.12	REPEALER. Minnesota Rules, parts 7676.0100; 7676.0200; 7676.0300; 7676.0400;
36.13	7676.0500; 7676.0600; 7676.0700; 7676.0800; 7676.0900; 7676.1000; 7676.1100;
36.14	<u>7676.1200;</u> 7676.1300; 7676.1400; 7676.1500; 7678.0100; 7678.0200; 7678.0300;
36.15	7678.0400; 7678.0500; 7678.0600; 7678.0700; 7678.0800; and 7678.0900, are repealed.
36.16 36.17	EFFECTIVE DATE. These amendments are effective five working days after publication of the notice of adoption.
00.1/	publication of the notice of adoption.

1323.1300 36