05/05/14 REVISOR CKM/AA AR4104 **Pollution Control Agency** 1.1 **Adopted Permanent Rules Relating to Water Quality** 1.2 7050.0150 DETERMINATION OF WATER QUALITY, BIOLOGICAL AND 1.3 PHYSICAL CONDITIONS, AND COMPLIANCE WITH STANDARDS. 1.4 [For text of subps 1 to 3, see M.R.] 1.5 Subp. 4. Definitions. For the purposes of this chapter and chapter 7053, the 1.6 following terms have the meanings given them. 1.7 [For text of items A and B, see M.R.] 1.8 C. "BOD₅" or "five-day biochemical oxygen demand" means the amount of 1.9 dissolved oxygen needed by aerobic biological organisms to break down organic material 1.10 present in a given water sample at a certain temperature over a five-day period. 1.11 D. "Chlorophyll-a" means a pigment in green plants including algae. The 1 12 concentration of chlorophyll-a, expressed in weight per unit volume of water, is a 1.13 measurement of the abundance of algae. 1.14 E. "Diel flux" means the daily change in a constituent, such as dissolved oxygen 1.15 or pH, when there is a distinct daily cycle in the measurement. Diel dissolved oxygen 1.16 flux means the difference between the maximum daily dissolved oxygen concentration 1.17 and the minimum daily dissolved oxygen concentration. 1.18 "Ecoregion" means an area of relative homogeneity in ecological systems F 1.19 based on similar soils, land use, land surface form, and potential natural vegetation. 1.20 Minnesota ecoregions are shown on the map in part 7050.0468. 1.21 "Eutrophication" means the increased productivity of the biological G. 1.22 community in water bodies in response to increased nutrient loading. Eutrophication 1.23 is characterized by increased growth and abundance of algae and other aquatic plants, 1.24 reduced water transparency, reduction or loss of dissolved oxygen, and other chemical and 1.25

7050.0150

05/05/14 REVISOR CKM/AA AR4104 biological changes. The acceleration of eutrophication due to excess nutrient loading from 2.1 human sources and activities, called cultural eutrophication, causes a degradation of water 2.2 quality and possible loss of beneficial uses. 2.3 H. "Eutrophication standard" means the combination of indicators of 2.4 enrichment and indicators of response as described in subpart 5. The indicators upon 2.5 which the eutrophication standard for specific water bodies are based are as provided 2.6 under subparts 5a to 5c. 2.7 HI. "Fish and other biota" and "lower aquatic biota" mean the aquatic 2.8 2.9 community including, but not limited to, game and nongame fish, minnows and other small fish, mollusks, insects, crustaceans and other invertebrates, submerged or emergent 2.10rooted vegetation, suspended or floating algae, substrate-attached algae, and microscopic 2.11 organisms. "Other biota" includes aquatic or semiaquatic organisms that depend on 2.12 2.13 aquatic systems for food or habitat such as amphibians and certain wildlife species. "Hydraulic residence time" means the time water resides in a basin or, ΗJ. 2.14 alternately, the time it would take to fill the basin if it were empty. 2.15 "Impaired water" or "impaired condition" means a water body that JΚ. 2.16 does not meet applicable water quality standards or fully support applicable beneficial 2.17 uses, due in whole or in part to water pollution from point or nonpoint sources, or any 2.18 combination thereof. 2.19 "Index of biological integrity" or "IBI" means an index developed by ΚL. 2.20 measuring attributes of an aquatic community that change in quantifiable and predictable 2.21 ways in response to human disturbance, representing the health of that community. 2.22 "Lake" means an enclosed basin filled or partially filled with standing ΗM. 2.23 fresh water with a maximum depth greater than 15 feet. Lakes may have no inlet or outlet, 2.24 an inlet or outlet, or both an inlet and outlet. 2.25

7050.0150

"Lake morphometry" means the physical characteristics of the lake basin 3.1 ₩N. that are reasonably necessary to determine the shape of a lake, such as maximum length 3.2 and width, maximum and mean depth, area, volume, and shoreline configuration. 3.3 "Mixing status" means the frequency of complete mixing of the lake **₩** O. 3.4 water from surface to bottom, which is determined by whether temperature gradients are 3.5 established and maintained in the water column during the summer season. 3.6 "Measurable increase" or "measurable impact" means a change in θP. 3.7 trophic status that can be discerned above the normal variability in water quality data 3.8 3.9 using a weight of evidence approach. The change in trophic status does not require a demonstration of statistical significance to be considered measurable. Mathematical 3.10 models may be used as a tool in the data analysis to help predict changes in trophic status. 3.11 "Natural causes" means the multiplicity of factors that determine the ₽Q. 3.12 physical, chemical, or biological conditions that would exist in a water body in the absence 3.13 of measurable impacts from human activity or influence. 3.14 θR. "Normal fishery" and "normally present" mean the fishery and other 3.15 aquatic biota expected to be present in the water body in the absence of pollution of the 3.16 water, consistent with any variability due to natural hydrological, substrate, habitat, or 3.17 other physical and chemical characteristics. Expected presence is based on comparing 3.18 the aquatic community in the water body of interest to the aquatic community in 3.19 representative reference water bodies. 3.20 "Nuisance algae bloom" means an excessive population of algae that is RS. 3.21 characterized by obvious green or blue-green pigmentation in the water, floating mats 3.22 of algae, reduced light transparency, aesthetic degradation, loss of recreational use, 3.23 possible harm to the aquatic community, or possible toxicity to animals and humans. 3.24 Algae blooms are measured through tests for chlorophyll-a, observations of Secchi disk 3.25 transparency, and observations of impaired recreational and aesthetic conditions by the 3.26

REVISOR

CKM/AA

AR4104

05/05/14

users of the water body, or any other reliable data that identifies the population of algae 4.1 in an aquatic community. 4.2 "Periphyton" means algae on the bottom of a water body. In rivers or ST. 4.3 streams, these forms are typically found attached to logs, rocks, or other substrates, but 4.4 when dislodged the algae will become part of the seston. 4.5 "Readily available and reliable data and information" means chemical, ŦU. 4.6 biological, and physical data and information determined by the commissioner to meet the 4.7 quality assurance and quality control requirements in subpart 8, that are not more than ten 4.8 years old from the time they are used for the assessment. A subset of data in the ten-year 4.9 period, or data more than ten years old can be used if credible scientific evidence shows 4.10that these data are representative of current conditions. 4.11 θV. "Reference water body" means a water body least impacted by point or 4.12 nonpoint sources of pollution that is representative of water bodies in the same ecoregion 4.13 4.14 or watershed. Reference water bodies are used as a base for comparing the quality of similar water bodies in the same ecoregion or watershed. 4.15 ₩W. "Reservoir" means a body of water in a natural or artificial basin or 4.16 watercourse where the outlet or flow is artificially controlled by a structure such as a dam. 4.17 Reservoirs are distinguished from river systems by having a hydraulic residence time of at 4.18 least 14 days. For purposes of this item, residence time is determined using a flow equal 4.19 to the $122Q_{10}$ for the months of June through September. 4.20 "River nutrient region" means the geographic basis for regionalizing the 4.21 ₩X. river eutrophication criteria as described in Heiskary, S. and K. Parson, Regionalization 4.22 of Minnesota's Rivers for Application of River Nutrient Criteria, Minnesota Pollution 4.23

REVISOR

CKM/AA

AR4104

4.25 subject to frequent change and is available through the Minitex interlibrary loan system.

4.24

05/05/14

4

Control Agency (2010) (2013), which is incorporated by reference. The document is not

05/05/14

REVISOR CKM/AA AR4104

X Y. "Secchi disk" means a tool that is used to measure the transparency of lake 5.1 water. A Secchi disk is an eight-inch weighted disk on a calibrated rope, either white or 5.2 with quadrants of black and white. To measure water transparency with a Secchi disk, the 5.3 disk is viewed from the shaded side of a boat. The depth of the water at the point where 5.4 the disk reappears upon raising it after it has been lowered beyond visibility is recorded. 5.5 $\underline{Y}\underline{Z}$. "Secchi disk transparency" means the transparency of water as measured 5.6 by either a Secchi disk, a Secchi tube, or a transparency tube. 5.7 Z AA. "Secchi tube" means a tool that is used to measure the transparency of 5.8 stream or river water. A Secchi tube is a clear plastic tube, one meter in length and 1-3/45.9 inch in diameter, with a mini-Secchi disk on a string. To measure water transparency, the 5.10 tube is filled with water collected from a stream or river and, looking into the tube from 5.11 the top, the weighted Secchi disk is lowered into the tube by a string until it disappears 5.12 and then raised until it reappears, allowing the user to raise and lower the disk within the 5.13 same water sample numerous times. The depth of the water at the midpoint between 5.14 disappearance and reappearance of the disk is recorded in centimeters, which are marked 5.15 on the side of the tube. If the Secchi disk is visible when it is lowered to the bottom of the 5.16 tube, the transparency reading is recorded as "greater than 100 centimeters." 5.17

5.18 AA BB. "Seston" means particulate matter suspended in water bodies and
5.19 includes plankton and organic and inorganic matter.

5.20 BB_CC. "Shallow lake" means an enclosed basin filled or partially filled with 5.21 standing fresh water with a maximum depth of 15 feet or less or with 80 percent or more 5.22 of the lake area shallow enough to support emergent and submerged rooted aquatic plants 5.23 (the littoral zone). It is uncommon for shallow lakes to thermally stratify during the 5.24 summer. The quality of shallow lakes will permit the propagation and maintenance of 5.25 a healthy indigenous aquatic community and they will be suitable for boating and other 5.26 forms of aquatic recreation for which they may be usable. Shallow lakes are differentiated

6.1 from wetlands and lakes on a case-by-case basis. Wetlands are defined in part 7050.0186,
6.2 subpart 1a.

6.3 <u>CC DD</u>. "Summer-average" means a representative average of concentrations
6.4 or measurements of nutrient enrichment factors, taken over one summer season.

6.5 <u>DD_EE</u>. "Summer season" means a period annually from June 1 through
6.6 September 30.

"Transparency tube" means a tool that is used to measure the EE FF. 6.7 transparency of stream or river water. A transparency tube is a graduated clear plastic 6.8 tube, 24 inches or more in length by 1-1/2 inches in diameter, with a stopper at the 6.9 bottom end. The inside surface of the stopper is painted black and white. To measure 6.10 water transparency, the tube is filled with water from a surface water; the water is 6.11 released through a valve at the bottom end until the painted surface of the stopper is just 6.12 visible through the water column when viewed from the top of the tube. The depth, in 6.13 centimeters, is noted. More water is released until the screw in the middle of the painted 6.14 symbol on the stopper is clearly visible; this depth is noted. The two observed depths are 6.15 averaged to obtain a transparency measurement. 6.16

6.17 FF_GG. "Trophic status or condition" means the productivity of a lake as
6.18 measured by the phosphorus content, algae abundance, and depth of light penetration.

6.19 <u>GG HH</u>. "Water body" means a lake, reservoir, wetland, or a geographically
6.20 defined portion of a river or stream.

6.21 Subp. 5. Impairment of waters due to excess algae or plant growth. In evaluating
6.22 whether the narrative standards in subpart 3, which prohibit any material increase
6.23 in undesirable slime growths or aquatic plants including algae, are being met, the
6.24 commissioner will use all readily available and reliable data and information for the
6.25 following factors of use impairment:

	05/05/14 REVISOR CKM/AA AR4104
7.1	A. representative summer-average concentrations of total phosphorus and
7.2	total nitrogen measured in the water body;
7.3	B. representative summer-average concentrations of chlorophyll-a seston
7.4	measured in the water body;
7.5	C. representative summer-average measurements of Secchi disk transparency
7.6	in the water body;
7.7	D. representative summer-average concentrations of five-day biochemical
7.8	oxygen demand measured in rivers and streams;
7.9	E. representative diel dissolved oxygen flux measurements in rivers and streams
7.10	as averaged over a minimum of four consecutive days during the summer season;
7.11	F. representative measurements of pH in the water body during the summer
7.12	season;
7.13	G. representative measurements of chlorophyll-a (periphyton) on substrates on
7.14	the beds of rivers and streams during the summer season; and
7.15	H. any other scientifically objective, credible, and supportable factor.
7.16	Subp. 5a. Impaired condition; lakes, shallow lakes, and reservoirs.
7.17	A. For lakes, shallow lakes, and reservoirs, a finding of an impaired condition
7.18	must be supported by data showing:
7.19	(1) elevated levels of nutrients under subpart 5, item A; and
7.20	(2) at least one factor showing impaired conditions resulting from nutrient
7.21	overenrichment under subpart 5, items B and C.
7.22	B. The trophic status data described in subpart 5, items A to C and H, must be
7.23	assessed in light of the magnitude, duration, and frequency of nuisance algae blooms in
7.24	the water body; and documented impaired recreational and aesthetic conditions observed

	05/05/14 REVISOR CKM/AA AR4104
8.1	by the users of the water body due to excess algae or plant growth, reduced transparency,
8.2	or other deleterious conditions caused by nutrient overenrichment.
8.3	C. Assessment of trophic status and the response of a given water body to
8.4	nutrient enrichment will take into account the trophic status of reference water bodies; and
8.5	all relevant factors that affect the trophic status of the given water body appropriate for
8.6	its geographic region, such as the temperature, morphometry, hydraulic residence time,
8.7	mixing status, watershed size, and location.
8.8	Subp. 5b. Impaired condition; rivers and streams. For rivers and streams, a
8.9	finding of an impaired condition must be supported by data showing:
8.10	A. elevated levels of nutrients under subpart 5, item A, and at least one factor
8.11	showing impaired conditions resulting from nutrient overenrichment under subpart 5,
8.12	item B, D, E, F, or H; or
8.13	B. elevated levels of chlorophyll-a (periphyton) under subpart 5, item G.
8.14	Subp. 5c. Impaired condition; navigational pools. For navigational pools, a
8.15	finding of impaired condition must be supported by data showing:
8.16	A. elevated levels of nutrients under subpart 5, item A; and
8.17	B. impaired conditions resulting from nutrient overenrichment under subpart
8.18	5, item B.
8.19	[For text of subps 6 to 8, see M.R.]
8.20 8.21	7050.0220 SPECIFIC WATER QUALITY STANDARDS BY ASSOCIATED USE CLASSES.
8.22	[For text of subps 1 to 3, see M.R.]
8.23	Subp. 3a. Cold water sport fish, drinking water, and associated use classes.
8.24	Water quality standards applicable to use Classes 1B, 2A, 3A or 3B, 4A and 4B, and 5
8.25	surface waters.

05/05/14			REVIS	SOR	CK	M/AA	AR4
A. MISCEL	LANEOUS	SUBSTAN	CE, CHAR	ACTERIS	TIC, OR	POLLUT	ANT
2A CS	2A MS	2A FAV	1B DC	3A/3B IC	4A IR	4B IR	5 AN
(1) Ammoni	ia, un-ionize	d as N, μg/	L				
16	_	_	_	_	_	_	_
(2) Asbestos	s, >10 μm (c), fibers/L					
_	_	_	7.0e+06	_	_	_	_
(3) Bicarbor	nates (HCO ₃)), meq/L					
_	_	_	_	_	5	_	_
(4) Bromate	, μg/L						
_	_	_	10	_	_	_	_
(5) Chloride	e, mg/L						
230	860	1,720	250(S)	50/100	_	_	_
2A CS	2A MS	2A FAV	1B DC	3A/3B IC	4A IR	4B IR	5 AN
(6) Chlorine	, total residu	ıal, μg/L					
11	19	38	_	_	_	_	_
(7) Chlorite,	, μg/L						
_	_	_	1,000	_	_	_	_
(8) Color, P	t-Co						
30	_	_	15(S)	_	_	_	_
(9) Cyanide,	, free, µg/L						
5.2	22	45	200	_	_	_	_

0	05/05/14			REVI	SOR	CKM	/AA	AR4104
(10) Escherichi	a (E.) coli	bacteria, o	rganisms/1	100 mL			
	See item D	_	_	_	_	_	_	_
	2A CS	2A MS	2A FAV	1B DC	3A/3B IC	4A IR	4B IR	5 AN
	11) Eutrophica hlorophyll-a, μ				-	hosphorus	, total, μg/	L;
	See part 7050.0222, subparts 2 and 2a	_	_	_	_	_	_	_
(12) Eutrophica	tion standa	ards for riv	ers, strean	ns, and nav	vigational	pools (pho	sphorus,
to	otal µg/L; chlo	rophyll-a ((seston), με	g/L; five-da	ay biochen	nical oxyg	en demand	(BOD ₅),
n	ng/L; diel disso	olved oxyg	en flux, m	g/L; chloro	phyll-a (p	eriphyton)	, mg/m ²)	
	See part 7050.0222, subparts 2 and 2b	_	_	_	_	_	_	_
(13) Fluoride, n	ng/L						
	_	_	_	4	_	_	_	_
(14) Fluoride, n	ng/L						
	_	_	_	2(S)	_	_	_	_
(15) Foaming a	gents, µg/l	Ĺ					
	_	_	_	500(S)	_	_	_	_
(– 16) Hardness,	– Ca+Mg as	– CaCO ₃ , m		-	_	-	_
(– 16) Hardness, (–	– Ca+Mg as –	– CaCO ₃ , m –		- 50/250	_	_	_

	05/05/14			REV	ISOR	CKI	M/AA	AR4104	
11.1 11.2 11.3	2A CS	2A MS	2A FAV	1B DC	3A/3B IC	4A IR	4B IR	5 AN	
11.4	(17) Hydrogen	sulfide, m	g/L						
11.5	_	_	_	_	_	_	_	0.02	
11.6	(18) Nitrate as	N, mg/L							
11.7	_	_	_	10	_	—	_	_	
11.8	(19) Nitrite as	N, mg/L							
11.9	_	_	_	1	_	_	_	_	
11.10	(20) Nitrate + 1	Nitrite as N	N, mg/L						
11.11	_	_	_	10	_	_	_	_	
11.12	(21) Odor, TO	N							
11.13	_	—	_	3(S)	_	—	_	_	
11.14 11.15 11.16	2A CS	2A MS	2A FAV	1B DC	3A/3B IC	4A IR	4B IR	5 AN	
11.17	(22) Oil, µg/L								
11.18	500	5,000	10,000	_	_	_	_	_	
11.19	(23) Oxygen, d	lissolved, 1	mg/L						
11.20 11.21 11.22	7, as a daily minimum	_	_	_	_	_	_	_	
11.23	(24) pH minim	ium, su							
11.24	6.5	_	_	6.5(S)	6.5/6.0	6.0	6.0	6.0	
11.25	(25) pH maxin	num, su							

	05/05/14			REVI	SOR	CKM/	AA	AR4104
12.1	8.5	_	_	8.5(S)	8.5/9.0	8.5	9.0	9.0
12.2	(26) Radioacti	ive materia	lls					
12.3 12.4	See item E	_	_	See item E	_	See item E	See item E	_
12.5 12.6	2A CS	2A MS	2A FAV	1B DC	3A/3B IC	4A IR	4B IR	5 AN
12.7								
12.8	(27) Salinity, 1	total, mg/L						
12.9	_	_	-	_	_	-	1,000	_
12.10	(28) Sodium,	meq/L						
12.11 12.12 12.13	_	-	_	_	-	60% of total cations	_	_
12.14	(29) Specific o	conductanc	e at 25°C,	µmhos/cm				
12.15	_	_	_	_	_	1,000	_	_
12.16	(30) Sulfate, r	ng/L						
12.17	_	_	_	250(S)	_	_	_	_
12.18	(31) Sulfates,	wild rice p	oresent, mg	/L				
12.19	_	_	_	_	_	10	_	_
12.20 12.21 12.22	2A CS	2A MS	2A FAV	1B DC	3A/3B IC	4A IR	4B IR	5 AN
12.23	(32) Temperat	ure, °F						
12.24 12.25	No materia increase	al —	-	_	_	_	_	-
12.26	(33) Total diss	solved salts	s, mg/L					
	7050.0220			12				

	05/05/14			REVISOR		CKM/AA		AR4104
13.1	_	_	_	_	_	700	_	_
13.2	(34) Total disso	lved solids	s, mg/L					
13.3	_	_	_	500(S)	_	_	_	_
13.4	(35) Total suspe	ended solid	ls (TSS), r	ng/L				
13.5 13.6 13.7	See part 7050.0222, subpart 2	_	_	_	_	_	_	_
13.8	B. METALS AN	ND ELEM	IENTS					
13.9 13.10 13.11	2A CS	2A MS	2A FAV	1B DC	3A/3B IC	4A IR	4B LS	5 AN
13.12	(1) Aluminum,	total, μg/L	2					
13.13 13.14	87	748	1,496	50- 200(S)	_	_	_	_
13.15	(2) Antimony, to	otal, µg/L						
13.16	5.5	90	180	6	_	_	_	_
13.17	(3) Arsenic, tota	al, μg/L						
13.18	2.0	360	720	10	_	_	_	_
13.19	(4) Barium, tota	l, μg/L						
13.20	-	_	_	2,000	_	_	_	_
13.21	(5) Beryllium, t	otal, µg/L						
13.22	_	_	_	4.0	_	_	-	_
13.23 13.24 13.25	2A CS	2A MS	2A FAV	1B DC	3A/3B IC	4A IR	4B LS	5 AN

13.26 (6) Boron, total, μ g/L

	05/05/14			REV	ISOR	CKI	M/AA	AR4104
14.1	_	_	_	_	_	500	_	-
14.2	(7) Cadmium	n, total, µg/I						
14.3	1.1	3.9	7.8	5	_	_	_	_
14.4 14.5 14.6 14.7	Class 2A cad total hardnes hardness valu not to exceed	s of 100 mg ues and equa	/L only. Se ations to ca	ee part 705	0.0222, sul	opart 2, f	or example	es at other
14.8	(8) Chromiun	m +3, total,	μg/L					
14.9	207	1,737	3,469	_	_	_	_	_
14.10 14.11 14.12 14.13	for any hard	or a total har other hardne ness value n	dness of 10 ess values a ot to excee	00 mg/L or and equation	nly. See par ns to calcul	rt 7050.0	222, subpa	
14.14	(9) Chromiu							
14.15	11	16	32	_	-	_	_	_
14.16	(10) Chromit	um, total, µg	g/L					
14.17	_	—	—	100	-	_	_	_
14.18 14.19 14.20	2A CS	2A MS	2A FAV	1B DC	3A/3B IC	4A IR	4B LS	5 AN
14.21	(11) Cobalt,	total, μg/L						
14.22	2.8	436	872	_	_	_	_	_
14.23	(12) Copper,	total, $\mu g/L$						
14.24 14.25	9.8	18	35	1,000 (S)	_	_	-	_

14.26 Class 2A copper standards are hardness dependent. Copper values shown are for a
14.27 total hardness of 100 mg/L only. See part 7050.0222, subpart 2, for examples at other
14.28 hardness values and equations to calculate copper standards for any hardness value not to
14.29 exceed 400 mg/L.

	05/05/14			REVI	SOR	CKM	ſ/AA	AR4104			
15.1	(13) Iron, tota	al, µg/L									
15.2	_	_	_	300(S)	_	_	_	_			
15.3	(14) Lead, tot	tal, μg/L									
15.4	3.2	82	164	NA	_	_	_	_			
15.5 15.6 15.7	Class 2A lead standards are hardness dependent. Lead values shown are for a total hardness of 100 mg/L only. See part 7050.0222, subpart 2, for examples at other hardness values and equations to calculate lead standards for any hardness value not to exceed 400 mg/L.										
15.8	(15) Mangane	ese, total, µg	g/L								
15.9	_	_	_	50(S)	_	_	_	_			
15.10 15.11 15.12	2A CS	2A MS	2A FAV	1B DC	3A/3B IC	4A IR	4B LS	5 AN			
15.13	(16) Mercury	, total, in wa	iter, ng/L								
15.14	6.9	2,400*	4,900*	2,000	_	_	_	_			
15.15	(17) Mercury,	, total in edil	ole fish tiss	sue, mg/kg	or parts pe	er million					
15.16	0.2	_	_	_	_	_	_	_			
15.17	(18) Nickel, t	otal, µg/L									
15.18	158	1,418	2,836	_	_	_	_	_			
15.19 15.20 15.21 15.22	Class 2A nickel standards are hardness dependent. Nickel values shown are for a total hardness of 100 mg/L only. See part 7050.0222, subpart 2, for examples at other hardness values and equations to calculate nickel standards for any hardness value not to exceed 400 mg/L.										
15.23	(19) Selenium	n, total, µg/I									
15.24	5.0	20	40	50	_	_	_	_			
15.25	(20) Silver, to	otal, µg/L									
15.26	0.12	2.0	4.1	100(S)	_	_	_	_			

05/05/14			REV	ISOR	CK	M/AA	А
total hardnes	ver MS and F s of 100 mg/ ues and equat ng/L.	L only. Se	e part 705	0.0222, sub	opart 2, f	for example	es at other
2A CS	2A MS	2A FAV	1B DC	3A/3B IC	4A IR	4B LS	5 AN
(21) Thalliur	n, total, μg/L						
0.28	64	128	2	_	_	_	_
(22) Zinc, to	tal, μg/L						
106	117	234	5,000 (S)	_	_	_	_
of 100 mg/L and equation	c standards an only. See pa s to calculate C POLLUTA	rt 7050.022 zinc stand	22, subpar lards for a	t 2, for exa	mples at s value n	other hard	lness va
of 100 mg/L and equation	only. See pa	rt 7050.022 zinc stand	22, subpar lards for a	t 2, for exa	mples at s value n	other hard	lness val
of 100 mg/L and equation C. ORGANI 2A	only. See pa s to calculate C POLLUTA 2A MS	rt 7050.022 zinc stand NTS OR (2A	22, subpar lards for a CHARAC 1B	t 2, for exa ny hardness FERISTICS 3A/3B	mples at s value n S 4A	other hard ot to excee 4B	lness val ed 400 m 5
of 100 mg/L and equation C. ORGANI 2A CS	only. See pa s to calculate C POLLUTA 2A MS	rt 7050.022 zinc stand NTS OR (2A	22, subpar lards for a CHARAC 1B	t 2, for exa ny hardness FERISTICS 3A/3B	mples at s value n S 4A	other hard ot to excee 4B	lness val ed 400 m 5
of 100 mg/L and equation C. ORGANI 2A CS (1) Acenaph	only. See pa s to calculate C POLLUTA 2A MS thene, µg/L 56	rt 7050.022 zinc stand NTS OR (2A FAV	22, subpar lards for a CHARAC 1B	t 2, for exa ny hardness FERISTICS 3A/3B	mples at s value n S 4A	other hard ot to excee 4B	lness val ed 400 m 5
of 100 mg/L and equation C. ORGANI 2A CS (1) Acenaph 20	only. See pa s to calculate C POLLUTA 2A MS thene, µg/L 56	rt 7050.022 zinc stand NTS OR (2A FAV	22, subpar lards for a CHARAC 1B	t 2, for exa ny hardness FERISTICS 3A/3B	mples at s value n S 4A	other hard ot to excee 4B	lness val ed 400 m 5
of 100 mg/L and equation C. ORGANIC 2A CS (1) Acenapht 20 (2) Acetochlo 3.6	only. See pa s to calculate C POLLUTA 2A MS thene, µg/L 56 or, µg/L	rt 7050.022 e zinc stand ANTS OR (2A FAV 112 173	22, subpar lards for a CHARAC 1B	t 2, for exa ny hardness FERISTICS 3A/3B	mples at s value n S 4A	other hard ot to excee 4B	lness val ed 400 m 5
of 100 mg/L and equation C. ORGANIC 2A CS (1) Acenapht 20 (2) Acetochlo 3.6	only. See pa s to calculate C POLLUTA 2A MS thene, µg/L 56 or, µg/L 86	rt 7050.022 e zinc stand ANTS OR (2A FAV 112 173	22, subpar lards for a CHARAC 1B	t 2, for exa ny hardness FERISTICS 3A/3B	mples at s value n S 4A	other hard ot to excee 4B	lness val ed 400 m 5
of 100 mg/L and equation C. ORGANIC 2A CS (1) Acenapht 20 (2) Acetochlo 3.6 (3) Acrylonit	only. See pa s to calculate C POLLUTA 2A MS thene, $\mu g/L$ 56 or, $\mu g/L$ 86 trile (c), $\mu g/L$ 1,140*	rt 7050.022 e zinc stand NTS OR (2A FAV 112 173	22, subpar lards for a CHARAC 1B	t 2, for exa ny hardness FERISTICS 3A/3B	mples at s value n S 4A	other hard ot to excee 4B	lness val ed 400 m 5
of 100 mg/L and equation C. ORGANIC 2A CS (1) Acenapht 20 (2) Acetochlo 3.6 (3) Acrylonit 0.38	only. See pa s to calculate C POLLUTA 2A MS thene, $\mu g/L$ 56 or, $\mu g/L$ 86 trile (c), $\mu g/L$ 1,140*	rt 7050.022 e zinc stand NTS OR (2A FAV 112 173	22, subpar lards for a CHARAC 1B	t 2, for exa ny hardness FERISTICS 3A/3B	mples at s value n S 4A	other hard ot to excee 4B	lness val ed 400 m 5

	05/05/14			REVIS	SOR	CKN	//AA	AR4104	
17.1	_	_	_	3	_	_	_	_	
17.2 17.3 17.4	2A CS	2A MS	2A FAV	1B DC	3A/3B IC	4A IR	4B LS	5 AN	
17.5	(6) Aldicarb	sulfone, µg/I	_						
17.6	_	-	_	2	_	_	_	_	
17.7	(7) Aldicarb	sulfoxide, µg	ŗ/L						
17.8	_	_	_	4	_	_	_	_	
17.9	(8) Anthracer	ne, µg/L							
17.10	0.035	0.32	0.63	_	_	_	_	_	
17.11	(9) Atrazine ((c), μg/L							
17.12	3.4	323	645	3	_	_	_	_	
17.13	(10) Benzene	(c), µg/L							
17.14	5.1	4,487*	8,974*	5	_	_	_	_	
17.15 17.16 17.17	2A CS	2A MS	2A FAV	1B DC	3A/3B IC	4A IR	4B LS	5 AN	
17.18	(11) Benzo(a))pyrene, µg/I	- 						
17.19	_	_	_	0.2	_	_	_	_	
17.20	(12) Bromofo	orm, μg/L							
17.21 17.22	33	2,900	5,800	See sub- item (73)		_	_	_	
17.23	(13) Carbofu	ran, μg/L							
17.24	_	_	_	40	_	_	_	_	
17.25	(14) Carbon t	etrachloride	(c), μg/L						

	05/05/14			REVI	ISOR	CK	M/AA	AR4104
18.1	1.9	1,750*	3,500*	5	_	_	_	_
18.2	(15) Chlordar	ne (c), ng/L						
18.3	0.073	1,200*	2,400*	2,000	_	_	—	_
18.4 18.5 18.6	2A CS	2A MS	2A FAV	1B DC	3A/3B IC	4A IR	4B LS	5 AN
18.7	(16) Chlorobe	enzene, μg/L	(Monochl	lorobenzer	ne)			
18.8	20	423	846	100	_	_	_	_
18.9	(17) Chlorofo	orm (c), µg/L	1					
18.10 18.11	53	1,392	2,784	See sub- item (73		-	-	_
18.12	(18) Chlorpyr	rifos, µg/L						
18.13	0.041	0.083	0.17	_	_	_	_	-
18.14	(19) Dalapon	, μg/L						
18.15	_	_	_	200	_	_	_	_
18.16	(20) DDT (c)	, ng/L						
18.17	0.11	550*	1,100*	_	_	_	_	_
18.18 18.19 18.20	2A CS	2A MS	2A FAV	1B DC	3A/3B IC	4A IR	4B LS	5 AN
18.21	(21) 1,2-Dibr	omo-3-chlor	opropane ((c), μg/L				
18.22	_	_	_	0.2	_	_	_	_
18.23	(22) Dichloro	benzene (ort	tho), μg/L					
18.24	_	_	_	600	_	_	_	_
18.25	(23) 1,4-Dich	llorobenzene	(para) (c),	, μg/L				

05/05/14			REV	/ISOR	CK	M/AA	AR
_	_	_	75	_	_	_	_
(24) 1,2-Dich	loroethane (c	c), μg/L					
3.5	45,050*	90,100*	5	_	_	_	_
(25) 1,1-Dich	loroethylene,	, µg/L					
_	_	_	7	_	_	—	_
2A CS	2A MS	2A FAV	1B DC	3A/3B IC	4A IR	4B LS	5 AN
(26) 1,2-Dich	loroethylene	(cis), μg/L	4				
_	_	_	70	_	_	_	_
(27) 1,2-Dich	loroethylene	(trans), µg	:/L				
_	_	_	100	_	_	_	_
(28) 2,4-Dich	lorophenoxy	acetic acid	(2,4 - D),	μg/L			
_	_	_	70	_	_	_	_
(29) 1,2-Dich	loropropane	(c), µg/L					
_	_	_	5	_	_	_	_
(30) Dieldrin	(c), ng/L						
0.0065	1,300*	2,500*	_	_	_	_	_
2A CS	2A MS	2A FAV	1B DC	3A/3B IC	4A IR	4B LS	5 AN
(31) Di-2-eth	ylhexyl adipa	ite, μg/L					
		_	400	_		_	_

05/05/14			REV	/ISOR	CK	M/AA	AR41
1.9	_*	_*	6	_	_	_	_
(33) Di-1	n-Octyl phthalate	e, μg/L					
30	825	1,650	_	_	_	_	_
(34) Din	oseb, µg/L						
_	_	_	7	_	_	—	_
(35) Diq	uat, µg/L						
_	_	_	20	_	_	_	_
2A CS	2A MS	2A FAV	1B DC	3A/3B IC	4A IR	4B LS	5 AN
(36) End	osulfan, µg/L						
0.00	0.084	0.17	_	_	_	_	_
(37) End	othall, µg/L						
_	_	_	100	_	_	—	_
(38) End	rin, μg/L						
0.00	.0.090	0.18	2	_	_	_	_
(39) Eth	ylbenzene (c), µ	g/L					
68	1,859	3,717	700	_	_	_	_
(40) Eth	ylene dibromide	, μg/L					
_	-	_	0.05	_	_	-	_
2A CS	2A MS	2A FAV	1B DC	3A/3B IC	4A IR	4B LS	5 AN

20.24 (41) Fluoranthene, $\mu g/L$

	05/05/14			REVI	SOR	СКМ	/AA	AR4104
21.1	1.9	3.5	6.9	_	_	_	_	_
21.2	(42) Glyphosat	te, µg/L						
21.3	_	_	_	700	_	_	_	_
21.4 21.5	(43) Haloacetic acid, Monochle					moacetic a	icid, Dichl	oroacetic
21.6	_	_	_	60	_	_	_	_
21.7	(44) Heptachlo	or (c), ng/L						
21.8	0.10	260*	520*	400	_	_	_	_
21.9	(45) Heptachlo	or epoxide (c), ng/L					
21.10	0.12	270*	530*	200	_	_	_	-
21.11 21.12 21.13	2A CS	2A MS	2A FAV	1B DC	3A/3B IC	4A IR	4B LS	5 AN
21.14	(46) Hexachlor	robenzene (c), ng/L					
21.15	0.061	_*	_*	1,000	_	_	_	_
21.16	(47) Hexachlor	rocyclopent	adiene, µg/	/L				
21.17	_	_	_	50	_	_	_	_
21.18	(48) Lindane (c), μg/L (He	exachloroc	yclohexan	e, gamma-	-)		
21.19	0.0087	1.0*	2.0*	0.2	_	_	_	_
21.20	(49) Methoxyc	hlor, µg/L						
21.21	_	_	_	40	_	_	_	_
21.22	(50) Methylene	e chloride (c), μg/L (D	oichlorome	ethane)			
21.23	45	13,875*	27,749*	5	_	_	_	_

05/05/14			REV	VISOR	СК	M/AA	I
2A CS	2A MS	2A FAV	1B DC	3A/3B IC	4A IR	4B LS	5 AN
(51) Metolac	hlor						
23	271	543	_	_	_	_	_
(52) Naphtha	lene, µg/L						
65	409	818	_	-	_	_	_
(53) Oxamyl,	µg/L (Vyda	ate)					
_	_	_	200	_	_	_	_
(54) Parathio	n, µg/L						
0.013	0.07	0.13	_	_	_	_	_
(55) Pentachl	orophenol,	µg/L					
	orophenol, 15	μg/L 30	1	_	_	_	_
(55) Pentachl	15 and FAV ar part 7050.0	30 re pH deper 222, subpa	ndent. Per rt 2, for e	xamples at o			
(55) Pentachl 0.93 Class 2A MS 7.5 only. See	15 and FAV ar part 7050.0 tachlorophe	30 re pH deper 222, subpa nol standar	ndent. Per rt 2, for e rds for any	xamples at o	other pH		l equati 5
(55) Pentachl 0.93 Class 2A MS 7.5 only. See calculate pen 2A	15 and FAV ar part 7050.0 tachlorophe 2A MS	30 re pH deper 222, subpa nol standar 2A FAV	ndent. Per rt 2, for e rds for any 1B	xamples at o y pH value. 3A/3B	other pH 4A	values and 4B	l equati 5
(55) Pentachl 0.93 Class 2A MS 7.5 only. See calculate pen 2A CS	15 and FAV ar part 7050.0 tachlorophe 2A MS	30 re pH deper 222, subpa nol standar 2A FAV	ndent. Per rt 2, for e rds for any 1B	xamples at o y pH value. 3A/3B	other pH 4A	values and 4B	l equati
(55) Pentachl 0.93 Class 2A MS 7.5 only. See calculate pen 2A CS (56) Phenantl	15 and FAV ar part 7050.0 tachlorophe 2A MS nrene, μg/L 32	30 re pH deper 222, subpa nol standar 2A FAV	ndent. Per rt 2, for e rds for any 1B	xamples at o y pH value. 3A/3B	other pH 4A	values and 4B	l equati 5
(55) Pentachl 0.93 Class 2A MS 7.5 only. See calculate pen 2A CS (56) Phenantl 3.6	15 and FAV ar part 7050.0 tachlorophe 2A MS nrene, μg/L 32	30 re pH deper 222, subpa nol standar 2A FAV	ndent. Per rt 2, for e rds for any 1B	xamples at o y pH value. 3A/3B	other pH 4A	values and 4B	l equati 5
(55) Pentachl 0.93 Class 2A MS 7.5 only. See calculate pen 2A CS (56) Phenantl 3.6 (57) Phenol,	15 and FAV ar part 7050.0 tachlorophe 2A MS nrene, μg/L 32 μg/L 2,214	30 re pH deper 222, subpa nol standar 2A FAV 64	ndent. Per rt 2, for e rds for any 1B	xamples at o y pH value. 3A/3B	other pH 4A	values and 4B	l equati

	05/05/14			REV	ISOR	CKI	M/AA	AR4104
23.1	0.014	1,000*	2,000*	500	_	_	_	_
23.2	(60) Simazine	e, μg/L						
23.3	-	-	_	4	_	_	-	-
23.4 23.5 23.6	2A CS	2A MS	2A FAV	1B DC	3A/3B IC	4A IR	4B LS	5 AN
23.7	(61) Styrene	(c), μg/L						
23.8	_	_	_	100	_	_	_	_
23.9	(62) 2,3,7,8-7	Tetrachlorodi	benzo-p-di	ioxin, ng/I	L (TCDD-c	lioxin)		
23.10	_	_	_	0.03	_	_	_	_
23.11	(63) 1,1,2,2-7	Tetrachloroet	hane (c), µ	lg/L				
23.12	1.1	1,127*	2,253*	_	_	_	_	_
23.13	(64) Tetrachlo	oroethylene ((c), µg/L					
23.14	3.8	428*	857*	5	_	_	_	_
23.15	(65) Toluene,	µg/L						
23.16	253	1,352	2,703	1,000	_	_	_	_
23.1723.1823.19	2A CS	2A MS	2A FAV	1B DC	3A/3B IC	4A IR	4B LS	5 AN
23.20	(66) Toxaphe	ne (c), ng/L						
23.21	0.31	730*	1,500*	3,000	_	_	_	_
23.22	(67) 2,4,5-TP	, μg/L (Silve	ex)					
23.23	_	-	_	50	_	_	_	_
23.24	(68) 1,2,4-Tri	chlorobenze	ne, µg/L					

	05/05/14	5/14		REVI	SOR	СКМ	/AA	AR4104
24.1	_	_	_	70	_	_	_	_
24.2	(69) 1,1,1-Tri	ichloroethan	e, μg/L					
24.3	329	2,957	5,913	200	_	_	_	_
24.4	(70) 1,1,2-Tri	ichloroethan	e, μg/L					
24.5	_	_	_	5	_	_	_	_
24.6 24.7	2A CS	2A MS	2A FAV	1B DC	3A/3B IC	4A IR	4B LS	5 AN
24.8								
24.9	(71) 1,1,2-Tri	chloroethyle	ene (c), μg/.	L				
24.10	25	6,988	13,976*	5	-	—	_	_
24.11	(72) 2,4,6-Tri	ichloropheno	ol, µg/L					
24.12	2.0	102	203	_	_	_	_	_
24.13	(73) Trihalon	nethanes, tot	tal (c), µg/I	L (Bromod	lichlorome	thane, Bro	omoform,	
24.14	Chlorodibron	nomethane, a	and Chlorot	form)				
24.15	_	_	_	80	_	_	_	_
24.16	(74) Vinyl ch	loride (c), µ	g/L					
24.17	0.17	_*	_*	2	_	_	_	_
24.18	(75) Xylenes,	, total, µg/L						
24.19	166	1,407	2,814	10,000	_	_	_	_
24.20			[For text o	f items D	and E, see	M.R.]		
24.21	Subp. 4.	[Repealed	, 24 SR 110)5]				
24.22	Subp. 4a	. Cool and	warm wat	er sport fi	sh, drinki	ing water,	and assoc	iated use
24.23	classes. Wate	er quality sta	indards app	licable to	use Classe	s 1B or 10	C, 2Bd, 3A	or 3B,
24.24	4A and 4B, a	nd 5 surface	e waters.					

	05/05/14			REVIS	SOR	CKI	M/AA	AR4104
25.1	A. MISCELI	LANEOUS S	SUBSTAN	CE, CHAR	ACTERIS	TIC, OR	POLLUT	ANT
25.2 25.3 25.4	2Bd CS	2Bd MS	2Bd FAV	1B/1C DC	3A/3B IC	4A IR	4B LS	5 AN
25.5	(1) Ammonia	a, un-ionized	l as N, μg/l	L				
25.6	40	_	_	_	_	_	_	_
25.7	(2) Asbestos,	,>10 μm (c)	, fibers/L					
25.8	_	_	_	7.0e+06	_	—	_	-
25.9	(3) Bicarbona	ates (HCO ₃)	, meq/L					
25.10	_	_	_	_	_	5	_	_
25.11	(4) Bromate,	μg/L						
25.12	_	-	_	10	_	—	_	_
25.13	(5) Chloride,	mg/L						
25.14	230	860	1,720	250(S)	50/100	—	—	_
25.15 25.16 25.17	2Bd CS	2Bd MS	2Bd FAV	1B/1C DC	3A/3B IC	4A IR	4B LS	5 AN
25.18	(6) Chlorine,	total residu	al, μg/L					
25.19	11	19	38	_	_	_	_	_
25.20	(7) Chlorite,	µg/L						
25.21	_	_	_	1,000	—	—	_	_
25.22	(8) Color, Pt-	-Co						
25.23	_	_	_	15(S)	_	_	_	_
25.24	(9) Cyanide,	free, µg/L						
25.25	5.2	22	45	200	_	_	_	_

	05/05/14			REVI	SOR	CKM/	AA	AR4104
26.1	(10) Escherichi	a (E.) coli	bacteria, o	organisms/	100 mL			
26.2 26.3	See item D	_	_	_	_	_	_	-
26.4 26.5 26.6	2Bd CS	2Bd MS	2Bd FAV	1B/1C DC	3A/3B IC	4A IR	4B LS	5 AN
26.7 26.8	(11) Eutrophica µg/L; chlorophy						rs (phosph	orus, total,
26.9 26.10 26.11 26.12	See part 7050.0222, subparts 3 and 3a	_	_	_	_	_	_	_
26.13	(12) Eutrophica	tion stand	ards for riv	vers, strean	ns, and nav	rigational p	pools (pho	sphorus,
26.14	total µg/L; chlo	rophyll-a ((seston), µg	g/L; five-da	ay biochen	nical oxyge	en demand	(BOD ₅),
26.15	mg/L; diel disso	olved oxyg	gen flux, m	g/L; chloro	ophyll-a (p	eriphyton)	mg/m^2)	
26.16 26.17 26.18 26.19	See part 7050.0222, subparts 3 and 3b	_	_	_	_	_	_	_
26.20	(13) Fluoride, n	ng/L						
26.21	_	_	_	4	_	_	_	_
26.22	(14) Fluoride, n	ng/L						
26.23	_	_	_	2(S)	_	_	_	_
26.24	(15) Foaming a	gents, µg/	L					
26.25	_	_	—	500(S)	_	_	_	_
26.26	(16) Hardness,	Ca+Mg as	CaCO ₃ , m	ng/L				
26.27	_	—	_	_	50/250	_	_	_

	05/05/14	05/05/14		REVI	ISOR	CKI	M/AA	AR4104	
27.1 27.2 27.3	2Bd CS	2Bd MS	2Bd FAV	1B/1C DC	3A/3B IC	4A IR	4B LS	5 AN	
27.4	(17) Hydrogen	sulfide, m	g/L						
27.5	_	_	_	_	_	_	_	0.02	
27.6	(18) Nitrate as	N, mg/L							
27.7	_	_	_	10	_	_	_	_	
27.8	(19) Nitrite as I	N, mg/L							
27.9	-	_	_	1	_	_	_	_	
27.10	(20) Nitrate + N	Nitrite as N	N, mg/L						
27.11	_	_	_	10	_	_	_	_	
27.12	(21) Odor, TON	1							
27.13	_	_	_	3(S)	_	_	_	_	
27.14 27.15 27.16	2Bd CS	2Bd MS	2Bd FAV	1B/1C DC	3A/3B IC	4A IR	4B LS	5 AN	
27.17	(22) Oil, µg/L								
27.18	500	5,000	10,000	_	_	_	_	_	
27.19	(23) Oxygen, d	issolved, 1	mg/L						
27.20 27.21 27.22	See part 7050.0222, subpart 3	_	-	-	-	_	_	_	
27.23	(24) pH minim	um, su							
27.24	6.5	_	_	6.5(S)	6.5/6.0	6.0	6.0	6.0	
27.25	(25) pH maxim	um, su							

05/05/14			REVI	SOR	CKM/	AA	
9.0	_	_	8.5(S)	8.5/9.0	8.5	9.0	9.(
(26) Radioac	tive materia	als					
See item E	_	_	See item E	_	See item E	See item E	_
2Bd CS	2Bd MS	2Bd FAV	1B/1C DC	3A/3B IC	4A IR	4B LS	5 Al
(27) Salinity,	total, mg/I	ـــــــــــــــــــــــــــــــــــــ					
_	_	_	_	_	_	1,000	_
(28) Sodium,	, meq/L						
_	_	_	_	_	60% of total cations	_	_
(29) Specific	conductanc	ce at 25°C,	µmhos/cm				
_	_	_	_	_	1,000	_	_
(30) Sulfate,	mg/L						
_	_	_	250(S)	_	_	_	_
(31) Sulfates	, wild rice p	oresent, mg	z/L				
_	_	_	_	_	10	_	_
2Bd CS	2Bd MS	2Bd FAV	1B/1C DC	3A/3B IC	4A IR	4B LS	5 Al
(32) Tempera	ature, °F						
See item F	_	_	_	_	_	_	_
(22) T (1 1)	ssolved salt	α					

	05/05/14			REVISOR	CK	XM/AA	AR4104
29.1	_	_	_		700	_	_
29.2	(34) Total diss	olved solids	s, mg/L				
29.3	_	_	-	500(S) –	_	_	_
29.4	(35) Total susp	bended solid	ls (TSS), m	g/L			
29.5 29.6	See part 7050.0222						
29.0 29.7	subpart 3	, 	_		_	_	-
29.8			[For text of	of items B to F,	see M.R.]		
29.9	Subp. 5.	[Repealed,	24 SR 110	5]			
29.10	Subp. 5a.	Cool and	warm wate	er sport fish an	d associated	d use class	ses. Water
29.11	quality standar	ds applicab	le to use Cl	asses 2B, 2C, or	r 2D; 3A, 3E	B, or 3C; 4	A and 4B; and
29.12	5 surface wate	rs. See part	s 7050.0223	3. subpart 5: 70;	50.0224, sub	part 4: an	d 7050 0225
27.12		1		, F ,	,	F ,	a 7050.0225,
29.12		*		ndards applicab		•	
	subpart 2, for (Class 3D, 40	C, and 5 sta		le to wetlan	ds, respect	tively.
29.13	subpart 2, for (Class 3D, 40	C, and 5 sta	ndards applicab	le to wetlan	ds, respect	tively.
29.13 29.14 29.15 29.16	subpart 2, for (A. MISCELLA 2B,C&D	Class 3D, 40 ANEOUS S 2B,C&D MS	C, and 5 sta UBSTANC 2B,C&D FAV	ndards applicab E, CHARACTE 3A/3B/3C	ele to wetlan ERISTIC, Ol 4A	ds, respect R POLLU 4B	tively. TANT 5
 29.13 29.14 29.15 29.16 29.17 	subpart 2, for (A. MISCELLA 2B,C&D CS	Class 3D, 40 ANEOUS S 2B,C&D MS	C, and 5 sta UBSTANC 2B,C&D FAV	ndards applicab E, CHARACTE 3A/3B/3C	ele to wetlan ERISTIC, Ol 4A	ds, respect R POLLU 4B	tively. TANT 5
29.13 29.14 29.15 29.16 29.17 29.18	subpart 2, for (A. MISCELLA 2B,C&D CS (1) Ammonia,	Class 3D, 40 ANEOUS S 2B,C&D MS un-ionized	C, and 5 sta UBSTANC 2B,C&D FAV as N, μg/L –	ndards applicab E, CHARACTE 3A/3B/3C	ele to wetlan ERISTIC, Ol 4A	ds, respect R POLLU 4B	tively. TANT 5
 29.13 29.14 29.15 29.16 29.17 29.18 29.19 	subpart 2, for (A. MISCELLA 2B,C&D CS (1) Ammonia, 40	Class 3D, 40 ANEOUS S 2B,C&D MS un-ionized	C, and 5 sta UBSTANC 2B,C&D FAV as N, μg/L –	ndards applicab E, CHARACTE 3A/3B/3C	ele to wetlan ERISTIC, Ol 4A	ds, respect R POLLU 4B	tively. TANT 5
 29.13 29.14 29.15 29.16 29.17 29.18 29.19 29.20 	subpart 2, for (A. MISCELLA 2B,C&D CS (1) Ammonia, 40	Class 3D, 40 ANEOUS S 2B,C&D MS un-ionized – es (HCO ₃), –	C, and 5 sta UBSTANC 2B,C&D FAV as N, μg/L –	ndards applicab E, CHARACTE 3A/3B/3C	ele to wetlan ERISTIC, OI 4A IR	ds, respect R POLLU 4B	tively. TANT 5
29.13 29.14 29.15 29.16 29.17 29.18 29.19 29.20 29.21	subpart 2, for (A. MISCELLA 2B,C&D CS (1) Ammonia, 40 (2) Bicarbonat –	Class 3D, 40 ANEOUS S 2B,C&D MS un-ionized – es (HCO ₃), –	C, and 5 sta UBSTANC 2B,C&D FAV as N, μg/L –	ndards applicab E, CHARACTE 3A/3B/3C	ele to wetlan ERISTIC, OI 4A IR	ds, respect R POLLU 4B	tively. TANT 5
 29.13 29.14 29.15 29.16 29.17 29.18 29.19 29.20 29.21 29.22 	subpart 2, for (A. MISCELLA 2B,C&D CS (1) Ammonia, 40 (2) Bicarbonat – (3) Chloride, r	Class 3D, 40 ANEOUS S 2B,C&D MS un-ionized - es (HCO ₃), - ng/L 860	C, and 5 sta UBSTANC 2B,C&D FAV as N, µg/L – meq/L – 1,720	ndards applicab E, CHARACTE 3A/3B/3C IC	ele to wetlan ERISTIC, OI 4A IR	ds, respect R POLLU 4B	tively. TANT 5

	05/05/14		REVISOR	(CKM/AA	AR4104	
30.1	(5) Cyanide, fi	ree, µg/L					
30.2	5.2	22	45	_	_	_	_
30.3 30.4 30.5	2B,C&D CS	2B,C&D MS	2B,C&D FAV	3A/3B/3C IC	4A IR	4B LS	5 AN
30.6	(6) Escherichia	<i>a (E.) coli</i> b	acteria, org	anisms/100 mL			
30.7 30.8	See item D	_	_	-	_	-	_
30.9 30.10				s, shallow lakes, k transparency, 1		voirs (phosp	bhorus, total,
30.11 30.12 30.13 30.14 30.15	See part 7050.0222 subparts 4, 4a, and 5		_	_	_	_	_
30.16	(8) Eutrophica	tion standar	ds for rivers	s, streams, and n	navigation	al pools (ph	osphorus, total
30.17				ve-day biochemi		2	BOD ₅), mg/L;
30.18	diel dissolved	oxygen flux	, mg/L; chl	orophyll-a (perij	phyton), n	ng/m ²)	
30.19 30.20 30.21 30.22	See part 7050.0222 subparts 4 and 4b	_	_		_	_	_
30.23	(9) Hardness,	Ca+Mg as (CaCO ₃ , mg/	ΊL			
30.24	_	_	_	50/250/500	_	_	_
30.25	(10) Hydrogen	sulfide, mg	g/L				
30.26	_	_	_	_	_	_	0.02
30.27	(11) Oil, µg/L						
30.28	500	5,000	10,000	_	_	_	_

05/0	5/14			REVISOR	СК	M/AA	AR4104
	2B,C&D CS	2B,C&D MS	2B,C&D FAV	3A/3B/3C IC	4A IR	4B LS	5 AN
(12)	Oxygen, d	lissolved, m	ng/L				
	See part 7050.0222 subparts 4 to 6	 ;	_	_	_	_	_
(13)	pH minim	um, su					
	6.5 See item E	-	-	6.5/6.0/6.0	6.0	6.0	6.0
(14)	pH maxin	num, su					
	9.0 See item E	-	-	8.5/9.0/9.0	8.5	9.0	9.0
(15)	Radioactiv	ve materials	5				
	See item F	_	_	_	See item F	See item F	-
(16)	Salinity, to	otal, mg/L					
	_	_	_	_	_	1,000	-
	2B,C&D CS	2B,C&D MS	2B,C&D FAV	3A/3B/3C IC	4A IR	4B LS	5 AN
(17)	Sodium, r	neq/L					
	_	_	-	-	60% of total cations	-	_
(18)	Specific c	onductance	at 25°C, μ	mhos/cm			

	05/05/14		REVISOR	CK	CM/AA	AR4104
32.1		_	_	1,000	_	_
32.2	(19) Sulfates, wild rice	present, mg/	/L			
32.3		_	_	10	_	_
32.4	(20) Temperature, °F					
32.5 32.6	See – item G	_	_	-	_	_
32.7	(21) Total dissolved salt	s, mg/L				
32.8		_	_	700	_	_
32.9	(22) Total suspended so	lids (TSS), 1	mg/L			
32.10 32.11 32.12	See part 7050.0222, subpart 4 –	_	_	_	_	_
32.13		[For text	of items B to G, s	see M.R.]		
32.14	Subp. 6. [Repealed	l, 24 SR 110)5]			
32.15	Subp. 6a. Limited	resource va	alue waters and a	ssociated u	use classo	es.
32.16	A. WATER QUALITY	STANDARI	DS APPLICABLE	E TO USE (CLASSE	S 3C, 4A, 4B,
32.17	5, AND 7 SURFACE W	ATERS				
 32.18 32.19 32.20 32.21 32.22 	7 LIMITED RESOURCE VALUE	3C 1C	4A 1R	4B LS		5 AN
32.23	(1) Bicarbonates (HCO ₃), meq/L				
32.24	_	_	5	_		_
32.25	(2) Boron, µg/L					
32.26	_	-	500	_		_

	05/05/14		REVISOR	CKM/AA	AR4104
33.1	(3) Chloride, mg/L				
33.2	_	250	_	_	_
33.3	(4) Escherichia (E.) coli	<i>i</i> bacteria, org	ganisms/100 mL		
33.4	See item B	_	_	_	_
33.5	(5) Hardness, Ca+Mg as	s CaCO ₃ , mg	/L		
33.6	_	500	_	_	_
33.733.833.933.1033.11	7 LIMITED RESOURCE VALUE	3C 1C	4A 1R	4B LS	5 AN
33.12	(6) Hydrogen sulfide, m	ıg/L			
33.13	_	_	_	_	0.02
33.14	(7) Oxygen, dissolved, 1	mg/L			
33.15	See item C	_	_	_	_
33.16	(8) pH minimum, su				
33.17	6.0	6.0	6.0	6.0	6.0
33.18	(9) pH maximum, su				
33.19	9.0	9.0	8.5	9.0	9.0
33.20	(10) Radioactive materi	als			
33.21	_	-	See item D	See item D	_
 33.22 33.23 33.24 33.25 33.26 	7 LIMITED RESOURCE VALUE	3C 1C	4A 1R	4B LS	5 AN

	05/05/14		REVISOR	CKM/AA	AR4104
34.1	(11) Salinity, total, mg/L				
34.2	_	_	_	1,000	_
34.3	(12) Sodium, meq/L				
34.4 34.5 34.6	_	_	60% of total cations	_	_
34.7	(13) Specific conductanc	e at 25°C, μmh	os/cm		
34.8	_	_	1,000	_	_
34.9	(14) Sulfates, wild rice p	present, mg/L			
34.10	_	_	10	_	_
34.11	(15) Total dissolved salts	s, mg/L			
34.12	_	_	700	_	_
34.13	(16) Toxic pollutants				
34.14	See item E	_	_	_	_
34.15		[For text of it	tems B to E, see	M.R.]	
34.16	Subp. 7. Site-speci	fic modification	ns of standards.		
34.17		[For text of it	tems A to C, see	M.R.]	
34.18	D. Through th	e procedures es	stablished in iten	ns A to C, the f	ollowing
34.19	site-specific reservoir eut	trophication star	ndards apply to 1	Lake Pepin (25-	0001-00) in lieu
34.20	of the water quality stand	lards listed in th	nis part and part	7050.0222:	
34.21	(1) Phosphorus, total	μg/L	less tha	n or equal to 10	0
34.22	(2) Chlorophyll-a (sestor	n) µg/L	less tha	n or equal to 28	
34.23 34.24	7050.0221 SPECIFIC V OF THE STATE; DOM	-		RDS FOR CLA	ASS 1 WATERS
34.25	Subpart 1. General	•			

	05/05/14	REVISOR	CKM/AA	AR4104
35.1	[For tex	xt of item A, see M.R.]	
35.2	B. The Class 1 standards i	n this part are the Unit	ed States Environmer	ntal
35.3	Protection Agency primary (maximu	m contaminant levels)	and secondary drinkin	ng water
35.4	standards, as contained in Code of Fe	ederal Regulations, titl	e 40, parts 141 and 14	13, as
35.5	amended. These Environmental Prote	ection Agency drinking	g water standards are	adopted
35.6	and incorporated by reference with the	ne exceptions in this ite	em. The following sta	ndards
35.7	are not applicable to Class 1 ground	waters: the primary dr	inking water standard	s for
35.8	acrylamide, epichlorohydrin, copper,	and lead (treatment te	chnique standards) ar	nd
35.9	standards in the disinfectants and dis	infection by-products	categories. The follow	ving
35.10	standards are not applicable to Class	1 surface waters: the	primary drinking wat	er
35.11	standards for acrylamide, epichlorohy	drin, copper, lead, and	turbidity (treatment t	echnique
35.12	standards) and the standards in the dis	sinfectants and microb	iological organisms ca	ategories.
35.13	[For text of	of subps 2 to 6, see M	R.]	
35.14 35.15	7050.0222 SPECIFIC WATER QU OF THE STATE; AQUATIC LIFE			ATERS
35.16	[For te	xt of subp 1, see M.R.]	
35.17	Subp. 2. Class 2A waters; aqu	atic life and recreation	n. The quality of Cla	ss 2A
35.18	surface waters shall be such as to per	mit the propagation ar	d maintenance of a h	ealthy
35.19	community of cold water sport or con	mmercial fish and asso	ciated aquatic life, an	d their
35.20	habitats. These waters shall be suital	ole for aquatic recreation	on of all kinds, includ	ling
35.21	bathing, for which the waters may be	usable. This class of s	urface waters is also j	protected
35.22	as a source of drinking water. Abbre	viations, acronyms, an	d symbols are explain	ed in
35.23	subpart 1.			

05/05/14		REVIS	SOR	CKM/A	A	AR4104
Substance, Characteristic, or Pollutant (Class 2A)	Units	CS	Basis for CS	MS	FAV	Basis for MS, FAV
Acenaphthene	μg/L	20	HH	56	112	Tox
Acetochlor	μg/L	3.6	Tox	86	173	Tox
Acrylonitrile (c)	μg/L	0.38	HH	1,140*	2,281*	Tox
Alachlor (c)	μg/L	3.8	HH	800*	1,600*	Tox
Aluminum, total	μg/L	87	Tox	748	1,496	Tox
Ammonia un-ionized as N	μg/L	16	Tox	_	_	NA
using the following equa Thurston, Aqueous amm Journal of the Fisheries I	ionia equi Research	ilibrium c	alculations;	effect of p	H and temp	
Thurston, Aqueous amm Journal of the Fisheries I f =	ionia equ Research 1	ilibrium c Board of x	calculations; Canada 32:	effect of p	H and temp	
Thurston, Aqueous amm Journal of the Fisheries I f =	onia equ Research 1 (pk _a - pI	ilibrium c Board of x	calculations; Canada 32: 100	effect of p	H and temp	
Thurston, Aqueous amm Journal of the Fisheries I f =	onia equ Research 1 (pk _a - pI otal amm T) (disso	ilibrium c Board of x H) + onia in th ciation co	alculations; Canada 32: 100 1 e un-ionize onstant for a	effect of p 2379-238 d state mmonia)	oH and temj 3 (1975):	
Thurston, Aqueous amm Journal of the Fisheries I f =	onia equ Research 1 (pk _a - pI otal amm T) (disso	ilibrium c Board of x H) + onia in th ciation co	alculations; Canada 32: 100 1 e un-ionize onstant for a	effect of p 2379-238 d state mmonia)	oH and temj 3 (1975):	
Thurston, Aqueous amm Journal of the Fisheries I f = 10 where: $f =$ the percent of the $pk_a = 0.09 + (2730)/$ T = temperature in Substance, Characteristic, or Pollutant (Class 2A)	onia equ Research 1 (pk _a - pF otal amm T) (disso degrees 1	ilibrium c Board of x H) + onia in th ciation co Kelvin (2'	alculations; Canada 32: 100 1 ue un-ionize onstant for a 73.16° Kelv Basis	effect of p 2379-238 d state mmonia) vin = 0° Ce	oH and temj 3 (1975): lsius)	Basis for MS,
Thurston, Aqueous amm Journal of the Fisheries I f = 10 where: $f =$ the percent of the $pk_a = 0.09 + (2730/)$ T = temperature in Substance, Characteristic, or Pollutant	onia equi Research 1 (pk _a - pF otal amm T) (disso degrees 1 Units	ilibrium c Board of x H) + onia in th ciation co Kelvin (2' CS	alculations; Canada 32: 100 1 e un-ionize onstant for a 73.16° Kelv Basis for CS	effect of p 2379-238 d state mmonia) vin = 0° Ce MS	oH and temj 3 (1975): llsius) FAV	Basis for MS, FAV

05/05/14			REVISOR			CKM/AA			AR4104	
Atrazine (c)		μg/L	3.4		HH		323		645	Tox
Benzene (c)		μg/L	5.1		ΗH		4,487*	k	8,974*	Tox
Bromoform		μg/L	33		ΗH		2,900		5,800	Tox
Cadmium, total		μg/L	eq	uation	Tox		equati	on	equation	Tox
The CS, MS, and FA' equations:	V var	y with	total	hardne	ss and	1 are	calcula	ted ı	using the f	ollowing
The CS in μ g/L shall	not e	exceed	exp.	(0.785	2[ln(t	otal h	ardnes	s mg	g/L)] - 3.49))
The MS in µg/L shall	l not	exceed	l: exp	.(1.128	3[ln(tc	tal h	ardness	mg/	/L)] - 3.828)
The FAV in µg/L sha	ll not	t excee	d: exj	p.(1.12	8[ln(t	otal ł	nardnes	s mg	g/L)]-3.13	49)
Where: exp. is the na	atural	antilo	garith	ım (bas	se e) c	of the	expres	sion	in parentl	nesis.
For hardness values get the standard.	great	er than	400	mg/L, ·	400 m	ıg/L s	shall be	e use	d to calcu	late
Example of total cade	miun	n stand	ards f	or five	hardı	iess v	values:			
TH in mg/L	50]	00	200)	300	4	00		
Cadmium, total			· · · · · · ·				· · · · · · · ·			
CS µg/L	0.66	5 1	.1	2.0		2.7	3	.4		
MS μg/L	1.8	3	3.9	8.6		14	1	9		
FAV µg/L	3.6	-	7.8	17		27	3	7		
Substance, Characteristic, or Pollutant (Class 2A)		Units	CS	6	Basi for (MS		FAV	Basis for MS, FAV
Carbon tetrachloride (c)		μg/L	1.9)	HH		1750*		3500*	Тох
Chlordane (c)		ng/L	0.0	73	HH		1200*		2400*	Tox
Chloride		mg/L	23	0	Tox		860		1720	Tox
Chlorine, total residual		μg/L	11		Tox		19		38	Tox

05/05/14			REVISOR C				CKM/AA		AR41(
Chlorine standard ap exposure refers to ch two hours in any 24-	lorinated	efflu				-			
Chlorobenzene (Monochlorobenzene)	μg/	/L	20	ΗH	[423		846	Tox
Chloroform (c)	μg/	/L	53	HH	[1,39	2	2,784	Tox
Chlorpyrifos	μg/	/L	0.041	Тох	K	0.08	3	0.17	Tox
Chromium +3, total	μg/	/L	equation	n Tox	K	equa	ation	equation	Tox
The CS, MS, and FA' equations:	V vary w	rith to	otal hard	ness a	nd are	calcu	lated us	sing the fo	ollowi
The CS in µg/L shall	not exce	ed: e	exp.(0.81	19[ln(t	otal ha	ardnes	ss mg/L)]+1.561)	
The MS in µg/L shall	l not exce	eed:	exp.(0.8	19[ln(total h	ardne	ss mg/I	_)]+3.688)
The FAV in µg/L sha	ll not exc	ceed:	exp.(0.8	819[ln	(total l	nardn	ess mg/	L)]+4.380))
Where: exp. is the na	atural ant	iloga	arithm (b	ase e)	of the	expre	ession i	n parenth	esis.
Where: exp. is the national for hardness values at the standard.		-		,		-		-	
For hardness values	greater th	nan 4	100 mg/L	., 400	mg/L	shall	be used	to calcul	
For hardness values get the standard.	greater th	nan 4	00 mg/L	., 400	mg/L	shall	be used	to calcul	
For hardness values g the standard. Example of total chro	greater th omium + 50	nan 4 3 sta	00 mg/L	, 400 or five	mg/L : total l	shall	be used ess valu	to calcul	
For hardness values g the standard. Example of total chro TH in mg/L	greater th omium + 50	nan 4 3 sta	00 mg/L Indards fo 0 2	, 400 or five	mg/L : total l	shall	be used ess valu	to calcul	
For hardness values g the standard. Example of total chro TH in mg/L Chromium +3, total	greater th omium + 50	nan 4 3 sta 10 20	400 mg/L andards fa 10 2 07 3	2, 400 or five 00	mg/L total l 300	shall nardn	be used ess valu 400	to calcul	
For hardness values g the standard. Example of total chro TH in mg/L Chromium +3, total CS µg/L	greater th omium + 50 117	nan 4 3 sta 10 20 1,7	400 mg/L andards fa 10 2 17 3 737 3	2, 400 or five 00 65	mg/L total l 300 509	shall nardn	be used ess valu 400 644	to calcul les:	
For hardness values g the standard. Example of total chro TH in mg/L Chromium +3, total CS μg/L MS μg/L FAV μg/L Substance, Characteristic, or Pollutant	greater th omium + 50 117 984 1,966	nan 4 3 sta 10 20 1,7 3,4	400 mg/L andards fa 10 2 17 3 737 3 469 6	2, 400 or five 00 65 ,064 ,120 Ba	mg/L = total H 300 509 4,27 8,53 sis	shall hardn 70	be used ess valu 400 644 5,405	to calcul les:	ate Basi for MS,
For hardness values g the standard. Example of total chro TH in mg/L Chromium +3, total CS μg/L MS μg/L FAV μg/L Substance, Characteristic,	greater th omium + 50 117 984	nan 4 3 sta 10 20 1,7 3,4	400 mg/L andards fa 10 2 17 3 737 3	2, 400 or five 00 65 ,064 ,120 Ba	mg/L total H 300 509 4,27 8,53	shall nardn	be used ess valu 400 644 5,405	to calcul les:	ate Basi for MS,
For hardness values g the standard. Example of total chro TH in mg/L Chromium +3, total CS μg/L MS μg/L FAV μg/L Substance, Characteristic, or Pollutant	greater th omium + 50 117 984 1,966	nan 4 3 sta 10 20 1,7 3,2	400 mg/L andards fa 10 2 17 3 737 3 469 6	2, 400 or five 00 65 ,064 ,120 Ba	mg/L total H 300 509 4,27 8,53 sis CS	shall hardn 70	be used ess valu 400 644 5,405	to calcul les:	ate Basis for

03/03/11			ILL.	150	it.			711(1)
Color value		Pt/Co	30		NA	_	_	NA
Copper, total		μg/L	equat	ion	Tox	equation	equation	Tox
The CS, MS, and Fa	AV va	ry with t	otal ha	rdne	ess and are	calculated	using the f	ollow
The CS in µg/L sha	ll not	exceed:	exp.(0	.620	[ln(total h	ardness mg/	/L)]-0.570)	
The MS in µg/L sha	all not	exceed:	exp.(0	.942	2[ln(total	hardness m	g/L)]-1.464	4)
The FAV in µg/L sh	all no	t exceed	: exp.(0.94	22[ln(tota	l hardness r	ng/L)]-0.77	703)
Where: exp. is the	natura	l antilog	arithm	(bas	e e) of the	e expression	in parenth	esis.
For hardness values the standard.	s great	er than 4	400 mg	g/L, 4	400 mg/L	shall be use	ed to calcul	late
Example of total co	pper s	tandards	s for fiv	ve to	tal hardne	ess values:		
TH in mg/L	50	10)0	200) 300) 400		
Copper, total								
CS µg/L	6.4	9.	8	15	19	23		
MS µg/L	9.2	18	3	34	50	65		
FAV µg/L	18	35	5	68	100) 131		
Substance, Characteristic, or Pollutant					Basis			Basi for MS
(Class 2A)		Units	CS		for CS	MS	FAV	FAV
Cyanide, free		μg/L	5.2		Tox	22	45	Тох
DDT (c)		ng/L	0.11		HH	550*	1100*	Tox
1,2-Dichloroethane (c)		μg/L	3.5		HH	45,050*	90,100*	Tox
Dieldrin (c)		ng/L	0.006	5	HH	1,300*	2,500*	Tox
Di-2-ethylhexyl phthala	te (c)	μg/L	1.9		HH	_*	_*	NA
Di-n-octyl phthalate		μg/L	30		Tox	825	1,650	Tox
Endosulfan		μg/L	0.007	'6	HH	0.084	0.17	Tox

REVISOR

CKM/AA

AR4104

05/05/14

05/05/14		REVISO	OR	CKM/A	A	AR41
Endrin	μg/L	0.0039	HH	0.090	0.18	Tox
Escherichia (E.) coli	See	See	HH	See	See	NA
	below	below		below	below	
Not to exceed 126 org	-		-			
than five samples repre-				•		
more than ten percent	-					-
exceed 1,260 organism 1 and October 31.	is per 100 li	mmmers.	The standa	ard applies	only betwe	en Ap
Ethylbenzene	μg/L	68	Tox	1,859	3,717	Tox
Substance,						Bas
Characteristic,						for
or Pollutant	TT • (66	Basis	3.50	T 4 T 4	MS
(Class 2A)	Units	CS	for CS	MS	FAV	FAV
Designated lake trout lakes of lake trout, <i>Salvelinus na</i>		egions (lak	e trout lak	es support	natural pop	pulatio
Phosphorus, total	μg/L	12	NA	_	_	NA
Chlorophyll-a	μg/L	3	NA	_	-	NA
Secchi disk transparency	meters	No less	NA	_	_	NA
		than 4.8				
Designated trout lakes in al	ll ecoregion	s, except l	ake trout l	akes:		
Phosphorus, total	μg/L	20	NA	_	_	NA
Chlorophyll-a	μg/L	6	NA	_	_	NA
Secchi disk transparency	meters	No less	NA	_	_	NA
		than 2.5				
Additional narrative eutrop	hication sta	ndards for	Class 2A	lakes and 1	reservoirs a	re fou
under subpart 2a.						

40.29 Eutrophication standards for Class 2A rivers and streams.

	05/05/14	REVISOR	CKM/AA	AR4104
41.1	North River Nutrient Region:			
41.2	Phosphorus, total	μg/L	less than or equal	to 50
41.3	Chlorophyll-a (seston)	μg/L	less than or equal	to 7
41.4	Diel dissolved oxygen flux	mg/L	less than or equal	to 3.0
41.5	Biochemical oxygen demand (BOD_5)	mg/L	less than or equal	to 1.5
41.6	Central River Nutrient Region:			
41.7	Phosphorus, total	μg/L	less than or equal	to 100
41.8	Chlorophyll-a (seston)	μg/L	less than or equal	to 18
41.9	Diel dissolved oxygen flux	mg/L	less than or equal	to 3.5
41.10	Biochemical oxygen demand (BOD_5)	mg/L	less than or equal	to 2.0
41.11	South River Nutrient Region:			
41.12	Phosphorus, total	μg/L	less than or equal	to 150
41.13	Chlorophyll-a (seston)	μg/L	less than or equal	to 35
41.14	Diel dissolved oxygen flux	mg/L	less than or equal	to 4.5
41.15	Biochemical oxygen demand (BOD_5)	mg/L	less than or equal	to 3.0
41.16	Additional narrative eutrophication stan	idards for Class 2A r	ivers and streams are	e found

41.17 under subpart 2b.

41.18 41.19 41.20 41.21 41.22	Substance, Characteristic, or Pollutant (Class 2A)	Units	CS	Basis for CS	MS	FAV	Basis for MS, FAV
41.23	Fluoranthene	µg/L	1.9	Tox	3.5	6.9	Tox
41.24	Heptachlor (c)	ng/L	0.10	HH	260*	520*	Tox
41.25	Heptachlor epoxide (c)	ng/L	0.12	HH	270*	530*	Tox
41.26	Hexachlorobenzene (c)	ng/L	0.061	HH	_*	_*	Tox
41.27	Lead, total	μg/L	equation	Tox	equation	equation	Tox

	ry with t	otal hard	ness	s and are	calculated	using the fo	llowing	
all not	y with total hardness and are calculated using the following							
The CS in μ g/L shall not exc				n(total ha	rdness mg/	L)]-4.705)		
The MS in μ g/L shall not			73[1	ln(total ha	ardness mg	/L)] - 1.460)		
hall no	t exceed	: exp.(1.1	273[[ln(total h	ardness mg	g/L)]-0.764	3)	
natura	l antilog	arithm (t	ase	e) of the	expression	in parenth	esis.	
For hardness values greater than 400 mg/L, 400 mg/L shall be used to calculate the standard.								
ead star	ndards fo	or five to	al h	ardness v	values:			
50	10	00 2	00	300	400			
· · · · · · · · ·								
13	3	2 7	7	13	19			
68				663	956			
	Units	CS			MS	FAV	Basis for MS, FAV	
ne,	μg/L	0.0087	ł	НН	1.0*	2.0*	Tox	
<u>.</u>	ng/L	6.9	ł	HH	2,400*	4,900*	Tox	
	mg/kg ppm	0.2	ł	HH	NA	NA	NA	
)	μg/L	45	ł	HH	13,875*	27,749*	Tox	
	μg/L	23]	Гох	271	543	Tox	
	μg/L	65	ł	HH	409	818	Tox	
	.0							
	es great ead star 50 1.3 34	es greater than $\frac{2}{4}$ ead standards for 50 10 1.3 3.1 34 82 68 16 Units Units ne, $\mu g/L$ ne, ng/L mg/kg ppm) $\mu g/L$	es greater than 400 mg/L ead standards for five tot 50 100 2 1.3 3.2 7 34 82 1 68 164 3 Units CS μ g/L 0.0087 ne, μ g/L 0.0087 ne, ng/L 6.9 mg/kg 0.2 ppm) μ g/L 45	es greater than 400 mg/L, 40 ead standards for five total h 50 100 200 1.3 3.2 7.7 34 82 197 68 164 396 Units CS f $\mu g/L 0.0087$ h ne, $\mu g/L 0.0087$ h mg/kg 0.2 h mg/kg 0.	es greater than 400 mg/L, 400 mg/L s ead standards for five total hardness v 50 100 200 300 1.3 3.2 7.7 13 34 82 197 331 68 164 396 663 Units CS Basis for CS mg/L 0.0087 HH ne, ng/L 6.9 HH mg/kg 0.2 HH ppm) µg/L 45 HH	es greater than 400 mg/L, 400 mg/L shall be use ead standards for five total hardness values: 50 100 200 300 400 1.3 3.2 7.7 13 19 34 82 197 331 477 68 164 396 663 956 $Units CS \qquad Basis for CS \qquad MS$ ne, pg/L 0.0087 HH 1.0* ne, ng/L 6.9 HH 2,400* mg/kg 0.2 HH NA ppm) µg/L 45 HH 13,875*	In the second standards for five total hardness values: 50 100 200 300 400 1.3 3.2 7.7 13 19 34 82 197 331 477 68 164 396 663 956 Basis for CS MS FAV ne, $\mu g/L$ 0.0087 HH 1.0* 2.0* end ng/L 6.9 HH 2,400* 4,900* mg/kg 0.2 HH NA NA ppm $\mu g/L$ 45 HH 1.3,875* 27,749*	

05/05/14			RE	VISOR		C	CKM/AA		AR4
	CS, MS, and FA tions:	V vary with	h total ha	rdness ar	nd are	calo	culated u	sing the fo	ollow
with	CS shall not exc total hardness v not exceed: exp	alues less t	han 212	mg/L, the	e CS i	in µş	g/L is to:	•	
	MS in µg/L shal			-	· · · -		ŕ	L)]+3.361	2)
The FAV in μ g/L shall not exceed:							-	· -	ŕ
	re: exp. is the na		_				_		
For h	ardness values tandard.		-			-		-	
Exan	nple of total nic	kel standar	ds for fiv	e total ha	rdnes	s va	lues:		
TH	in mg/L	50	100	200	300		400		
	kel, total	0.0	1.50	•••	• • •		•••		
	μg/L	88	158	283	297		297		
	μg/L / μg/I	789	1,418 2,836	2,549	3,59 7,18		4,582 9,164		
ГAV	/μg/L	1,578	2,836	5,098	/,10	55	9,104		
Substand Characte or Pollut	eristic,			Bas	ie				Bas for MS
(Class 2A		Unit	s CS	for		M	S	FAV	FAV
Oil		μg/L	500	NA		5,(000	10,000	NA
Oxygen,	dissolved	mg/I		NA		_		_	NA
with	ng/L as a daily r the standard 50 l to the 7Q ₁₀ .			-	•		*		
	l	μg/L	0.013	3 Tox		0.0)7	0.13	Тох
Parathion									

	05/05/14			REVISOR			CKM/AA		AR4104
4.1	The MS in µg/L sha	ll not	exceed:	exp.(1	.005[p	H]-4.83	30)		
4.2	The FAV in µg/L sha	all no	t exceed	: exp.([1.005[]	pH]-4.1	373)		
4.3	Where: exp. is the n	atura	l antilog	arithm	(base e	e) of the	expression	in parenth	esis.
4.4 4.5	For pH values less the values greater than 9		·					dard and fo	r pH
4.6	Example of pentach	loropl	henol sta	indards	s for fiv	ve pH va	alues:		
4.7	pH su	6.5	7.	0	7.5	8.0	8.5		
4.8 4.9	Pentachlorophenol								
4.10	CS µg/L	0.93	3 0.	93	0.93	0.93	3 0.93		
4.11	MS µg/L	5.5	9.	1	15	25	41		
4.12	FAV µg/L	11	18	8	30	50	82		
4.13 4.14 4.15	Substance, Characteristic, or Pollutant				P	asis			Basis for MS
4.16 4.17	(Class 2A)		Units	CS		or CS	MS	FAV	MS, FAV
	(Class 2A) pH, minimum		Units su	CS 6.5	fo		MS _	FAV 	
4.17	· · · · · · · · · · · · · · · · · · ·				fo	or CS	MS _ _	FAV 	FAV
4.17 4.18	pH, minimum		su	6.5	fo N N	or CS	MS - - 32	FAV 64	FAV
4.17 4.18 4.19	pH, minimum pH, maximum		su su	6.5 8.5	fo N N To	or CS A A			FAV NA NA
4.17 4.18 4.19 4.20	pH, minimum pH, maximum Phenanthrene	ls,	su su µg/L	6.5 8.5 3.6	fo N N Ta Ta	or CS A A ox	- - 32	- - 64	FAV NA NA Tox
4.17 4.18 4.19 4.20 4.21 4.22	pH, minimum pH, maximum Phenanthrene Phenol Polychlorinated bipheny	ls,	su su µg/L µg/L	6.5 8.5 3.6 123	fo N N Ta Ta N	or CS	- - 32 2,214	- - 64 4,428	FAV NA NA Tox Tox
 4.17 4.18 4.19 4.20 4.21 4.22 4.23 4.24 	pH, minimum pH, maximum Phenanthrene Phenol Polychlorinated bipheny total (c)	west o	su su µg/L µg/L ng/L NA	6.5 8.5 3.6 123 0.014 See below	fo N N Ta Ta t H N v v	or CS	- - 32 2,214 1,000* See below e discharged	- 64 4,428 2,000* See below	FAV NA NA Tox Tox Tox NA
 4.17 4.18 4.19 4.20 4.21 4.22 4.23 4.24 4.25 4.26 	pH, minimum pH, maximum Phenanthrene Phenol Polychlorinated bipheny total (c) Radioactive materials Not to exceed the low	west o	su su µg/L µg/L ng/L NA	6.5 8.5 3.6 123 0.014 See below	fo N N Ta Ta H N v v	or CS	- - 32 2,214 1,000* See below e discharged	- 64 4,428 2,000* See below	FAV NA NA Tox Tox Tox NA

44.30The MS and FAV vary with total hardness and are calculated using the following44.31equations:

The MS in μ g/L shall not exceed: exp.(1.720[ln(total hardness mg/L)]		AR4104
The FAV is well and more dear (1.7005) (1.11) 1	.)]-7.2156	5)
The FAV in μ g/L shall not exceed: exp.(1.720[ln(total hardness mg/L	L)]-6.520)
Where: exp. is the natural antilogarithm (base e) of the expression in	n parenthe	esis.
For hardness values greater than 400 mg/L, 400 mg/L shall be used the standard.	to calcula	ate
Example of silver standards for five total hardness values:		
TH in mg/L 50 100 200 300 400		
Silver, total	_	
CS μg/L 0.12 0.12 0.12 0.12 0.12		
MS μg/L 1.0 2.0 6.7 13 22		
FAV μg/L 1.2 4.1 13 27 44		
Substance,		
Characteristic, or Pollutant Basis	FAV	Basis for MS, FAV
Characteristic, or Pollutant Basis	FAV 	for MS,
Characteristic, or PollutantBasis Units CS(Class 2A)Units CSfor CSMSTemperature°C orNoNA-°Fmaterial increaseincrease-	FAV - 2,253*	for MS, FAV
Characteristic, or Pollutant (Class 2A)Basis UnitsBasis for CSITemperature°C or °F material increaseNA1,1,2,2-Tetrachloroethane (c)µg/L1.1HH1,127*2	_	for MS, FAV NA
Characteristic, or Pollutant (Class 2A)Basis UnitsBasis for CSITemperature $^{\circ}C$ or $^{\circ}F$ No material increaseNA 1,1,2,2-Tetrachloroethane (c) Tetrachloroethylene (c) μ g/L1.1HH1,127*2	- 2,253*	for MS, FAV NA Tox
Characteristic, or Pollutant (Class 2A)UnitsCSBasis for CSMSITemperature $^{\circ}C$ or $^{\circ}F$ No material increaseNA1,1,2,2-Tetrachloroethane (c) Tetrachloroethylene (c) $\mu g/L$ 1.1HH1,127*2Tetrachloroethylene (c) Hg/L $\mu g/L$ 0.28HH641	- 2,253* 857*	for MS, FAV NA Tox Tox
Characteristic, or Pollutant (Class 2A)Basis UnitsBasis for CSMSITemperature $^{\circ}C$ or $^{\circ}F$ material increaseNA n1,1,2,2-Tetrachloroethane (c) Tetrachloroethylene (c) $\mu g/L$ 1.1HH1,127* 428*2Tetrachloroethylene (c) Hg/L $\mu g/L$ 0.28HH641Toluene $\mu g/L$ 253Tox1,3522	- 2,253* 857* 128	for MS, FAV NA Tox Tox Tox
Characteristic, or Pollutant (Class 2A)UnitsBasis for CSMSITemperature $^{\circ}$ C or $^{\circ}$ F material increaseNA1,1,2,2-Tetrachloroethane (c) Tetrachloroethylene (c) μ g/L1.1HH1,127*2Tetrachloroethylene (c) Thallium, total μ g/L0.28HH641Toluene μ g/L253Tox1,3522Toxaphene (c)ng/L0.31HH730*1	- 2,253* 857* 128 2,703	for MS, FAV NA Tox Tox Tox Tox
Characteristic, or Pollutant (Class 2A)UnitsBasis for CSMSITemperature $^{\circ}C$ or $^{\circ}F$ No material increaseNA $-$ - 	- 2,253* 857* 128 2,703 1,500*	for MS, FAV NA Tox Tox Tox Tox Tox
Characteristic, or Pollutant (Class 2A)UnitsCSBasis for CSMSITemperature $^{\circ}$ C or $^{\circ}$ FNo material increaseNA1,1,2,2-Tetrachloroethane (c) μ g/L1.1HH1,127*2Tetrachloroethylene (c) μ g/L3.8HH428*8Thallium, total μ g/L0.28HH641Toluene μ g/L253Tox1,3522Toxaphene (c) n g/L329Tox2,95751,1,2-Trichloroethylene (c) μ g/L25HH6,988*1	- 2,253* 857* 128 2,703 1,500* 5,913	for MS, FAV NA Tox Tox Tox Tox Tox Tox

05/05/14 REVISOR CKM/AA AR4104 TSS standards for Class 2A 46.1 may be exceeded for no more 46.2 than ten percent of the time. 46.3 This standard applies April 1 46.4 through September 30 46.5 Vinyl chloride (c) _* _* NA μg/L 0.17 HH 46.6 1,407 Xylene, total m,p,o 166 2,814 Tox 46.7 μg/L Tox equation Tox equation equation Tox Zinc, total μg/L 46.8 The CS, MS, and FAV vary with total hardness and are calculated using the following 46.9 46.10 equations: The CS in μ g/L shall not exceed: exp.(0.8473[ln(total hardness mg/L)]+0.7615) 46.11 The MS in $\mu g/L$ shall not exceed: exp.(0.8473[ln(total hardness mg/L)]+0.8604) 46.12 The FAV in μ g/L shall not exceed: exp.(0.8473[ln(total hardness mg/L)]+1.5536 46.13 Where: exp. is the natural antilogarithm (base e) of the expression in parenthesis. 46.14 For hardness values greater than 400 mg/L, 400 mg/L shall be used to calculate 46.15 the standard. 46.16 Example of zinc standards for five total hardness values: 46.17 TH in mg/L 50 100 200 300 400 46.18 46.19 Zinc, total 46.20 46.21 $CS \mu g/L$ 59 106 191 269 343 MS $\mu g/L$ 65 117 211 297 379 46.22 FAV $\mu g/L$ 130 234 421 594 758 46.23

46.24

Subp. 2a. Narrative eutrophication standards for lakes and reservoirs.

46.25 A. Eutrophication standards for lakes and reservoirs are compared to
46.26 summer-average data. Exceedance of the total phosphorus and either the chlorophyll-a or
46.27 Secchi disk transparency standard is required to indicate a polluted condition.

46.28

[For text of item B, see M.R.]

05/05/14

REVISOR

AR4104

47.1	C. Lakes and reservoirs with a baseline quality that is poorer than the numeric
47.2	eutrophication standards in subpart 2 must be considered to be in compliance with the
47.3	standards if the baseline quality is the result of natural causes. The commissioner shall
47.4	determine baseline quality and compliance with these standards using data and the
47.5	procedures in part 7050.0150, subpart 5.
47.6	[For text of item D, see M.R.]
47.7	E. Eutrophication standards applicable to lakes and reservoirs that lie on the
47.8	border between two ecoregions or that are in the Red River Valley (also referred to as
47.9	Lake Agassiz Plains), Northern Minnesota Wetlands, or Driftless Area Ecoregion must be
47.10	applied on a case-by-case basis. The commissioner shall use the standards applicable to
47.11	adjacent ecoregions as a guide.
47.12	Subp. 2b. Narrative eutrophication standards for rivers and streams.
47.13	A. Eutrophication standards for rivers and streams are compared to
47.14	summer-average data or as specified in subpart 2. Exceedance of the total phosphorus
47.15	levels and chlorophyll-a (seston), five-day biochemical oxygen demand (BOD_5) , diel
47.16	dissolved oxygen flux, or pH levels is required to indicate a polluted condition.
47.17	B. Rivers and streams that exceed the phosphorus levels but do not exceed the
47.18	chlorophyll-a (seston), five-day biochemical oxygen demand (BOD ₅), diel dissolved
47.19	oxygen flux, or pH levels meet the eutrophication standard.
47.20	C. For chlorophyll-a (periphyton), the standard is exceeded if concentrations
47.21	exceed 150 mg/m ^{2} more than one year in ten.
47.00	D. It is the policy of the agency to protect all rivers and streams from the
47.22	D. It is the policy of the agency to protect all rivers and streams from the undesirable effects of cultural eutrophication. Rivers and streams with a baseline quality
47.23	
47.24	better than the numeric eutrophication standards in subpart 3 must be maintained in that
47.25	condition through the strict application of all relevant federal, state, and local requirements

	05/05/14 REVISOR CKM/AA AR4104
48.1	governing nondegradation, the discharge of nutrients from point and nonpoint sources,
48.2	including:
48.3	(1) the nondegradation requirements in parts 7050.0180 and 7050.0185;
48.4	(2) the phosphorus effluent limits for point sources, where applicable, in
48.5	chapter 7053;
48.6	(3) the requirements for feedlots in chapter 7020;
48.7	(4) the requirements for individual sewage treatment systems in chapter
48.8	7080;
48.9	(5) the requirements for control of storm water in chapter 7090;
48.10	(6) county shoreland ordinances; and
48.11	(7) implementation of mandatory and voluntary best management practices
48.12	to minimize point and nonpoint sources of nutrients.
48.13	E. Rivers and streams with a baseline quality that does not meet the numeric
48.14	eutrophication standards in part 7050.0150, subpart 5b, are in compliance with the
48.15	standards if the baseline quality is the result of natural causes. The commissioner must
48.16	determine baseline quality and compliance with these standards using data and the
48.17	procedures in part 7050.0150, subpart 5.
48.18	Subp. 3. Class 2Bd waters. The quality of Class 2Bd surface waters shall be such
48.19	as to permit the propagation and maintenance of a healthy community of cool or warm
48.20	water sport or commercial fish and associated aquatic life and their habitats. These waters
48.21	shall be suitable for aquatic recreation of all kinds, including bathing, for which the waters
48.22	may be usable. This class of surface waters is also protected as a source of drinking
48.23	water. The applicable standards are given below. Abbreviations, acronyms, and symbols
48.24	are explained in subpart 1.

05/05/14		REVIS	SOR	CKM/A/	CKM/AA		
Substance, Characteristic, or Pollutant (Class 2Bd)	Units	CS	Basis for CS	MS	FAV	Basis for MS, FAV	
Acenaphthene	μg/L	20	HH	56	112	Tox	
Acetochlor	μg/L	3.6	Тох	86	173	Tox	
Acrylonitrile (c)	μg/L	0.38	HH	1,140*	2,281*	Tox	
Alachlor (c)	μg/L	4.2	HH	800*	1,600*	Tox	
Aluminum, total	μg/L	125	Тох	1,072	2,145	Tox	
Ammonia un-ionized as N	μg/L	40	Тох	_		NA	
The percent un-ionized a using the following equat Thurston, Aqueous amm Journal of the Fisheries I	tion taker conia equi Research f = 1/(n from Em ilibrium c Board of 10 ^(pka-pH)	herson, K., valculations Canada 32 + 1) x 100	R.C. Russo, s; effect of p 2: 2379-2382	R.E. Lund, H and temp	and R.	
using the following equat Thurston, Aqueous amm Journal of the Fisheries H where: $f = the percent of to$ $pk_a = 0.09 + (2730/$	tion taker conia equi Research f = 1/(otal ammo T) (disso	n from Em ilibrium c Board of 10 ^(pka-pH) onia in the ciation co	herson, K., valculations Canada 32 + 1) x 100 e un-ionize onstant for	R.C. Russo, s; effect of p 2: 2379-2382 o ed state ammonia)	R.E. Lund, H and temp 3 (1975):	and R	
using the following equat Thurston, Aqueous amm Journal of the Fisheries H where: $f =$ the percent of to	tion taker conia equi Research f = 1/(otal ammo T) (disso	n from Em ilibrium c Board of 10 ^(pka-pH) onia in the ciation co	herson, K., valculations Canada 32 + 1) x 100 e un-ionize onstant for	R.C. Russo, s; effect of p 2: 2379-2382 o ed state ammonia)	R.E. Lund, H and temp 3 (1975):	and R.	
using the following equat Thurston, Aqueous amm Journal of the Fisheries H where: $f = the percent of to$ $pk_a = 0.09 + (2730/$	tion taker conia equi Research f = 1/(otal ammo T) (disso	n from Em ilibrium c Board of 10 ^(pka-pH) onia in the ciation co	herson, K., valculations Canada 32 + 1) x 100 e un-ionize onstant for	R.C. Russo, s; effect of p 2: 2379-2382 o ed state ammonia)	R.E. Lund, H and temp 3 (1975):	and R	
using the following equat Thurston, Aqueous amm Journal of the Fisheries H where: $f =$ the percent of to $pk_a = 0.09 + (2730/$ T = temperature in of Substance, Characteristic, or Pollutant (Class 2Bd)	tion taker conia equi Research f = 1/(otal amme T) (disso degrees F	n from Em ilibrium c Board of 10 ^(pka-pH) onia in the ciation co Kelvin (27	herson, K., calculations Canada 32 + 1) x 100 e un-ionize onstant for 73.16° Kelv Basis for CS	R.C. Russo, s; effect of p 2: 2379-2383 ed state ammonia) vin = 0° Cel MS	R.E. Lund, H and temp 3 (1975): sius) FAV	and R beratur Basi for MS, FAV	
using the following equat Thurston, Aqueous amm Journal of the Fisheries H where: $f =$ the percent of to $pk_a = 0.09 + (2730/$ T = temperature in of Substance, Characteristic, or Pollutant (Class 2Bd) Anthracene	tion taker conia equi Research f = 1/(otal amme T) (disso degrees F Units $\mu g/L$	n from Em ilibrium c Board of 10 ^(pka-pH) onia in the ciation co Kelvin (27 CS	herson, K., calculations Canada 32 + 1) x 100 e un-ionize onstant for 73.16° Kelv Basis for CS	R.C. Russo, s; effect of p 2: 2379-2383 ed state ammonia) vin = 0° Cel MS 0.32	R.E. Lund, H and temp 3 (1975): sius) FAV 0.63	and R beratur Basi for MS, FAV	
using the following equat Thurston, Aqueous amm Journal of the Fisheries H where: $f =$ the percent of to $pk_a = 0.09 + (2730/$ T = temperature in of Substance, Characteristic, or Pollutant (Class 2Bd) Anthracene Antimony, total	tion taker conia equi Research f = 1/(otal amme T) (disso degrees F Units $\mu g/L$ $\mu g/L$	n from Em ilibrium c Board of 10 ^(pka-pH) onia in the ciation co Kelvin (27 CS 0.035 5.5	herson, K., calculations Canada 32 + 1) x 100 e un-ionize onstant for 73.16° Kelv Basis for CS Tox HH	R.C. Russo, s; effect of p 2: 2379-2383 ed state ammonia) vin = 0° Cel MS 0.32 90	R.E. Lund, H and temp 3 (1975): sius) FAV 0.63 180	and R beratur Basi for MS, FAV Tox Tox	
using the following equat Thurston, Aqueous amm Journal of the Fisheries H where: $f =$ the percent of to $pk_a = 0.09 + (2730/$ T = temperature in of Substance, Characteristic, or Pollutant (Class 2Bd) Anthracene	tion taker conia equi Research f = 1/(otal amme T) (disso degrees F Units $\mu g/L$	n from Em ilibrium c Board of 10 ^(pka-pH) onia in the ciation co Kelvin (27 CS	herson, K., calculations Canada 32 + 1) x 100 e un-ionize onstant for 73.16° Kelv Basis for CS	R.C. Russo, s; effect of p 2: 2379-2383 ed state ammonia) vin = 0° Cel MS 0.32	R.E. Lund, H and temp 3 (1975): sius) FAV 0.63	and R. beratur Basis for MS, FAV	

	05/05/14			RE	VISO	R		CKM/AA		AR4104
50.1	Bromoform		μg/L	41		HH		2,900	5,800	Tox
50.2	Cadmium, total		μg/L	equat	tion	Tox		equation	equation	Tox
50.3 50.4	The CS, MS, and FA equations:	V vai	ry with to	otal ha	rdnes	ss and a	are o	calculated u	sing the fo	ollowing
50.5	The CS in µg/L shall	not	exceed:	exp.(0	.7852	2[ln(tot	al h	ardness mg/	L)] - 3.490)
50.6	The MS in µg/L shal	l not	exceed:	exp.(1	.128	[ln(tota	al ha	rdness mg/I	L)]-1.685)	
50.7	The FAV in µg/L sha	ll not	t exceed:	: exp.(1.128	8[ln(tot	tal h	ardness mg/	′L)] - 0.991	9)
50.8	Where: exp. is the na	atural	l antiloga	arithm	(base	e e) of	the	expression i	n parenth	esis.
50.9 50.10	For hardness values the standard.	great	er than 4	100 mg	g/L, 4	400 mg	;/L s	hall be used	l to calcul	ate
50.11	Example of total cad	miun	n standaı	rds for	five	hardne	ess v	alues:		
50.12	TH in mg/L	50	10	00	200	3	300	400		
50.13									_	
50.14	Cadmium, total									
50.15	CS µg/L	0.66	6 1.	1	2.0	2	2.7	3.4		
50.16	MS µg/L	15	33	5	73	1	116	160		
50.17	FAV µg/L	31	67	7	146	2	231	319		
50.18 50.19 50.20 50.21 50.22	Substance, Characteristic, or Pollutant (Class 2Bd)		Units	CS		Basis for CS		MS	FAV	Basis for MS, FAV
50.23	Carbon tetrachloride (c)		μg/L	1.9		HH		1,750*	3,500*	Tox
50.23	Chlordane (c)		ng/L	0.29		НН		1,200*	2,400*	Tox
50.24	Chloride		mg/L	230		Тох		860	1,720	Тох
50.26	Chlorine, total residual		μg/L	11		Tox		19	38	Tox

50.27Chlorine standard applies to conditions of continuous exposure, where continuous50.28exposure refers to chlorinated effluents that are discharged for more than a total of50.29two hours in any 24-hour period.

05/05/14				REVIS	SOR		CKM/AA		AR41
Chloroben (Monochlo	zene probenzene)	μg/	′L	20	ΗH	4	23	846	Tox
Chloroforr	n (c)	μg/	′L	53	HH	1	,392	2,784	Tox
Chlorpyrif	os	μg/	′L	0.041	Tox	0	.083	0.17	Tox
Chromium	+3, total	μg/	′L	equation	n Tox	e	quation	equation	Tox
The C equation	S, MS, and FAV	vary w	ith to	otal hard	ness an	d are ca	lculated u	sing the fo	ollowi
The C	S in µg/L shall	not exce	ed: e	exp.(0.81	9[ln(to	otal hard	ness mg/I	L)]+1.561))
The M	[S in μg/L shall	not exce	eed:	exp.(0.8	19[ln(to	otal hard	lness mg/l	L)]+3.688	5)
The FA	AV in µg/L shal	l not exc	ceed:	exp.(0.8	819[ln(total har	dness mg	/L)]+4.38	0)
	e: exp. is the na				_ `		-	, <u> </u>	ŕ.
	rdness values g		-		, i i i i i i i i i i i i i i i i i i i		-	-	
	ndard.								
the sta	-	mium +:	3 stai	ndards fo	or five	total har	dness val	ues:	
the sta Examj	ndard. ble of total chro						dness val	ues:	
the sta Examj	ndard.	mium +: 50	3 sta 10		or five 00	total har 300		ues:	
the sta Examj TH in	ndard. ble of total chro							ues: 	
the sta Examj TH in	ndard. ple of total chro n mg/L mium +3, total			0 2				ues: —	
the sta Examp TH in Chro	ndard. ple of total chro n mg/L mium +3, total g/L	50	10 20	0 2 7 3	00	300	400	ues: —	
the sta Exam TH in Chro CS μ MS μ	ndard. ple of total chro n mg/L mium +3, total g/L	50 117	100 207 1,7	0 2 7 3	00 65 ,064	300 509 4,270	400 644 5,405	_	
the sta Examj TH in Chro CS μ MS μ FAV	ndard. ole of total chro n mg/L mium +3, total g/L ug/L µg/L	50 117 984	100 207 1,7	0 2 7 3 737 3	00 65 ,064	300 509 4,270	400 644 5,405	_	Basi
the sta Examp TH in Chro CS μ MS μ	ndard. ole of total chro n mg/L mium +3, total g/L g/L µg/L ¢,	50 117 984	100 207 1,7	0 2 7 3 737 3	00 65 ,064	300 509 4,270 8,530	400 644 5,405	_	Basi for
the sta Examp TH in Chro CS µ MS µ FAV Substance Character or Polluta	ndard. ple of total chro n mg/L mium +3, total g/L ug/L µg/L c, ristic, nt	50 117 984 1,966	100 20° 1,7 3,4	0 2 7 3 737 3 169 6	00 65 ,064 ,120 Bas for	300 509 4,270 8,530 is	400 644 5,405 10,797	7	for MS,
the sta Examp TH in Chro CS μ MS μ FAV Substance Character	ndard. ple of total chro n mg/L mium +3, total g/L ug/L µg/L c, ristic, nt	50 117 984	100 20° 1,7 3,4	0 2 7 3 737 3	00 65 ,064 ,120 Bas	300 509 4,270 8,530 is	400 644 5,405	_	Basi for MS, FAV
the sta Examp TH in Chro CS µ MS µ FAV Substance Character or Polluta (Class 2Be	ndard. ple of total chro n mg/L mium +3, total g/L ug/L µg/L c, ristic, nt d)	50 117 984 1,966 Un	100 207 1,7 3,4 its	0 2 7 3 737 3 469 6 CS	00 65 ,064 ,120 Bas for CS	300 509 4,270 8,530 is	400 644 5,405 10,797 1 8	FAV	for MS, FAV
the sta Examp TH in Chro CS µ MS µ FAV Substance Character or Polluta	ndard. ple of total chro n mg/L mium +3, total g/L ug/L µg/L c, ristic, nt d)	50 117 984 1,966	100 207 1,7 3,4 its	0 2 7 3 737 3 169 6	00 65 ,064 ,120 Bas for	300 509 4,270 8,530 is N	400 644 5,405 10,797	7	for MS,

51.29 The CS, MS, and FAV vary with total hardness and are calculated using the following 51.30 equations:

	05/05/14	REVISOR			R	CKM/AA		AR4104	
2.1	The CS in µg/L shall	not	exceed:	exp.(0.	620[1	n(total ha	ardness mg/	L)]-0.570)	
2.2	The MS in µg/L shal	l not	exceed:	exp.(0	.9422	2[ln(total	hardness mg	g/L)]-1.464	4)
2.3	The FAV in μ g/L sha	ll no	t exceed	: exp.(().942	2[ln(total	hardness m	ng/L)]-0.77	/03)
2.4	Where: exp. is the na	atura	l antilog	arithm	(base	e e) of the	expression	in parenth	esis.
2.5 2.6	For hardness values the standard.	great	er than 4	400 mg	/L, 4	00 mg/L	shall be use	d to calcul	ate
2.7	Example of total cop	per s	tandards	s for fiv	e tota	al hardnes	ss values:		
2.8	TH in mg/L	50	10	00	200	300	400		
2.9									
2.10	Copper, total								
2.11	CS µg/L	6.4	9.	8	15	19	23		
2.12	MS µg/L	9.2	18	8	34	50	65		
2.13	FAV µg/L	18	35	5	68	100	131		
2.14	Substance,								Basis
2.15 2.16 2.17 2.18	Characteristic, or Pollutant (Class 2Bd)		Units	CS		Basis for CS	MS	FAV	for MS, FAV
52.16 52.17	or Pollutant			CS 5.2		for	MS 22	FAV 45	MS,
2.16 2.17 2.18	or Pollutant (Class 2Bd)		Units µg/L ng/L			for CS			MS, FAV
2.16 2.17 2.18 2.19	or Pollutant (Class 2Bd) Cyanide, free		µg/L	5.2		for CS Tox	22	45	MS, FAV Tox
2.16 2.17 2.18 2.19 2.20	or Pollutant (Class 2Bd) Cyanide, free DDT (c)		μg/L ng/L	5.2 1.7		for CS Tox HH	22 550*	45 1,100*	MS, FAV Tox Tox
2.16 2.17 2.18 2.19 2.20 2.21	or Pollutant (Class 2Bd) Cyanide, free DDT (c) 1,2-Dichloroethane (c)	e (c)	μg/L ng/L μg/L	5.2 1.7 3.8	-	for CS Tox HH HH	22 550* 45,050*	45 1,100* 90,100*	MS, FAV Tox Tox Tox
2.16 2.17 2.18 2.19 2.20 2.21 2.22	or Pollutant (Class 2Bd) Cyanide, free DDT (c) 1,2-Dichloroethane (c) Dieldrin (c)	e (c)	μg/L ng/L μg/L ng/L	5.2 1.7 3.8 0.026		for CS Tox HH HH HH	22 550* 45,050* 1,300*	45 1,100* 90,100* 2,500*	MS, FAV Tox Tox Tox Tox
2.16 2.17 2.18 2.19 2.20 2.21 2.22 2.22 2.23	or Pollutant (Class 2Bd) Cyanide, free DDT (c) 1,2-Dichloroethane (c) Dieldrin (c) Di-2-ethylhexyl phthalate	e (c)	μg/L ng/L μg/L ng/L μg/L	5.2 1.7 3.8 0.026 1.9		for CS Tox HH HH HH HH	22 550* 45,050* 1,300* _*	45 1,100* 90,100* 2,500* _*	MS, FAV Tox Tox Tox Tox NA
2.16 2.17 2.18 2.19 2.20 2.21 2.22 2.22 2.23 2.24	or Pollutant (Class 2Bd) Cyanide, free DDT (c) 1,2-Dichloroethane (c) Dieldrin (c) Di-2-ethylhexyl phthalate Di-n-octyl phthalate	e (c)	μg/L ng/L μg/L ng/L μg/L μg/L	5.2 1.7 3.8 0.026 1.9 30		for CS Tox HH HH HH HH Tox	22 550* 45,050* 1,300* _* 825	45 1,100* 90,100* 2,500* _* 1,650	MS, FAV Tox Tox Tox Tox NA Tox

52.29Not to exceed 126 organisms per 100 milliliters as a geometric mean of not less52.30than five samples representative of conditions within any calendar month, nor shall52.31more than ten percent of all samples taken during any calendar month individually

05/05/14	REVISO	OR	CKM/A	AR4104		
exceed 1,260 organism 1 and October 31.	ns per 100 n	nilliliters. '	The stand	dard applies	only betwo	een April
Ethylbenzene	μg/L	68	Tox	1,859	3,717	Tox
Substance, Characteristic, or Pollutant (Class 2Bd)	Units	CS	Basis for CS	MS	FAV	Basis for MS, FAV
Eutrophication standards for Lakes, Shallow Lakes, and		-		-		
Phosphorus, total	μg/L	30	NA	_	_	NA
Chlorophyll-a	μg/L	9	NA	_	_	NA
Secchi disk transparency	meters	Not less than 2.0	NA	_	_	NA
Lakes and Reservoirs in N	orth Central	Hardwood	d Forest]	Ecoregion		
Phosphorus, total	μg/L	40	NA	_	_	NA
Chlorophyll-a	μg/L	14	NA	_	_	NA
Secchi disk transparency	meters	Not less than 1.4	NA	_	_	NA
Lakes and Reservoirs in W Ecoregions	Vestern Corn	Belt Plain	ns and N	orthern Gla	ciated Plain	ıs
Phosphorus, total	μg/L	65	NA	_	_	NA
Chlorophyll-a	μg/L	22	NA	_	_	NA
Secchi disk transparency	meters	Not less than 0.9	NA	_	_	NA
Shallow Lakes in North Ce	entral Hardw	vood Fores	st Ecoreg	ion		
Phosphorus, total	μg/L	60	NA	_	_	NA
Chlorophyll-a	μg/L	20	NA	_	_	NA
Secchi disk transparency	meters	Not less	NA	_	_	NA

	05/05/14		REVIS	OR	CKM/AA		AR4104
54.1	Shallow Lakes in Western Cor	n Belt P	lains and 1	Northern Gla	aciated Plai	ns Ecoreg	ions
54.2	Phosphorus, total	μg/L	90	NA	_	_	NA
54.3	Chlorophyll-a	μg/L	30	NA	_	_	NA
54.4 54.5	Secchi disk transparency	meters	Not less than 0.7	NA	_	_	NA
54.6	Additional narrative eutrophic	ation sta	ndards for	r Class 2Bd	lakes, shall	ow lakes,	and
54.7	reservoirs are found under sub	part 3a.					
54.8	Eutrophication standards for C	Class 2Bc	l rivers an	d streams.			
54.9	North River Nutrient Region						
54.10	Phosphorus, total			μg/L	less than	or equal t	o 50
54.11	Chlorophyll-a (seston)			μg/L	less than	or equal t	o 7
54.12	Diel dissolved oxygen flux			mg/L	less than	or equal t	o 3.0
54.13	Biochemical oxygen demand	(BOD_5)		mg/L	less than	or equal t	o 1.5
54.14	Central River Nutrient Region	1					
54.15	Phosphorus, total			μg/L	less than	or equal t	o 100
54.16	Chlorophyll-a (seston)			μg/L	less than	or equal t	o 18
54.17	Diel dissolved oxygen flux			mg/L	less than	or equal t	o 3.5
54.18	Biochemical oxygen demand	(BOD_5)		mg/L	less than	or equal t	o 2.0
54.19	South River Nutrient Region						
54.20	Phosphorus, total			μg/L	less than	or equal t	o 150
54.21	Chlorophyll-a (seston)			μg/L	less than	or equal t	o 35
54.22	Diel dissolved oxygen flux			mg/L	less than	or equal t	o 4.5
54.23	Biochemical oxygen demand	(BOD ₅)		mg/L	less than	or equal t	o 3.0
54.24	Additional narrative eutrophic	ation sta	ndards for	Class 2Bd	rivers and s	treams are	e found
54 25	under subpart 3b						

54.25 under subpart 3b.

05/05/14 REVISOR CKM/AA AR4104 Substance, Basis 55.1 55.2 Characteristic, Basis for or Pollutant for 55.3 MS, (Class 2Bd) Units CS CS MS FAV FAV 55.4 55.5 Fluoranthene 1.9 Tox 3.5 6.9 Tox 55.6 μg/L Heptachlor (c) 0.39 HH 260* 520* ng/L Tox 55.7 Heptachlor epoxide (c) 0.48 HH 270* 530* Tox ng/L 55.8 _* _* Hexachlorobenzene (c) 0.24 HH Tox 55.9 ng/L equation Tox Lead, total μg/L equation Tox equation 55.10 The CS, MS, and FAV vary with total hardness and are calculated using the following 55.11 equations: 55.12 The CS in μ g/L shall not exceed: exp.(1.273[ln(total hardness mg/L)]-4.705) 55.13 55.14 The MS in μ g/L shall not exceed: exp.(1.273[ln(total hardness mg/L)]-1.460) 55.15 The FAV in μ g/L shall not exceed: exp.(1.273[ln(total hardness mg/L)]-0.7643) Where: exp. is the natural antilogarithm (base e) of the expression in parenthesis. 55.16 For hardness values greater than 400 mg/L, 400 mg/L shall be used to calculate 55.17 the standard. 55.18 Example of total lead standards for five total hardness values: 55.19 TH in mg/L 50 100 200 300 400 55.20 55.21 Lead, total 55.22 CS µg/L 1.3 3.2 7.7 13 19 55.23 MS $\mu g/L$ 34 82 197 331 477 55.24 FAV µg/L 68 164 396 663 956 55.25 Substance, Basis 55.26 Characteristic, Basis for 55.27 or Pollutant for MS, 55.28 Units CS 55.29 (Class 2Bd) CS MS FAV FAV 55.30

	05/05/14		REVISOR		CKM/AA		AR4104
56.1 56.2 56.3	Lindane (c) (Hexachlorocyclohexane, gamma-)	μg/L	0.032	НН	4.4*	8.8*	Тох
56.4	Mercury, total in water	ng/L	6.9	HH	2,400*	4,900*	Tox
56.5 56.6	Mercury, total in edible fish tissue	mg/kg ppm	0.2	ΗH	NA	NA	NA
56.7 56.8	Methylene chloride (c) (Dichloromethane)	μg/L	46	HH	13,875*	27,749*	Tox
56.9	Metolachlor	μg/L	23	Tox	271	543	Tox
56.10	Naphthalene	μg/L	81	Tox	409	818	Tox
56.11	Nickel, total	μg/L	equation	Tox/HH	equation	equation	Tox
56.12 56.13	The CS, MS, and FAV equations:	vary with t	otal hardno	ess and are	e calculated u	using the f	ollowing
56.14	The CS shall not exceed	the hum	an health-b	ased stand	lard of 297 µ	ıg/L. For v	vaters
56.15	with total hardness valu				•	-	
56.16	shall not exceed: exp.(0	0.846[ln(to	otal hardnes	ss mg/L)]+	-1.1645)		
56.17	The MS in µg/L shall n	ot exceed:	exp.(0.84	6[ln(total ł	nardness mg/	/L)]+3.361	2)
56.18	The FAV in µg/L shall r	not exceed	: exp.(0.84	46[ln(total	hardness mg	g/L)]+4.05	43)
56.19	Where: exp. is the natu	ral antilog	arithm (ba	se e) of the	e expression	in parenth	esis.
56.20	For hardness values gre	ater than 4	400 mg/L,	400 mg/L	shall be use	d to calcul	late
56.21	the standard.		_	_			
56.22	Example of total nickel	standards	for five to	tal hardnes	ss values:		
56.23	TH in mg/L 5	0 10	00 20	0 300) 400		
56.24							
56.25	Nickel, total						
56.26	CS µg/L 8	8 1:	58 28	3 297	7 297		
56.27	MS µg/L 7	89 1,	418 2,5	549 3,5	92 4,582		
56.28	FAV µg/L 1	,578 2,	836 5,0	98 7,1	85 9,164		

05/05/14		REVI	SOR	СКМ	/AA	AR410
Substance, Characteristic, or Pollutant (Class 2Bd)	Units	CS	Basis for CS	MS	FAV	Basis for MS, FAV
Oil	μg/L	500	NA	5,000	10,000	NA
Oxygen, dissolved	mg/L	See below	NA	_	_	NA
5.0 mg/L as a daily site-specific basis a standard shall be le Compliance with the the receiving water	according to pa ess than 5 mg/I his standard is	art 7050.0 L as a dail required :	220, subp y average	oart 7, excepter and 4 mg/	pt that no site L as a daily 1	e-specifi ninimu
Parathion	μg/L	0.013	Tox	0.07	0.13	Tox
Pentachlorophenol	μg/L	1.9	HH	equation	equation	Tox
The MS and FAV v	vary with pH a	nd are cal	culated u	sing the fol	lowing equat	tions:
The MS in µg/L sh	all not exceed	: exp.(1.0	05[pH]-4	.830)		
The FAV in µg/L sl	hall not exceed	d: exp.(1.	005[pH]-	4.1373)		
Where: exp. is the	natural antilog	garithm (b	base e) of	the express	ion in parent	hesis.
For pH values less	than 6.0, 6.0 s	shall be us	sed to cal	culate the s	tandard and	for pH
values greater than						1
Example of pentacl	hlorophenol st	andards f	or five pH	I values:		
pH su	6.5 7	.0 7	.5 8	8.0 8.	5	
pH su	6.5 7	.0 7	2.5 8	8.0 8.	5	
pH su Pentachloropheno		.0 7	2.5 8	3.0 8.	5	
	bl			3.0 8. 1.9 1.		
Pentachloropheno	ol 1.9 1	.9 1	.9		9	

Substance, Characteristic, or Pollutant			Basis for			Bas for MS
(Class 2Bd)	Units	CS	CS	MS	FAV	FAV
		6.5				NIA
pH, minimum	su	6.5	NA	—	_	NA
pH, maximum	su 	9.0	NA	-		NA
Phenanthrene	µg/L	3.6	Tox	32	64	Tox
Phenol	µg/L	123	Tox	2,214	4,428	Tox
Polychlorinated biphenyls, total (c)	ng/L	0.029	HH	1,000*	2,000*	Tox
Radioactive materials	NA	See	NA	See	See	NA
		below		below	below	
Selenium, total Silver, total	μg/L μg/L	5.0 1.0	Tox Tox	20 equation	40 equation	Tox Tox
					-	
The MS and FAV vary equations:	with total	hardness	and are c	alculated u	ising the follo	owing
The MS in μ g/L shall 1	not exceed	exp.(1.7	20[ln(tota	al hardness	mg/L)]-7.21	56)
The FAV in µg/L shall	not exceed	l: exp.(1.	720[ln(tot	al hardness	s mg/L)]-6.52	20)
Where: exp. is the nat	ural antilog	garithm (base e) of	the express	sion in parent	hesis.
For hardness values gr	eater than	400 mg/]	L, 400 mg	/L shall be	used to calc	ulate
the standard.						
				1		
Example of total silver	standards	for five t	total hardr	less values		
Example of total silver)0	
Example of total silver						
Example of total silver						

		REV	ISOR	CKM/	AA	AR4
MS µg/L	1.0	2.0	6.7	13 22		
FAV µg/L	1.2	4.1	13	27 44		
Substance, Characteristic, or Pollutant (Class 2Bd)	Unit	s CS	Basis for CS	MS	FAV	Bas for MS FAV
Temperature	°F	See below	NA	_	_	NA
5°F above natural in s average of the maximu daily average tempera 1,1,2,2-Tetrachloroethane	um daily ture of 86	temperatur				•
(c)	μ <u>θ</u> , Ε	1.0		1,12,	_,	1011
	/T	2.0			0.5.5.1	
Tetrachloroethylene (c)	µg/L	3.8	HH	428*	857*	Tox
Tetrachloroethylene (c) Thallium, total	μg/L μg/L	3.8 0.28	HH HH	428* 64	857* 128	Tox Tox
						Tox
Thallium, total	μg/L	0.28	HH	64	128	Tox Tox
Thallium, total Toluene	μg/L μg/L	0.28 253	HH Tox	64 1,352	128 2,703	
Thallium, total Toluene Toxaphene (c)	μg/L μg/L ng/L μg/L	0.28 253 1.3	HH Tox HH	64 1,352 730*	128 2,703 1,500*	Tox Tox Tox
Thallium, total Toluene Toxaphene (c) 1,1,1-Trichloroethane	μg/L μg/L ng/L μg/L	0.28 253 1.3 329	HH Tox HH Tox	64 1,352 730* 2,957	128 2,703 1,500* 5,913	Tox Tox Tox Tox
Thallium, total Toluene Toxaphene (c) 1,1,1-Trichloroethane 1,1,2-Trichloroethylene (c)	μg/L μg/L ng/L μg/L) μg/L	0.28 253 1.3 329 25	HH Tox HH Tox HH	64 1,352 730* 2,957 6,988*	128 2,703 1,500* 5,913 13,976*	Tox Tox Tox Tox Tox
Thallium, total Toluene Toxaphene (c) 1,1,1-Trichloroethane 1,1,2-Trichloroethylene (c) 2,4,6-Trichlorophenol Total suspended solids	μg/L μg/L ng/L μg/L) μg/L	0.28 253 1.3 329 25	HH Tox HH Tox HH	64 1,352 730* 2,957 6,988*	128 2,703 1,500* 5,913 13,976*	Tox Tox Tox Tox Tox
Thallium, total Toluene Toxaphene (c) 1,1,1-Trichloroethane 1,1,2-Trichloroethylene (c) 2,4,6-Trichlorophenol Total suspended solids (TSS) North River Nutrient Region Central River Nutrient Region	μg/L μg/L ng/L μg/L μg/L μg/L	0.28 253 1.3 329 25 2.0	HH Tox HH Tox HH HH	64 1,352 730* 2,957 6,988*	128 2,703 1,500* 5,913 13,976*	Tox Tox Tox Tox Tox
Thallium, total Toluene Toxaphene (c) 1,1,1-Trichloroethane 1,1,2-Trichloroethylene (c) 2,4,6-Trichlorophenol Total suspended solids (TSS) North River Nutrient Region Central River Nutrient	μg/L μg/L ng/L μg/L μg/L μg/L mg/L	0.28 253 1.3 329 25 2.0	HH Tox HH Tox HH HH	64 1,352 730* 2,957 6,988*	128 2,703 1,500* 5,913 13,976*	Tox Tox Tox Tox Tox NA

05/05/14 REVISOR CKM/AA AR4104 TSS standards for the

Xylene, total		μg/L	166	Tox	1,407	2,814	Tox
Vinyl chloric	le (c)	μg/L	0.18	HH	_*	_*	NA
(Class 2Bd)		Units	CS	for CS	MS	FAV	MS FAV
Characteris or Pollutant	,			Basis for			for MS
Substance,				п '			Bas
							_
September 3	-						
applies June							
	This standard						
no more than							
	e exceeded for						
2Bd Lower	ls for the Class						
TCC standard	1. f., . th Cl						
Pepin		mg/L	30	NA	-	-	NA
mainstem be							
Lower Missi	ssippi River						
4	-	mg/L	32	NA	-	-	NA
	ools 2 through						
Lower Missi	ssippi River						
(TSS), summ							
Total suspen	ded solids						
1 through Se							
-	d applies April						
ten percent o							
River mainst	no more than						
Regions and							
	iver Nutrient						

60.33The CS, MS, and FAV vary with total hardness and are calculated using the following60.34equations:

60.1

	05/05/14	R	EVISOR		CKM/AA	AR4104				
61.1	The CS in μ g/L shall not exceed: exp.(0.8473[ln(total hardness mg/L)]+0.7615)									
61.2	The MS in µg/L shall not exceed: exp.(0.8473[ln(total hardness mg/L)]+0.8604)									
61.3	The FAV in μ g/L shall not exceed: exp.(0.8473[ln(total hardness mg/L)]+1.5536)									
61.4	Where: exp. is the natural antilogarithm (base e) of the expression in parenthesis.									
61.5	For hardness value	es greater 1	than 400 r	ng/L, 400	mg/L sha	all be used to	o calculate			
61.6	For hardness values greater than 400 mg/L, 400 mg/L shall be used to calculate the standard.									
61.7	Example of total z	inc standa	rds for fiv	e total har	dness val	ues:				
61.8	TH in mg/L	50	100	200	300	400				
61.9										
61.10	Zinc, total									
61.11	CS µg/L	59	106	191	269	343				
61.12	MS µg/L	65	117	211	297	379				
61.13	FAV µg/L	130	234	421	594	758				
61.14	Subp. 3a. Narrati	ive eutrop	hication	standards	for Clas	s 2Bd lakes,	, shallow lakes,			
61.15	and reservoirs.									
61.16	A. Eutrophic	ation stan	dards app	icable to	lakes, sha	llow lakes, a	and reservoirs			
61.17	that lie on the border b	etween tw	o ecoregio	ons or that	are in the	e Red River	Valley (also			
61.18	referred to as Lake Aga	assiz Plain	s), Northe	ern Minne	sota Wetla	ands, or Drif	ftless Area			
61.19	Ecoregion must be app	lied on a c	case-by-ca	se basis.	The comr	nissioner sha	all use the			
61.20	standards applicable to	adjacent e	ecoregions	s as a guid	le.					
						1				
61.21	•			*		C	ata. Exceedance			
61.22	of the total phosphorus	and either	the chlor	ophyll-a c	or Secchi	lisk transpar	ency standard			
61.23	is required to indicate a	a polluted	condition.							
61.24		[Fo	or text of i	tem C, see	e M.R.]					

D. Lakes, shallow lakes, and reservoirs with a baseline quality that is poorer
than the numeric eutrophication standards in subpart 3 must be considered to be in
compliance with the standards if the baseline quality is the result of natural causes. The

	05/05/14 REVISOR CKM/AA AR4104
62.1	commissioner shall determine baseline quality and compliance with these standards using
62.2	data and the procedures in part 7050.0150, subpart 5.
62.3	[For text of item E, see M.R.]
62.4	Subp. 3b. Narrative eutrophication standards for rivers, streams, and
62.5	navigational pools.
62.6	A. Eutrophication standards for rivers, streams, and navigational pools are
62.7	compared to summer-average data or as specified in subpart 3. Exceedance of the total
62.8	phosphorus levels and chlorophyll-a (seston), five-day biochemical oxygen demand
62.9	(BOD_5) , diel dissolved oxygen flux, or pH levels is required to indicate a polluted condition.
62.10	B. Rivers, streams, and navigational pools that exceed the phosphorus levels but
62.11	do not exceed the chlorophyll-a (seston), five-day biochemical oxygen demand (BOD ₅),
62.12	diel dissolved oxygen flux, or pH levels meet the eutrophication standard.
62.13	C. A polluted condition also exists when the chlorophyll-a (periphyton)
62.14	concentration exceeds 150 mg/m^2 more than one year in ten.
62.15	D. It is the policy of the agency to protect all rivers, streams, and navigational
62.16	pools from the undesirable effects of cultural eutrophication. Rivers, streams, and
62.17	navigational pools with a baseline quality better than the numeric eutrophication standards
62.18	in subpart 3 must be maintained in that condition through the strict application of all
62.19	relevant federal, state, and local requirements governing nondegradation, the discharge
62.20	of nutrients from point and nonpoint sources including:
62.21	(1) the nondegradation requirements in parts 7050.0180 and 7050.0185;
62.22	(2) the phosphorus effluent limits for point sources, where applicable, in
62.23	chapter 7053;
62.24	(3) the requirements for feedlots in chapter 7020;

7050.0222

	05/05/14 REVISOR CKM/AA AR4104
63.1	(4) the requirements for individual sewage treatment systems in chapter
63.2	7080;
63.3	(5) the requirements for control of storm water in chapter 7090;
63.4	(6) county shoreland ordinances; and
63.5	(7) implementation of mandatory and voluntary best management practices
63.6	to minimize point and nonpoint sources of nutrients.
63.7	E. Rivers, streams, and navigational pools with a baseline quality that does
63.8	not meet the numeric eutrophication standards in part 7050.0150, subpart 5b, are in
63.9	compliance with the standards if the baseline quality is the result of natural causes. The
63.10	commissioner must determine baseline quality and compliance with these standards using
63.11	data and the procedures in part 7050.0150, subpart 5.
63.12	Subp. 4. Class 2B waters. The quality of Class 2B surface waters shall be such as
63.13	to permit the propagation and maintenance of a healthy community of cool or warm
63.14	water sport or commercial fish and associated aquatic life, and their habitats. These
63.15	waters shall be suitable for aquatic recreation of all kinds, including bathing, for which
63.16	the waters may be usable. This class of surface water is not protected as a source of
63.17	drinking water. The applicable standards are given below. Abbreviations, acronyms,

and symbols are explained in subpart 1.

63.19 63.20 63.21 63.22 63.23	Substance, Characteristic, or Pollutant (Class 2B)	Units	CS	Basis for CS	MS	FAV	Basis for MS, FAV
63.24	Acenaphthene	µg/l	20	HH	56	112	Tox
63.25	Acetochlor	μg/L	3.6	Tox	86	173	Tox
63.26	Acrylonitrile (c)	µg/l	0.89	HH	1,140*	2,281*	Tox
63.27	Alachlor (c)	μg/L	59	Tox	800	1,600	Tox

05/05/14		REVIS	OR	CKM/2	AA	AR41
Aluminum, total	μg/L	125	Tox	1,072	2,145	Tox
Ammonia un-ionized a	as N µg/L	40	Tox	_	_	NA
The percent un-ion	nized ammoni	ia can be cal	culated	for any tem	perature and	d pH by
using the following				•	-	
Thurston, Aqueou	-	-			-	nperatu
Journal of the Fish					83 (1975):	
	f = 1	/(10 ^(pka-pH) -	+ 1) x 1(00		
where: $f = the p$	ercent of total	l ammonia i	n the un-	-ionized stat	e	
$pk_{a} = 0.0$	09 + (2730/T)	(dissociatio	n consta	nt for ammo	onia)	
T = temp	perature in deg	grees Kelvir	(273.16	6° Kelvin =	0° Celsius)	
Substance,						
Characteristic,			Basis			Basis
or Pollutant			for			for MS
(Class 2B)	Units	CS	CS	MS	FAV	FAV
Anthracene	ug/I	0.035	Тох	0.32	0.63	Тох
	μg/L					
Antimony, total	μg/L	31	Tox	90	180	Tox
Arsenic, total	μg/L	53	ΗH	360	720	Tox
Atrazine (c)	μg/L	10	Tox	323	645	Tox
Benzene (c)	µg/L	98	ΗH	4,487	8,974	Tox
Bromoform	μg/L	466	HH	2,900	5,800	Tox
Cadmium, total	μg/L	equation	Tox	equation	equation	Tox
The CS, MS, and	FAV vary with	n total hardn	ess and	are calculate	ed using the	follow
equations:						
The CS in µg/L sh	all not exceed	l: exp.(0.78	52[ln(tot	al hardness	mg/L)]-3.4	90)
The MS in μ g/L sl	hall not excee	d: exp.(1.12	8[ln(tota	al hardness r	mg/L)]-1.68	35)
The FAV in µg/L s	shall not excee	ed: exp.(1.1	28[ln(tot	tal hardness	mg/L)]-0.9	919)
Where: exp. is the	e natural antilo	ogarithm (ba	ise e) of	the expressi	on in paren	thesis.

64.29 For hardness values greater than 400 mg/L, 400 mg/L shall be used to calculate64.30 the standard.

	05/05/14		REV	ISOR	СК	M/AA	AR4104
65.1	Example of total cad	mium star	ndards for t	five hardı	ness values	8:	
65.2	TH in mg/L	50	100	200	300	400	
65.3							
65.4	Cadmium, total						
65.5	CS µg/L	0.66	1.1	2.0	2.7	3.4	
65.6	MS µg/L	15	33	73	116	160	
65.7	FAV µg/L	31	67	146	231	319	
65.8 65.9 65.10 65.11	Substance, Characteristic, or Pollutant (Class 2B)	Units	CS	Basis for CS	MS	FAV	Basis for MS, FAV
65.12	(Class 2D)	Omts	CS	CS	IVI S	ĽAV	TAV
		/T	5.0		1.750*	2 500*	
65.13	Carbon tetrachloride (c)	µg/L	5.9	HH	1,750*		Tox
65.14	Chlordane (c)	ng/L	0.29	HH	1,200*		Tox
65.15	Chloride	mg/L	230	Tox	860	1,720	Tox
65.16	Chlorine, total residual	μg/I	L 11	Tox	19	38	Tox
65.17 65.18 65.19	Chlorine standard ap exposure refers to ch two hours in any 24-	lorinated	effluents th		-		
65.20 65.21	Chlorobenzene (Monochlorobenzene)	μg/L	20	HH	423	846	Tox
65.22	Chloroform (c)	μg/L	155	Tox	1,392	2,784	Tox
65.23	Chlorpyrifos	μg/L	0.041	Tox	0.083	0.17	Tox
65.24	Chromium +3, total	μg/L	equation	on Tox	equation	on equatio	n Tox
65.25 65.26	The CS, MS, and FA equations	V vary wi	th total har	dness and	d are calcu	lated using th	e following
65.27	The CS in μ g/L shall	l not excee	ed: exp.(0.8	819[ln(to	tal hardnes	s mg/L)]+1.5	61)
65.28	The MS in µg/L shal	l not exce	ed: exp.(0.	819[ln(to	otal hardne	ss mg/L)]+3.	588)
65.29	The FAV in μ g/L sha	all not exce	eed: exp.(0).819[ln(t	otal hardno	ess mg/L)]+4	.380)
65.30	Where: exp. is the n	atural anti	logarithm ((base e) o	of the expre	ession in pare	nthesis.

05/05/14		RI	EVISOR	С	KM/AA	AR4104
For hardness value the standard.	es greater that	an 400 m	ug/L, 400 n	ng/L shall	be used to ca	alculate
Example of total c	hromium +3	standard	ls for five	total hard	ness values:	
TH in mg/L	50	100	200	300	400	
Chromium +3, to	tal					
CS µg/L	117	207	365	509	644	
MS µg/L	984	1,737	3,064	4,270	5,405	
FAV µg/L	1,966	3,469	6,120	8,530	10,797	
Substance, Characteristic, or Pollutant			Basis for	8		Basis for MS,
(Class 2B)	Units	CS	CS	MS	FAV	FAV
Chromium +6, total	μg/L	11	Тох	16	32	Тох
Cobalt, total	μg/L	5.0	Tox		872	Tox
Copper, total	μg/L	equa	tion Tox	equat	ion equation	on Tox
The CS, MS, and I equations:	FAV vary wi	th total h	ardness an	d are calc	ulated using t	he following
The CS in µg/L sh	all not excee	ed: exp.(0.6200[ln(t	total hardı	ness mg/L)]-0	.570)
The MS in µg/L sh	nall not exce	ed: exp.(0.9422[ln(total hard	ness mg/L)]-1	1.464)
The FAV in µg/L s	hall not exce	eed: exp.	(0.9422[ln	(total hard	dness mg/L)]-	0.7703)
Where: exp. is the	natural anti	logarithn	n (base e) o	of the exp	ression in par	enthesis.
For hardness value the standard.	es greater that	an 400 m	ıg/L, 400 n	ng/L shall	be used to ca	alculate
E	opper standa	ards for f	ive total ha	ardness va	lues:	
Example of total c						
TH in mg/L	50	100	200	300	400	
-	50	100	200	300	400	
-	50	100	200	300	400	

05/05/14		RE	VISOR	CKM	[/AA	AR4
MS µg/L	9.2	18	34	50 6	5	
FAV µg/L	18	35	68	100 13	31	
Substance, Characteristic, or Pollutant (Class 2B)	Units	CS	Basis for CS	SMS	FAV	Basis for M FAV
Cyanide, free	μg/L	5.2	Tox	22	45	Tox
DDT (c)	ng/L	1.7	HH	550*	1,100*	Tox
1,2-Dichloroethane (c)	μg/L	190	HH	45,050*	90,100*	Tox
Dieldrin (c)	ng/L	0.026	HH	1,300*	2,500*	Tox
Di-2-ethylhexyl phthalate (c)	μg/L	2.1	HH	_*	_*	NA
Di-n-octyl phthalate	μg/L	30	Tox	825	1,650	Tox
Endosulfan	μg/L	0.031	HH	0.28	0.56	Tox
Endrin	μg/L	0.016	HH	0.090	0.18	Tox
Escherichia (E.) coli	See below	See below	HH	See below	See below	NA
Not to exceed 126 org than five samples repr more than ten percent exceed 1,260 organism 1 and October 31.	resentativ	e of cond mples take	itions with en during	hin any caler any calendar	ndar month, r month indi	nor sha viduall
Ethylbenzene	μg/L	68	Tox	1,859	3,717	Tox
Substance,						
Characteristic, or Pollutant			Basis for	5		Basis for M
on Vollutont			1111			

67.30 Eutrophication standards for Class 2B lakes, shallow lakes, and reservoirs.

67.31 Lakes, Shallow Lakes, and Reservoirs in Northern Lakes and Forest Ecoregions

	05/05/14		REVISOR			CKM/AA		
68.1	Phosphorus, total	μg/L	30	NA	_	-	-	NA
68.2	Chlorophyll-a	μg/L	9	NA	_	-	-	NA
68.3 68.4	Secchi disk transparency	meters	Not less than 2.0	NA	_	-	-	NA
68.5	Lakes and Reservoirs in N	orth Centra	al Hardwoo	d Fores	t Ecoregi	ion		
68.6	Phosphorus, total	μg/L	40	NA	_	-	-	NA
68.7	Chlorophyll-a	µg/L	14	NA	_	-	-	NA
68.8 68.9	Secchi disk transparency	meters	Not less than 1.4	NA	_	_	-	NA
68.10 68.11	Lakes and Reservoirs in V Ecoregions	Vestern Cor	n Belt Pla	ins and]	Northern	Glacia	ted Plai	ins
68.12	Phosphorus, total	μg/L	65	NA	_	_	_	NA
68.13	Chlorophyll-a	μg/L	22	NA	_	_	_	NA
68.14	Secchi disk transparency	meters	Not less	NA	_	-	-	NA
68.15			than 0.9					
68.16	Shallow Lakes in North C	entral Hard	wood Fore	st Ecore	egion			
68.17	Phosphorus, total	μg/L	60		NA	_	_	NA
68.18	Chlorophyll-a	μg/L	20		NA	_	_	NA
68.19	Secchi disk transparency	meters	s Not	less	NA	_	_	NA
68.20			than	1.0				
68.21	Shallow Lakes in Western	Corn Belt	Plains and	Norther	n Glaciat	ed Plai	ns Ecor	egions
68.22	Phosphorus, total	µg/L	90		NA	_	_	NA
68.23	Chlorophyll-a	μg/L	30		NA	_	_	NA
68.24	Secchi disk transparency	meters			NA	_	_	NA
68.25			than	0.7				
68.26	Additional narrative eutrop	phication st	andards fo	r Class 2	2B lakes	, shallo	w lakes	, and

68.27 reservoirs are found in subpart 4a.

05/05/14		REV	EVISOR		//AA	AR410
Substance, Characteristic, or Pollutant (Class 2B)	Units	CS	Basis for CS	MS	FAV	Basis for MS FAV
Eutrophication standards	s for Class 2B	rivers a	and streams			
North River Nutrient Re						
Phosphorus, total			μg/L	less	than or eq	ual to 50
Chlorophyll-a (seston)			μg/L	less	than or eq	ual to 7
Diel dissolved oxygen f	ux		mg/L	less	than or eq	ual to 3.0
Biochemical oxygen der	mand (BOD ₅)		mg/L	less	than or eq	ual to 1.5
Central River Nutrient H	Region					
Phosphorus, total			μg/L	less	than or eq	ual to 100
Chlorophyll-a (seston)			μg/L	less	than or eq	ual to 18
Diel dissolved oxygen f	ux		mg/L	less	than or eq	ual to 3.5
Biochemical oxygen der	nand (BOD_5)		mg/L	less	than or eq	ual to 2.0
South River Nutrient Re	egion					
Phosphorus, total			μg/L	less	than or eq	ual to 150
Chlorophyll-a (seston)			μg/L	less	than or eq	ual to 40
Diel dissolved oxygen f	ux		mg/L	less	than or eq	ual to 5.0
Biochemical oxygen der	nand (BOD_5)		mg/L	less	than or eq	ual to 3.5
Site-specific standards for	or specified riv	ver reac	hes or othe	r waters a	re:	
Mississippi River Navig to Ford Dam in St. Pau		(river)	miles 854.1	to 847.7	reach fron	n Fridley
Phosphorus, total			μg/L	less	than or eq	ual to 100
Chlorophyll-a (seston)			μg/L	less	than or eq	ual to 35

	05/05/14	REVISOR							
70.1 70.2	Mississippi River Navigational Pool 2 to Hastings Dam)	(river miles 847.7 to	0 815.2 reach from	Ford Dam					
70.3	Phosphorus, total $\mu g/L$ less than or equal to								
70.4	Chlorophyll-a (seston)	μg/L	less than or equ	ual to 35					
70.5 70.6	Mississippi River Navigational Pool 3 Dam to Red Wing Dam)	(river miles 815.2 to	o 796.9 reach from	Hastings					
70.7	Phosphorus, total	μg/L	less than or equ	ual to 100					
70.8	Chlorophyll-a (seston)	μg/L	less than or equ	ual to 35					
70.9 70.10 70.11	Mississippi River Navigational Pool 4 Dam to Alma Dam). Lake Pepin occup standards are used for this pool.	`		•					
70.12 70.13	Mississippi River Navigational Pools 5 Genoa Dam)	to 8 (river miles 75	52.8 to 679.1 Alma	Dam to					
70.14	Phosphorus, total	μg/L	less than or equ	al to 100					
70.15	Chlorophyll-a (seston)	μg/L	less than or equ	ual to 35					
70.16	Lake Pepin								
70.17	Phosphorus, total	μg/L	less than or equ	ual to 100					
70.18	Chlorophyll-a (seston)	μg/L	less than or equ	ual to 28					
70.19 70.20	Crow Wing River from confluence of L River at the Mississippi River	long Prairie River to	o the mouth of the	Crow Wing					
70.21	Phosphorus, total	μg/L	less than or equ	ual to 75					
70.22	Chlorophyll-a (seston)	μg/L	less than or equ	ual to 13					
70.23	Diel dissolved oxygen flux	mg/L	less than or equ	ual to 3.5					
70.24	Biochemical oxygen demand (BOD ₅)	mg/L	less than or equ	ual to 1.7					
70.25 70.26	Crow River from the confluence of the the Crow River to the mouth of the Cro			uth Fork of					

	05/05/14	REVISOR	CKM/AA	AR4104
71.1	Phosphorus, total	μg/L	less than or equal t	to 125
71.2	Chlorophyll-a (seston)	μg/L	less than or equal t	to 27
71.3	Diel dissolved oxygen flux	mg/L	less than or equal t	to 4.0
71.4	Biochemical oxygen demand (BOD ₅)	mg/L	less than or equal t	0 2.5

71.5 Additional narrative eutrophication standards for Class 2B rivers and streams are found

in subpart 4b.

71.7 71.8 71.9 71.10 71.11	Substance, Characteristic, or Pollutant (Class 2B)	Units	CS	Basis for CS	MS	FAV	Basis for MS, FAV
71.12	Fluoranthene	μg/L	1.9	Tox	3.5	6.9	Tox
71.13	Heptachlor (c)	ng/L	0.39	HH	260*	520*	Tox
71.14	Heptachlor epoxide (c)	ng/L	0.48	HH	270*	530*	Tox
71.15	Hexachlorobenzene (c)	ng/L	0.24	HH	_*	_*	Tox
71.16	Lead, total	μg/L	equation	Tox	equation	equation	Tox

The CS, MS, and FAV vary with total hardness and are calculated using the followingequations:

The CS in μ g/L shall not exceed: exp.(1.273[ln(total hardness mg/L)]-4.705)

The MS in μ g/L shall not exceed: exp.(1.273[ln(total hardness mg/L)]-1.460)

The FAV in μ g/L shall not exceed: exp.(1.273[ln(total hardness mg/L)]-0.7643)

71.22 Where: exp. is the natural antilogarithm (base e) of the expression in parenthesis.

71.23For hardness values greater than 400 mg/L, 400 mg/L shall be used to calculate71.24the standard.

71.25 Example of total lead standards for five total hardness values:

71.26	TH in mg/L	50	100	200	300	400
71.27						
71.28	Lead, total					
71.29	CS µg/L	1.3	3.2	7.7	13	19

05/05/14			RE	VISO	R		CKM/A	AA	AR4104
MS μg/L	34	8	82	197	7	331	477	7	
FAV µg/L	68	-	164	396	5	663	956	6	
Substance, Characteristic, or Pollutant (Class 2B)	1	Units	CS		Basis for CS	M	5	FAV	Basis for MS, FAV
Lindane (c) (Hexachlorocyclobenzene gamma-)	e,	μg/L	0.036)	НН	4.4*	k	8.8*	Tox
Mercury, total in water		ng/L	6.9		ΗH	2,40)0*	4,900*	Tox
Mercury, total in edible fish tissue		mg/kg ppm	, 0.2		ΗH	NA		NA	NA
Methylene chloride (c) (Dichloromethane)		μg/L	1,940)	ΗH	13,8	875	27,749	Tox
Metolachlor		μg/L	23		Tox	271		543	Tox
Naphthalene		μg/L	81		Tox	409		818	Tox
Nickel, total		μg/L	equat	tion	Tox	equ	ation	equation	n Tox
The CS, MS, and FAV equations:	V va	ary with	ı total ha	ardne	ess and	l are ca	lculate	d using th	e following
The CS in μ g/L shall	not	exceed	: exp.(0	.846	[ln(tot	al hard	ness m	ng/L)]+1.1	645)
The MS in μ g/L shall	l no	t exceed	d: exp.(0	0.846	[ln(to	tal hard	lness n	ng/L)]+3.3	3612)
The FAV in μ g/L shall	ll no	ot excee	ed: exp.((0.84	6[ln(t	otal har	dness	mg/l)]+4.()543)
Where: exp. is the na	atura	al antilo	garithm	ı (bas	se e) o	f the ex	pressi	on in pare	nthesis.
For hardness values get the standard.	grea	ter than	1 400 mg	g/L, 4	400 m	ıg/L sha	all be u	used to cal	culate
Example of total nick	cel s	tandard	ls for fiv	ve tot	al har	dness v	alues:		
TH in mg/L	50		100	200)	300	400)	
Nickel, total									
CS µg/L	88		158	283	3	399	509)	

05/05/14		RE	VISOR	Cŀ	KM/AA	AR4104
MS µg/L	789	1,418	2,549	3,592	4,582	
FAV µg/L	1,578	2,836	5,098	7,185	9,164	
Substance,						
Characteristic,			Basis	5		Basis
or Pollutant			for			for MS,
(Class 2B)	Units	CS	CS	MS	FAV	FAV
Oil	µg/l	500	NA	5,000	10,000	NA
Oxygen, dissolved	mg/L	See below	NA	_	_	NA

5.0 mg/L as a daily minimum. This dissolved oxygen standard may be modified on a 73.11 site-specific basis according to part 7050.0220, subpart 7, except that no site-specific 73.12 standard shall be less than 5 mg/L as a daily average and 4 mg/L as a daily minimum. 73.13 Compliance with this standard is required 50 percent of the days at which the flow 73.14 of the receiving water is equal to the 7Q₁₀. This standard applies to all Class 2B 73.15 waters except for those portions of the Mississippi River from the outlet of the Metro 73.16 Wastewater Treatment Works in Saint Paul (River Mile 835) to Lock and Dam No. 2 73.17 at Hastings (River Mile 815). For this reach of the Mississippi River, the standard is 73.18 not less than 5 mg/L as a daily average from April 1 through November 30, and not 73.19 less than 4 mg/L at other times. 73.20

73.21	Parathion	μg/L	0.013	Tox	0.07	0.13	Tox
73.22	Pentachlorophenol	μg/L	equation	Tox/HI	H equation	equation	Tox

73.23 The CS, MS, and FAV vary with pH and are calculated using the following equations:

- 73.24For waters with pH values greater than 6.95, the CS shall not exceed the human73.25health-based standard of $5.5 \mu g/L$.
- For waters with pH values less than 6.96, the CS in μg/L shall not exceed the
 toxicity-based standard of exp.(1.005[pH]-5.290)
- The MS in μ g/L shall not exceed: exp.(1.005[pH]-4.830)
- The FAV in μ g/L shall not exceed: exp.(1.005[pH]-4.1373)
- 73.30 Where: exp. is the natural antilogarithm (base e) of the expression in parenthesis.
- For pH values less than 6.0, 6.0 shall be used to calculate the standard and for pH values greater than 9.0, 9.0 shall be used to calculate the standard.

05/05/14	REVISOR CKM/AA		AR4104			
Example of pentachl	lorophenol	standard	s for five p	H values:		
pH su	6.5	7.0	7.5	8.0 8	.5	
Pentachlorophenol						
CS µg/L	3.5	5.5	5.5	5.5 5	.5	
MS µg/L	5.5	9.1	15	25 4	1	
FAV µg/L	11	18	30	50 8	2	
Substance, Characteristic, or Pollutant (Class 2B)	Units	CS	Basis for CS	MS	FAV	Basis for MS, FAV
pH, minimum	su	6.5	NA	_	_	NA
pH, maximum	su	9.0	NA	_	_	NA
Phenanthrene	μg/L	3.6	Tox	32	64	Tox
Phenol	μg/L	123	Tox	2,214	4,428	Tox
Polychlorinated biphenyls, total (c)	ng/L	0.029	HH	1,000*	2,000*	Tox
Radioactive materials	NA	See below	NA	See below	See below	NA
Not to exceed the lov environment as perm			1		C	
Selenium, total	μg/L	5.0	Tox	20	40	Tox
Silver, total	μg/L	1.0	Tox	equation	n equation	n Tox
The MS and FAV va equations:	ry with tot	al hardne	ess and are	calculated	using the fol	llowing
The MS in μ g/L shall	ll not excee	ed: exp.(1.720[ln(to	tal hardness	s mg/L)]-7.2	156)
The FAV in µg/L sha	all not exce	ed: exp.((1.720[ln(t	otal hardnes	ss mg/L)]-6.5	520
Where: exp. is the n	atural antil	ogarithm	(base e) o	f the expres	sion in pare	nthesis.
For hardness values	greater that	ın 400 m	g/L. 400 m	g/L shall be	e used to cal	culate

05/05/14		RE	AR4104			
Example of total s	ilver standar	ds for five	e total har	dness valu	ies:	
TH in mg/L	50	100	200	300	400	
Silver, total						
CS µg/L	1.0	1.0	1.0	1.0	1.0	
MS µg/L	1.0	2.0	6.7	13	22	
FAV µg/L	1.2	4.1	13	27	44	
Substance, Characteristic, or Pollutant (Class 2B)	Units	CS	Basis for CS	MS	FAV	Basis for MS, FAV
Temperature	°F	See below	NA	_	_	NA
5°F above natural average of the may daily average temp	ximum daily	temperat				•
average of the max	ximum daily perature of 8	temperat 6°F.			ase shall it ex	•
average of the max daily average temp	ximum daily perature of 8 ane (c) μg/L	temperat 6°F. 13	ures, exce	pt in no c	ase shall it ex	ceed the
average of the max daily average temp 1,1,2,2-Tetrachloroetha	ximum daily perature of 8 ane (c) μg/L	temperat 6°F. 13 8.9	ures, exce	pt in no c 1,127	ase shall it exe 2,253	ceed the Tox
average of the max daily average temp 1,1,2,2-Tetrachloroetha Tetrachloroethylene (c)	ximum daily perature of 8 ane (c) μg/L) μg/L	temperat 6°F. 13 8.9 0.56	ures, exce HH HH	pt in no c 1,127 428	ase shall it exe 2,253 857 128	ceed the Tox Tox
average of the max daily average temp 1,1,2,2-Tetrachloroetha Tetrachloroethylene (c) Thallium, total	ximum daily perature of 8 ane (c) μg/L) μg/L μg/L	temperat 6°F. 13 8.9 0.56 253	ures, exce HH HH HH	pt in no c 1,127 428 64	ase shall it exe 2,253 857 128	ceed the Tox Tox Tox
average of the max daily average temp 1,1,2,2-Tetrachloroetha Tetrachloroethylene (c) Thallium, total Toluene	ximum daily perature of 8 ane (c) μg/L) μg/L μg/L μg/L	temperat 6°F. 13 8.9 0.56 253 1.3	HH HH HH HH Tox	pt in no c 1,127 428 64 1,352	ase shall it exe 2,253 857 128 2,703 1,500*	ceed the Tox Tox Tox Tox
average of the max daily average temp 1,1,2,2-Tetrachloroetha Tetrachloroethylene (c) Thallium, total Toluene Toxaphene (c)	ximum daily perature of 8 ane (c) μg/L) μg/L μg/L μg/L ng/L	temperat 6°F. 13 8.9 0.56 253 1.3 329	nures, exce HH HH HH Tox HH	pt in no c 1,127 428 64 1,352 730*	ase shall it exe 2,253 857 128 2,703 1,500* 5,913	ceed the Tox Tox Tox Tox Tox Tox
average of the max daily average temp 1,1,2,2-Tetrachloroetha Tetrachloroethylene (c) Thallium, total Toluene Toxaphene (c) 1,1,1-Trichloroethane	ximum daily perature of 8 ane (c) μg/L) μg/L μg/L ng/L μg/L	temperat 6°F. 13 8.9 0.56 253 1.3 329 120	HH HH HH Tox HH Tox	pt in no c 1,127 428 64 1,352 730* 2,957	ase shall it exe 2,253 857 128 2,703 1,500* 5,913	ceed the Tox Tox Tox Tox Tox Tox Tox
average of the max daily average temp 1,1,2,2-Tetrachloroetha Tetrachloroethylene (c) Thallium, total Toluene Toxaphene (c) 1,1,1-Trichloroethane 1,1,2-Trichloroethylene	ximum daily perature of 8 ane (c) µg/L) µg/L µg/L ng/L e (c) µg/L µg/L	temperat 6°F. 13 8.9 0.56 253 1.3 329 120	HH HH HH Tox HH Tox HH	pt in no c 1,127 428 64 1,352 730* 2,957 6,988	ase shall it exe 2,253 857 128 2,703 1,500* 5,913 13,976	ceed the Tox Tox Tox Tox Tox Tox Tox Tox
average of the max daily average temp 1,1,2,2-Tetrachloroetha Tetrachloroethylene (c) Thallium, total Toluene Toxaphene (c) 1,1,1-Trichloroethane 1,1,2-Trichloroethylene 2,4,6-Trichlorophenol	ximum daily perature of 8 ane (c) µg/L µg/L µg/L ng/L ng/L e (c) µg/L µg/L	temperat 6°F. 13 8.9 0.56 253 1.3 329 120 2.0	HH HH HH Tox HH Tox HH	pt in no c 1,127 428 64 1,352 730* 2,957 6,988	ase shall it exe 2,253 857 128 2,703 1,500* 5,913 13,976	ceed the Tox Tox Tox Tox Tox Tox Tox Tox
average of the max daily average temp 1,1,2,2-Tetrachloroetha Tetrachloroethylene (c) Thallium, total Toluene Toxaphene (c) 1,1,1-Trichloroethane 1,1,2-Trichloroethylene 2,4,6-Trichlorophenol Total suspended solids North River Nutrient R Central River Nutrient	ximum daily perature of 8 ane (c) µg/L) µg/L µg/L ng/L e (c) µg/L µg/L (TSS) Region mg/I t	temperat 6°F. 13 8.9 0.56 253 1.3 329 120 2.0 15	HH HH HH Tox HH Tox HH HH NA	pt in no c 1,127 428 64 1,352 730* 2,957 6,988	ase shall it exe 2,253 857 128 2,703 1,500* 5,913 13,976	ceed the Tox Tox Tox Tox Tox Tox Tox Tox Tox NA
average of the max daily average temp 1,1,2,2-Tetrachloroetha Tetrachloroethylene (c) Thallium, total Toluene Toxaphene (c) 1,1,1-Trichloroethane 1,1,2-Trichloroethylene 2,4,6-Trichlorophenol Total suspended solids North River Nutrient R	ximum daily perature of 8 ane (c) µg/L) µg/L µg/L ng/L e (c) µg/L µg/L (TSS) Region mg/I t mg/I	temperat 6°F. 13 8.9 0.56 253 1.3 329 120 2.0 15 30	HH HH HH Tox HH Tox HH HH	pt in no c 1,127 428 64 1,352 730* 2,957 6,988	ase shall it exe 2,253 857 128 2,703 1,500* 5,913 13,976	ceed the Tox Tox Tox Tox Tox Tox Tox Tox Tox

05/05/14		REVIS	SOR	CKM//	4A	AR410
Red River mainstem - headwaters to border	mg/L	100	NA	_	_	NA
TSS standards for the Class 2B North, Central, and So	uth					
River Nutrient Regions an the Red River mainstem m						
be exceeded for no more	iu y					
than ten percent of the tim						
This standard applies Apri through September 30	11					
Total suspended solids (TS	(22					
summer average	,,					
Lower Mississippi River						
mainstem - Pools 2 throug	h 4 mg/L	32	NA	_	_	NA
Lower Mississippi River	• /-	2.0	274			
mainstem below Lake Pep	-	30	NA	_	_	NA
TSS standards for the Clas 2B Lower Mississippi Riv						
may be exceeded for no m						
than 50 percent of the time						
This standard applies June through September 30	e 1					
Substance, Characteristic,			Basis			Basis
or Pollutant			for			for MS
(Class 2B)	Units	CS	CS	MS	FAV	FAV
Vinyl chloride (c)	μg/L	9.2	HH	_*	_*	NA
Xylene, total m,p,o	μg/L	166	Tox	1,407	2,814	Tox
	μg/L	equation	Tox	equation	equation	n Tox
Zinc, total						
Zinc, total The CS, MS, and FAV equations:	vary with	n total hardr	ness and a	are calculate	ed using the	e followi

The MS in μ g/L shall not exceed: exp.(0.8473[ln(total hardness mg/L)]+0.8604)

	05/05/14		F	REVISOR		CKM/AA	AR4104
77.1	The FAV in µg/L	shall not ex	kceed: exp	o.(0.8473[ln(total ha	rdness mg/	L)]+1.5536)
77.2	Where: exp. is th	e natural ar	ntilogarith	m (base e) of the ex	pression in	parenthesis.
77.3 77.4	For hardness valu the standard.	ies greater 1	than 400 1	ng/L, 400	mg/L sha	all be used t	to calculate
77.5	Example of total	zinc standa	rds for fiv	e total ha	rdness val	ues:	
77.6	TH in mg/L	50	100	200	300	400	
77.7							
77.8	Zinc, total						
77.9	CS µg/L	59	106	191	269	343	
77.10	MS µg/L	65	117	211	297	379	
77.11	FAV µg/L	130	234	421	594	758	
77 12	Subp. 4a. Narra	tive eutron	hication	standards	s for Clas	s 2B lakes.	shallow lakes.

77.12 Subp. 4a. Narrative eutrophication standards for Class 2B lakes, shallow lakes, 77.13 and reservoirs.

A. Eutrophication standards applicable to lakes, shallow lakes, and reservoirs that lie on the border between two ecoregions or that are in the Red River Valley (also referred to as Lake Agassiz Plains), Northern Minnesota Wetlands, or Driftless Area Ecoregion must be applied on a case-by-case basis. The commissioner shall use the standards applicable to adjacent ecoregions as a guide.

B. Eutrophication standards are compared to summer-average data. Exceedance
of the total phosphorus and either the chlorophyll-a or Secchi disk transparency standard
is required to indicate a polluted condition.

77.22

[For text of item C, see M.R.]

D. Lakes, shallow lakes, and reservoirs with a baseline quality that is poorer than the numeric eutrophication standards in subpart 4 must be considered to be in compliance with the standards if the baseline quality is the result of natural causes. The commissioner shall determine baseline quality and compliance with these standards using data and the procedures in part 7050.0150, subpart 5.

	05/05/14	REVISOR	CKM/AA	AR4104
78.1		[For text of item E, see M.	R.]	
78.2	Subp. 4b. Narr	ative eutrophication standards for	Class 2B rivers and st	treams.
78.3	A. Eutrop	hication standards for rivers and stre	eams are compared to	
78.4	summer-average data	a or as specified in subpart 4. Exceed	lance of the total phosp	horus
78.5	levels and chlorophy	ll-a (seston), five-day biochemical o	xygen demand (BOD ₅)	, diel
78.6	dissolved oxygen flu	x, or pH levels is required to indicate	e a polluted condition.	
78.7	B. Rivers	and streams that exceed the phospho	rus levels but do not ex	ceed the
78.8	chlorophyll-a (sestor	n), five-day biochemical oxygen dem	and (BOD ₅), diel disso	lved
78.9	oxygen flux, or pH le	evels meet the eutrophication standar	rd.	
78.10	C. A pollu	tted condition also exists when the c	hlorophyll-a (periphyto	n)
78.11	concentration exceed	Is 150 mg/m^2 more than one year in	ten	
78.12	D. It is the	policy of the agency to protect all r	ivers, streams, and navi	gational
78.13	pools from the under	sirable effects of cultural eutrophicat	tion. Rivers, streams, a	nd
78.14	navigational pools w	ith a baseline quality better than the	numeric eutrophication	standards
78.15	in subpart 4 must be	maintained in that condition through	n the strict application of	of all
78.16	relevant federal, state	e, and local requirements governing	nondegradation, the dis	charge
78.17	of nutrients from poi	nt and nonpoint sources, including:		
78.18	(1) th	e nondegradation requirements in pa	rts 7050.0180 and 7050	.0185;
78.19	(2) th	e phosphorus effluent limits for poin	t sources, where applica	able in
78.20	chapter 7053;			
78.21	(3) th	e requirements for feedlots in chapte	r 7020;	
78.22	(4) th	e requirements for individual sewage	e treatment systems in c	hapter
78.23	7080;			
78.24	(5) th	e requirements for control of storm v	vater in chapter 7090;	

7050.0222

	05/05/14	REVISOR	CKM/AA	AR4104
79.1	(6) county shoreland ordin	nances; and		
79.2	(7) implementation of man	ndatory and voluntar	ry best management	practices
79.3	to minimize point and nonpoint sources of	of nutrients.		
79.4	E. Rivers, streams, and naviga	tional pools with a l	baseline quality that	does
79.5	not meet the numeric eutrophication stan	dards in subpart 4 a	re in compliance wit	h the
79.6	standards if the baseline quality is the res	sult of natural causes	s. The commissioner	must
79.7	determine baseline quality and complian	ce with these standa	rds using data and th	he
79.8	procedures in part 7050.0150, subpart 5.			
79.9	[For text of su	ubps 5 to 9, see M.F	t.]	

80.1 7050.0468 MAP: MINNESOTA ECOREGIONS.

80.2 7053.0205 GENERAL REQUIREMENTS FOR DISCHARGES TO WATERS OF 80.3 THE STATE.

80.4

[For text of subps 1 to 6, see M.R.]

- 80.5 Subp. 7. Minimum stream flow.
- 80.6A. Except as provided in items B and C, discharges of sewage, industrial waste,80.7or other wastes must be controlled so that the water quality standards are maintained at all
- stream flows that are equal to or greater than the $7Q_{10}$ for the critical month or months.

05/05/14 REVISOR CKM/AA AR4104 Discharges of ammonia in sewage, industrial waste, or other wastes must be B. 81.1 controlled so that the ammonia water quality standard is maintained at all stream flows 81.2 that are equal to or exceeded by the $30Q_{10}$ for the critical month or months. 81.3 C. Discharges of total phosphorus in sewage, industrial waste, or other wastes 81.4 must be controlled so that the eutrophication water quality standard is maintained for 81.5 the long-term summer concentration of total phosphorus, when averaged over all flows, 81.6 except where a specific flow is identified in chapter 7050. When setting the effluent limit 81.7 for total phosphorus, the commissioner shall consider the discharger's efforts to control 81.8 phosphorus as well as reductions from other sources, including nonpoint and runoff from 81.9 permitted municipal storm water discharges. 81.10 D. Allowance must not be made in the design of treatment works for low stream 81.11 81.12 flow augmentation unless the flow augmentation of minimum flow is dependable and controlled under applicable laws or regulations. 81.13 [For text of subps 8 and 9, see M.R.] 81.14 Subp. 9a. Water quality standard-based TSS effluent limits. 81.15 A. When the agency establishes effluent limits to meet a total suspended solids 81.16 (TSS) water quality standard and the water quality standard of the receiving water is: 81.17 (1) less than 30 mg/L and a continuous discharger is involved; or 81.18 (2) less than 45 mg/L and either an aerated pond or a controlled discharger 81.19 is involved, 81.20 the agency shall establish an appropriate water quality-based effluent limit (WQBEL) 81.21 considering the discharger's nonvolatile suspended solids (NVSS) concentration. 81.22 B. The WQBEL shall be determined by considering all of the individual 81.23 suspended solids data points collected during the period for which the standard is designed 81.24 to be protective. WQBEL calculations shall also consider the flow and TSS concentrations 81.25

	05/05/14	REVISOR	CKM/AA	AR4104
82.1	observed in the receiving water during t	the corresponding	g time period. WQB	EL is
82.2	expressed as long-term, 90th percentile	values (for examp	ole, April to Septemb	per) to ensure
82.3	protection during the time period the sta	ndard is designed	d to protect.	
82.4	[For text of su	ibps 10 to 13, see	e M.R.]	

82.5 **REPEALER.** Minnesota Rules, part 7050.0467, is repealed.