01/12/09 REVISOR CEL/JC AR3719

1.1	Labor	and	Industry

- 1.2 Adopted Permanent Rules Relating to Commercial Energy Code
- 1.3 **1323.0001 TITLE.**
- 1.4 This chapter is known as the Minnesota Commercial Energy Code.
- 1.5 **1323.0005 ADMINISTRATION AND PURPOSE.**
- Subpart 1. **Administration.** This code shall be administered in accordance with
- 1.7 chapter 1300.
- Subp. 2. **Purpose.** The purpose of this chapter is to establish a minimum code
- of standards for the construction, reconstruction, alteration, and repair of buildings
- governing matters including design and construction standards regarding heat loss control,
- illumination, and climate control pursuant to Minnesota Statutes, sections 16B.59,
- 1.12 16B.61, and 16B.64.
- 1.13 **1323.0010 INCORPORATION BY REFERENCE.**
- For purposes of this chapter, "ASHRAE Standard 90.1" means
- 1.15 ANSI/ASHRAE/IESNA Standard 90.1-2004, version PC 1/06, titled Energy Standard
- for Buildings Except Low-Rise Residential Buildings, promulgated by the American
- 1.17 Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc., 1791 Tullie
- 1.18 Circle, N.E., Atlanta, GA 30329. ASHRAE Standard 90.1-2004, version PC 1/06, is
- incorporated by reference and made part of the Minnesota Commercial Energy Code, as
- amended in this chapter. Portions of this chapter reproduce text and tables from ASHRAE
- 1.21 Standard 90.1. ASHRAE Standard 90.1 is not subject to frequent change and a copy
- of ASHRAE Standard 90.1 is available in the office of the commissioner of labor and
- industry. ASHRAE Standard 90.1 is copyright 2004 by the American Society of Heating,
- 1.24 Refrigerating and Air-Conditioning Engineers, Inc. All rights reserved.
- 1.25 **1323.0230 SECTION 2, SCOPE.**
- 2.1 ASHRAE Standard 90.1, Section 2, subsection 2.3, is amended to read:

01/12/09	REVISOR	CEL/JC	AR3719

2.3 Applicability. The provisions of this standard apply to structures that are not 2.2 regulated by Minnesota Rules, chapter 1322. 2.3 **Exceptions:** 2.4 (a) Buildings that do not use either electricity or fossil fuel; and 2.5 (b) Equipment and portions of building systems that use energy primarily to provide 2.6 for industrial or manufacturing processes. 2.7 **1323.0320 SECTION 3.2, DEFINITIONS.** 2.8 ASHRAE Standard 90.1, Section 3.2, is amended by adding the following definitions: 2.9 **Demand Control Ventilation (DCV):** A ventilation system capability that provides 2.10 for the automatic reduction of outdoor air intake below design rates when the actual 2.11 occupancy of spaces served by the system is less than design occupancy. 2.12 Lamp wattage, rated: The power consumption of a lamp as published in the 2.13 2.14 manufacturers' literature. R-value computation for concrete masonry block wall assembly with integral 2.15 insulation: The thermal performance of a concrete masonry block wall assembly with 2.16 integral insulation must be determined by one of the following methods. Foundation wall 2.17 assembly R-values must exclude air film coefficients and the R-value of the surrounding 2.18 soil. 2.19 (a) Thermal performance must be calculated in accordance with ASHRAE Handbook 2.20 of Fundamentals isothermal planes calculation method. The calculation must be 2.21 certified by a professional engineer licensed in Minnesota. 2.22 (b) Thermal performance must be measured in accordance with ASTM C 236 2.23 test procedure for thermal transmittance measurement performed by an approved 2.24 laboratory as defined by Minnesota Rules, chapter 7640. 2.25 2.26 Climate zone 6: Climate zone 6 includes Anoka, Benton, Big Stone, Blue Earth, Brown, Carver, Chippewa, Chisago, Cottonwood, Dodge, Dakota, Faribault, Fillmore, 2.27 Freeborn, Goodhue, Hennepin, Houston, Isanti, Jackson, Kandiyohi, La Qui Parle, Le 3.1

01/12/09	REVISOR	CEL/JC	AR3719
A1/12/A0	DEVISIO	('E1 /1/ '	7 D 2 7 I U
U1/12/U7	N 1 2 V 1 2	V 1 2 1 // 1 V /	AN 1/17

- 3.2 Sueur, Lincoln, Lyon, Martin, McLeod, Meeker, Mower, Murray, Nicollet, Nobles,
- Olmsted, Pipestone, Pope, Ramsey, Redwood, Renville, Rice, Rock, Scott, Sherburne,
- 3.4 Sibley, Stearns, Steele, Stevens, Swift, Yellow Medicine, Wabasha, Waseca, Washington,
- 3.5 Watonwan, Winona, and Wright Counties.
- 3.6 **Climate zone 7:** Climate zone 7 includes Aitkin, Becker, Beltrami, Carlton, Cass, Clay,
- 3.7 Clearwater, Cook, Crow Wing, Douglas, Grant, Hubbard, Itasca, Kanabec, Kittson,
- Koochiching, Lake, Lake of the Woods, Mahnomen, Marshall, Mille Lacs, Morrison,
- Norman, Otter Tail, Pennington, Pine, Polk, Red Lake, Roseau, St. Louis, Todd, Traverse,
- 3.10 Wadena, and Wilkin Counties.

3.13

3.15

3.16

3.17

3.18

3.19

3.20

3.21

3.22

3.23

3.24

3.25

3.26

3.27

- 3.11 **Northern climate zone:** Climate zone 7.
- 3.12 **Southern climate zone:** Climate zone 6.

1323.0513 SECTION 5.1.3, ENVELOPE ALTERATIONS.

3.14 ASHRAE Standard 90.1, Section 5.1.3, is amended to read:

5.1.3 Envelope alterations. Alterations to the building envelope shall comply with the requirements of Section 5 for insulation, air leakage, and fenestration applicable to those specific portions of the building being altered. When the wall cavity of the building envelope is exposed due to the removal of the interior wall finish materials, the wall cavity shall be insulated to full depth, or to a depth that provides insulating values as required for new wall construction.

Exceptions:

- 1. The following alterations need not comply with the requirements of Section 5 for insulation, air leakage, and fenestration, provided such alterations will not increase the energy usage of the building:
- (a) Installation of storm windows over existing glazing.
- (b) Replacement of glazing in existing sash and frame provided the U-factor and SHGC will be equal to or lower than before the glass replacement.

01/12/09	REVISOR	CEL/JC	AR3719

4.1	(c) Alterations to roof/ceiling, wall, or floor cavities, which are insulated to full
4.2	depth with insulations having a nominal value of not less than R-3.0/in.
4.3	(d) Alterations to walls and floor, where the existing structure is without framing
4.4	cavities and no new framing cavities are created.
4.5	(e) Removal of less than 50 percent of a roof membrane or built-up roof covering
4.6	or the existing roof insulation is at least R-16 for buildings that are conditioned, or
4.7	the existing roof insulation is at least R-10 for buildings that are semiconditioned
4.8	(f) Replacement of existing doors that separate conditioned space from the
4.9	exterior shall not require the insulation installation of a vestibule or revolving
4.10	door, provided, however, that an existing vestibule that separates a conditioned
4.11	space from the exterior shall not be removed.
4.12	(g) Replacement of existing fenestration, provided, however, that the area of the
4.13	replacement fenestration does not exceed 25 percent of the total fenestration area
4.14	of an existing building and that the U-factor and SHGC will be equal to or lower
4.15	than before the fenestration replacement.
4.16	(h) Walls that are back-plastered, walls that are more than 50 percent filled with
4.17	insulation, walls without framing cavities.
4.18	(i) Small openings for purposes including installing, altering, or repairing
4.19	plumbing, electrical, and mechanical systems, control, and expansion joints.
4.20	2. A vapor retarder is not required if the interior finish is not removed.
4.21	1323.0543 SECTION 5.4.3, AIR LEAKAGE.
4.22	Subpart 1. Building envelope sealing. ASHRAE Standard 90.1, Section 5.4.3.1, is
4.23	amended and subsections added to read:
4.24	5.4.3.1 Building envelope air sealing. The building envelope shall contain
4.25	an air barrier consisting of a material or combination of materials to
4.26	resist the passage of air into or out of the conditioned or semiconditioned
4.27	space. The following areas of the building envelope shall be sealed in a

01/12/09	REVISOR	CEL/JC	AR3719
01/12/07	ILL VIDOR	CLL/JC	I = I = I = I = I = I = I = I = I = I =

5.1	permanent manner to minimize air leakage at all edges, joints, openings,
5.2	and penetrations:
5.3	(a) joints around fenestration and door frames;
5.4	(b) junctions between walls and foundations, between walls at building
5.5	corners, between walls and structural floors or roofs, and between walls and
5.6	roof or wall panels;
5.7	(c) openings at penetrations of utility services through walls, roofs, and
5.8	floors;
5.9	(d) site-built fenestration and doors;
5.10	(e) building assemblies used as ducts or plenums;
5.11	(f) joints, seams, and penetrations of vapor retarders;
5.12	(g) across construction, control, and expansion joints;
5.13	(h) across junctions between different building assemblies; and
5.14	(i) around all other penetrations through the building envelope.
5.15	5.4.3.1.1 The air barrier shall be located between the warm in winter
5.16	warm-in-winter surface and the winter design dew point location within
5.17	the building component or assembly.
5.18	Exception: When the building component or assembly is either
5.19	integrally insulated concrete or integrally insulated concrete masonry.
5.20	5.4.3.1.2 Drawings shall indicate the location of the air barrier system.
5.21	Subp. 2. Fenestration and doors. ASHRAE Standard 90.1, Section 5.4.3.2, is
5.22	amended to read:
5.23	5.4.3.2 Fenestration and doors. Air leakage for fenestration and doors shall
5.24	be determined in accordance with National Fenestration Rating Council
5.25	400 (NFRC 400) or AAMA/WDMA/CSA 101/I.S.2/A440. Air leakage
5.26	shall be determined by an independent laboratory accredited by a nationally
5.27	recognized accreditation organization, such as the National Fenestration

1323.0543 5

01/12/09	REVISOR	CEL/JC	AR3719
A1/1/2/AC	DEVISOR	('E1 /I/ '	A D 2 / 1 ()

5.1	Rating Council, and shall be labeled and certified by the manufacturer. Air
5.2	leakage under a pressure differential of 75 Pa (1.57 psf) shall not exceed 1.0
5.3	cfm/ft ² for glazed swinging entrance doors and for revolving doors and
5.4	0.4 cfm/ft ² for all other products.
5.5	Subp. 3. Recessed lighting fixtures. ASHRAE Standard 90.1, Section 5.4.3, is
5.6	amended by adding a subsection to read:
5.7	5.4.3.5 Recessed lighting fixtures. Recessed luminaires installed in the
5.8	building thermal envelope shall be sealed to limit air leakage between
5.9	conditioned and unconditioned spaces by being:
5.10	1. IC-rated and labeled with enclosures that are sealed or gasketed to prevent
5.11	air leakage to the ceiling cavity or unconditioned space;
5.12	2. IC-rated and labeled as meeting ASTM E 283 when tested at 1.57 pounds
5.13	per square foot (75 Pa) pressure differential with no more than 2.0 cubic
5.14	feet per minute (0.944 L/s) of air movement from the conditioned space to
5.15	the ceiling cavity; or
6.16	3. located inside an airtight sealed box with clearances of at least 0.5 inch (13
5.17	mm) from combustible material and three inches (76 mm) from insulation.
5.18	1323.0550 SECTION 5.5, PRESCRIPTIVE BUILDING ENVELOPE OPTION.
5.19	Subpart 1. Roof insulation. ASHRAE Standard 90.1, Section 5.5.3.1, is amended to
5.20	read:
5.21	5.5.3.1 Roof insulation. All roofs shall comply with the insulation values
5.22	specified in Tables 5.5-1 through 5.5-8. Skylight curbs shall be insulated to
5.23	the level of roofs with insulation entirely above deck or R-5, whichever is
5.24	less.

Subp. 2. Table 5.5-6. ASHRAE Standard 90.1, Table 5.5-6, Building Envelope

Requirements for the Southern Minnesota Climate Zone is amended to read:

6.25

6.26

7.1

7.2

TABLE 5.5-6 Building Envelope Requirements For Southern Minnesota Climate Zone (Zone 6)

	Nonres	idential	Resid	lential	Semil	heated
Opaque Elements	Assembly Max.	Insulation Min. R-Value	Assembly Max.	Insulation Min. R-Value	Assembly Max.	Insulation Min. R-Value
Roofs, Insul	ation					
Entirely Above Deck	U-0.043	R-23 ci	U-0.043	R-23 ci	U-0.06	R-16.6 ci
Metal Building	U-0.043	R-30	U-0.043	R-30	U-0.06	R-19
Attic and Other	U-0.027	R-30	U-0.027	R-30	U-0.06	R-19
Walls, Abov	e Grade					
Mass	U-0.104	R-9.5 ci	U-0.09	R-11.4 ci	U-0.58	NR
Metal Building	U-0.113	R-13	U-0.057	13 + R-13	U-0.113	R-13
Steel Framed	U-0.084	R-13 ci + R-3.8 ci	U-0.064	R-13 + R-7.5 ci	U-0.124	R-13
Wood Framed and Other	U-0.089	R-13	U-0.064	R-13 + R-3.8 ci	U-0.089	R-13
Wall, Below	Grade					
Below- Grade Wall	C-0.085	R-10 ci	C-0.085	R-10 ci	C-0.085	R-10 ci
Floors						
Mass	U-0.087	R-8.3 ci	U-0.064	R-12.5 ci	U-0.322	NR
Steel Joist	U-0.038	R-30	U-0.038	R-30	U-0.069	R-13
Wood Framed and Other	U-0.033	R-30	U-0.033	R-30	U0066	R-13

01/12/00	DELUCOD	OFT /IO	A D 2710
01/12/09	REVISOR	CEL/JC	AR3719

Slab-On-Gr	Slab-On-Grade Floors					
Unheated	F-0.520	R-10 to footing*	F-0.520	R-10 to footing*	F-0.520	R-10 to footing*
Heated	F-0.520	R-10 to footing*	F-0.520	R-10 to footing*	F-0.520	R-10 to footing*
Opaque Do	ors					
Swinging	U-0.700		U-0.500		U-0.700	
Non- swinging	U-0.500		U-0.500		U-1.450	
Fene- stration	Assembly Max. U (Fixed/ Operable)	Assembly Max. SHGC (All Orienta- tions/ North- Oriented)	Assembly Max. U (Fixed/ Operable)	Assembly Max. SHGC (All Orienta- tions/ North- Oriented)	Assembly Max. U (Fixed Operable)	Assembly Max. SHGC (All Orienta- tions/ North- Oriented)
Vertical Gla	zing, Percent	of Wall				
0-10.0	U _{fixed} -0.57	SHGC _{all} -0.49	U _{fixed} -0.57	SHGC _{all} -0.49	U _{fixed} -1.22	SHGC _{all} -NR
	U _{oper} -0.67	SHGC _{north}	U _{oper} -0.67	SHGC _{north}	U _{oper} -1.27	SHGC _{north}
10.1- 20.0	U _{fixed} -0.57	SHGC _{all} -0.39	U _{fixed} -0.57	SHGC _{all} -0.39	U _{fixed} -1.22	SHGC _{all} -NR
	U _{oper} -0.67	SHGC _{north}	U _{oper} -0.67	SHGC _{north}	U _{oper} -1.27	SHGC _{north} -NR
20.1- 30.0	U _{fixed} -0.57	-0.39	U_{fixed} -0.57	-0.39	U _{fixed} -1.22	SHGC _{all} -NR
	U _{oper} -0.67	SHGC _{north}	U _{oper} -0.67	SHGC _{north}	U _{oper} -1.27	SHGC _{north} -NR
30.1- 40.0	U _{fixed} -0.57	SHGC _{all} -0.39	U_{fixed} -0.57	SHGC _{all} -0.39	U _{fixed} -1.22	SHGC _{all} -NR
	U _{oper} -0.67	SHGC _{north}	U _{oper} -0.67	SHGC _{north}	U _{oper} -1.27	SHGC _{north}
40.1 -50.0	U _{fixed} -0.46	SHGC _{all} -0.26	U _{fixed} -0.46	SHGC _{all} -0.26	U _{fixed} -0.98	SHGC _{all} -NR

01/12/09	REVISOR	CEL/JC	AR3719

9.1 9.2		U _{oper} -0.47	SHGC _{north}	oper	SHGC _{north}	U _{oper} -1.02	SHGC _{north} -NR
9.3	Skylight, Per	rcent of Roos	f				
9.4 9.5	0-2.0	U _{all} -0.69	SHGC _{all} -0.49	U _{all} -0.58	SHGC _{all} -0.49	U _{all} -1.36	SHGC _{all} -NR
	Greater than 2 to 5.0	U _{all} -0.69	SHGC _{all} -0.49	U _{all} -0.58	SHGC _{all} -0.39	U _{all} -1.36	SHGC _{all} -NR

^{*&}quot;To footing" means to the top of the footing if the insulation is on the exterior, or to the top of the slab if the insulation is on the interior.

Subp. 3. **Table 5.5-7.** ASHRAE Standard 90.1, Table 5.5-7, Building envelope requirements for the northern Minnesota climate zone is amended to read:

	Nonres	sidential	Resid	lential	Semi	heated
Opaque Elements	Assembly Max.	Insulation Min. R-Value	Assembly Max.	Insulation Min. R-Value	Assembly Max.	Insulation Min. R-Value
Roofs, Insu	lation					
Entirely Above Deck	U-0.043	R-23 ci	U-0.043	R-23 ci	U-0.06	R-16.6 ci
Metal Building	U-0.043	R-23	U-0.043	R-23	U-0.06	R-16.6
Attic and Other	U-0.043	R-30	U-0.043	R-30	U06	R-19
Walls, Abov	ve Grade					
Mass	U-0.09	R-9.5 ci	U-0.08	R-13.3 ci R-13.0 + R-	U-0.58	NR
Metal Building	U-0.057	R-13	U-0.057	R-13 R-13 + R-13	U-0.113	R-13
Steel Framed	U-0.064	R-13 + R-3.8 ci	U-0.064	R-13 + R-7.5 ci	U-0.124	R-13

9.11

9.12

9.13

9.149.159.16

9.17

9.189.199.20

9.219.22

9.239.24

9.25

9.269.27

9.289.299.30

9.319.32

01/12/00	DELUCOD	OFT /IO	A D 2710
01/12/09	REVISOR	CEL/JC	AR3719

Wood Framed and Other	U-0.089	R-13	U-0.051	R-13 + R-7.5 ci	U-0.089	R-13
Walls, Belov	v Grade	l	I	l	I	
Below- Grade Wall	C-0.085	R-10 ci	C-0.085	R-10 ci	C-0.085	R-10 ci
Floors						
Mass	U-0.087	R-8.3 ci	U-0.064	R-12.5 ci	U-0.137	R-4.2 ci
Steel Joist	U-0.038	R-30	U-0.038	R-30	U-0.052	R-19
Wood Framed and Other	U-0.033	R-30	U-0.033	R-30	U0066	R-13
Slab-On-Gra	de Floors					
Unheated	F-0.52	R-10 to footing*	F-0.52	R-10 to footing*	F-0.52	R-10 to footing*
Heated	F-0.52	R-10 to footing*	F-0.52	R-10 to footing*	F-0.52	R-10 to footing*
Opaque Doo	ors					
Swinging	U-0.70		U-0.50		U-0.70	
Non- swinging	U-0.50		U-0.50		U-1.45	
Fene- stration	Assembly Max. U (Fixed/ Operable)	Assembly Max. SHGC (All Orienta- tions/ North- Oriented)	Assembly Max. U (Fixed/ Operable)	Assembly Max. SHGC (All Orienta- tions/ North- Oriented)	Assembly Max. U (Fixed/ Operable)	Assembly Max. SHGC (A Orientations/ North- Oriented
Vertical Glaz	zing, Percent	of Wall				
0-10.0	U _{fixed} -0.57	SHGC _{all} -0.49	U _{fixed} -0.57	SHGC _{all} -0.49	U _{fixed} -1.22	SHGC _{all} -NR
	U _{oper} -0.67	SHGC _{north}	U _{oper} -0.67	SHGC _{north}	U _{oper} -1.27	SHGC _{nor}

0.4.14.5.10.0		OTT /TO	
01/12/09	REVISOR	CEL/JC	AR3719
01/12/09	KE VISOR	CEL/JC	$\Delta NJ/1J$

10.1- 20.0		-0.49		-0.49		SHGC _{all} -NR
	U _{oper} -0.67	SHGC _{north} -0.64	U _{oper} -0.67	SHGC _{north}	U _{oper} -1.27	SHGC _{north} -NR
20.1- 30.0	$\rm U_{fixed}$ -0.57	SHGC _{all} -0.49	U_{fixed} -0.57	SHGC _{all} -0.49	U _{fixed} -1.22	SHGC _{all} -NR
	U _{oper} -0.67	SHGC _{north}	U _{oper} -0.67	SHGC _{north}	U _{oper} -1.27	SHGC _{north} -NR
30.1- 40.0		-0.49		-0.49	U _{fixed} -1.22	SHGC _{all} -NR
	U _{oper} -0.67	SHGC _{north} -0.64	U _{oper} -0.67	SHGC _{north} -0.64	U _{oper} -1.27	SHGC _{north} -NR
40.1 -50.0		-0.36		-0.36	U _{fixed} -0.98	SHGC _{all} -NR
	U _{oper} -0.47	SHGC _{north}	U _{oper} -0.47	SHGC _{north}	U _{oper} -1.02	SHGC _{north} -NR
Skylight, Percent of Roof						
0-2.0	U _{all} -0.69	SHGC _{all} -0.68	U _{all} -0.69	SHGC _{all} -0.64	U _{all} -1.36	SHGC _{all} NR
than 2.1 to	U _{all} -0.69	SHGC _{all} -0.64	U _{all} -0.69	SHGC _{all} -0.64	U _{all} -1.36	SHGC _{all} -NR
	20.1- 30.0 30.1- 40.0 40.1 -50.0 Skylight, Pero-2.0 Greater	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				

*"To footing" means to the top of the footing if the insulation is on the exterior, or to the top of the slab if the insulation is on the interior.

1323.0562 SECTION 5.6.2, COMCHECK OPTION.

11.23

11.24

11.25

11.26

11.27

11.28

11.29

11.30

11.31

ASHRAE Standard 90.1, Section 5.6, is amended by adding a subsection to read:

5.6.2 COMcheck option. Buildings shall be deemed to comply with Section

5.5 if the COMcheck computer program published by the Pacific National

Laboratories demonstrates it to be in compliance with envelope requirements.

1323.0581 SECTION 5.8.1.5, SUBSTANTIAL CONTACT.

ASHRAE Standard 90.1, Section 5.8.1.5, is amended to read:

01/12/09	REVISOR	CEL/JC	AR3719

5.8.1.5 Substantial contact. Insulation shall be installed in a permanent manner and in substantial contact with either the air barrier materials or building element making up the interior surface in accordance with manufacturer's recommendations for the framing system used. Exposed flexible batt insulation installed in floor cavities and walls shall be supported in a permanent manner by supports no greater than 24 inches on center. **Exception:** Insulation materials that rely on air spaces adjacent to reflective surfaces for their rated performance.

1323.0642 SECTION 6.4.2, LOAD CALCULATIONS.

12.1

12.2

12.3

12.4

12.5

12.6

12.7

12.8

129

12.10

12.11

12.12

12.13

12.14

12 15

12.16

12.17

12.18

12.19

ASHRAE Standard 90.1, Section 6.4.2, is deleted and replaced with the following Section 6.4.2 and Table 6.4.2:

6.4.2 Load calculations. Heating and cooling system design loads for the purpose of sizing systems and equipment shall be determined in accordance with Minnesota Mechanical Code, chapter 1346.

6.4.2.1 Outdoor design conditions. Outdoor design conditions shall be selected from Table 6.4.2.1. Locations not listed in Table 6.4.2.1 shall use those of the listed city with geographical proximity and similar climate conditions as approved by the building official.

TABLE 6.4.2.1 Outdoor Design Conditions

12.20	City	Summer Db/Wb °F	Winter Db °F
12.21	Aitkin	82/72	-24
12.22	Albert Lea	85/72	-15
12.23	Alexandria	86/70	-21
12.24	Bemidji	84/68	-24
12.25	Brainerd	86/71	-20
12.26	Cloquet	82/68	-20
12.27	Crookston	84/70	-27
13.1	Duluth	81/67	-20

	01/12/09	REVISOR	CEL/JC	AR3719
13.2	Ely	82/68	-29	
13.3	Eveleth	82/68	-26	
13.4	Faribault	86/73	-16	
13.5	Fergus Falls	86/71	-21	
13.6	Grand Rapids	81/67	-23	
13.7	Hibbing	82/68	-19	
13.8	International Falls	83/67	-28	
13.9	Litchfield	85/71	-18	
13.10	Little Falls	86/71	-20	
13.11	Mankato	86/72	-15	
13.12	Minneapolis/St. Paul	88/72	-15	
13.13	Montevideo	86/72	-17	
13.14	Mora	84/70	-21	
13.15	Morris	84/72	-21	
13.16	New Ulm	87/73	-15	
13.17	Owatonna	86/73	-16	
13.18	Pequot Lakes	84/68	-23	
13.19	Pipestone	85/73	-15	
13.20	Redwood Falls	89/73	-17	
13.21	Rochester	85/72	-17	
13.22	Roseau	82/70	-29	
13.23	St. Cloud	86/71	-20	
13.24	Thief River Falls	82/68	-25	
13.25	Tofte	75/61	-14	
13.26	Warroad	83/67	-29	
13.27	Wheaton	84/71	-20	
13.28	Willmar	85/71	-20	
13.29	Winona	88/74	-13	
13.30	Worthington	84/71	-14	

01/12/09	REVISOR	CEL/JC	AR3719

1323.0643 SECTION 6.4.3, CONTROLS.

14.1

14.26

read:

14.2	Subpart 1. Setback controls. ASHRAE Standard 90.1, Section 6.4.3.2, is amended
14.3	by adding a subsection to read:
14.4	6.4.3.2.1 Setback controls. Heating systems shall be equipped with
14.5	controls that have the capacity to automatically restart and temporarily
14.6	operate the system as required to maintain zone temperatures above a
14.7	heating set point adjustable down to 55 degrees Fahrenheit or lower.
14.8	Cooling systems shall be equipped with controls that have the capacity
14.9	to automatically restart and temporarily operate the system as required
14.10	to maintain zone temperatures below a cooling set point adjustable up
14.11	to 90 degrees Fahrenheit or higher or to prevent high space humidity
14.12	levels.
14.13	Exceptions:
14.14	(a) Radiant floor and radiant ceiling heating systems; and
14.15	(b) Spaces where constant temperature conditions must be maintained.
14.16	Subp. 2. Optimum start controls. ASHRAE Standard 90.1, Section 6.4.3.3.3,
14.17	is amended to read:
14.18	6.4.3.3.3 Optimum start controls. Individual heating and cooling air
14.19	distribution systems with a total design supply air capacity exceeding
14.20	10,000 cfm, served by one or more supply fans that are connected
14.21	together into a common system, shall have optimum start controls. The
14.22	control algorithm shall, as a minimum, be a function of the difference
14.23	between space temperature and occupied setpoint and the amount of
14.24	time prior to scheduled occupancy.
14.25	Subp. 3. Zone isolation. ASHRAE Standard 90.1, Section 6.4.3.3.4, is amended to

01/12/09 REVISOR CEL/JC AR3719

15.1

15.2

15.3

15.4

15.5

15.6

157

15.8

15.9

15.10

15.11

15.12

15.13

15.14

15.15

15.16

15.17

15.18

15.19

15.20

15.21

15.22

15.23

15.24

15.25

15.26

15.27

6.4.3.3.4 Zone isolation. HVAC systems serving zones that are intended to operate or be occupied nonsimultaneously shall be divided into isolation areas. Zones may be grouped into a single isolation area provided it does not exceed 25,000 feet² of conditioned floor area nor include more than one floor. Each isolation area shall be equipped with isolation devices capable of automatically shutting off the supply of conditioned air and outside air to and exhaust from the area. Each isolation area shall be controlled independently by a device meeting the requirements of Sections 6.4.3.3.1 (Automatic shutdown) and 6.4.3.3.2 (Setback controls). For central systems and plants, controls and devices shall be provided to allow stable system and equipment operation for any length of time while serving only the smallest isolation area served by the system or plant.

Subp. 4. Freeze protection and snow/ice melting systems. ASHRAE Standard 90.1, Section 6.4.3.8, is amended to read:

6.4.3.8 Freeze protection and snow/ice melting systems. Freeze protection systems, such as heat tracing of outdoor piping and heat exchangers, including self-regulating heat tracing, shall include automatic controls capable of shutting off the systems when outdoor air temperatures are above 40 degrees Fahrenheit or when the conditions of the protected fluid will prevent freezing. Snow and ice melting systems shall only be used where required for life safety. Snow and ice melting systems shall include automatic controls capable of shutting off the systems when the pavement temperature is above 50 degrees Fahrenheit and no precipitation is falling and an automatic or manual control that will allow shutoff when the outdoor temperature is above 40 degrees Fahrenheit so that the potential for snow or ice accumulation is negligible.

01/10/00	DELUCOD	ODI /IO	A D 2710
01/12/09	REVISOR	CEL/JC	AR3719
01/12/07	KE VISOK	CLL/JC	$\Delta \Omega J I J$

16.1	Subp. 5. Ventilation controls for high-occupancy areas. ASHRAE Standard 90.1,
16.2	Section 6.4.3.9, is amended to read:
16.3	6.4.3.9 Ventilation controls for high-occupancy areas. Demand control
16.4	ventilation (DCV) is required for spaces larger than 500 feet ² (46.45 m ²)
16.5	and with a design occupancy for ventilation of greater than 40 people per
16.6	1,000 feet ² (92.90 m ²) of floor area and served by systems with one or
16.7	more of the following:
16.8	(a) an air-side economizer;
16.9	(b) automatic modulating control of the outdoor air damper; or
16.10	(c) a design outdoor air flow greater than 300 cfm (141.58 L/s).
16.11	Exceptions:
16.12	(a) Systems with energy recovery complying with 6.5.6.1.
16.13	(b) Multiple-zone systems without direct-digital control of individual zones
16.14	communicating with a central control panel.
16.15	(c) System with a design outdoor air flow less than 1,200 cfm (566.34 L/s).
16.16	(d) Spaces where the supply air flow rate minus any makeup or outgoing
16.17	transfer air requirement is less than 1,200 cfm (566.34 L/s).
16.18 16.19	1323.0644 SECTION 6.4.4, HVAC SYSTEM CONSTRUCTION AND INSULATION.
16.20	ASHRAE Standard 90.1, Section 6.4.4, all subsections, and Tables 6.4.4.2A and
16.21	6.4.4.2B are deleted in their entirety and replaced with the following:
16.22	6.4.4 HVAC system construction and insulation.
16.23	6.4.4.1 Insulation. Duct insulation must comply with Minnesota Rules,
16.24	chapter 1346.
16.25	6.4.4.2 Duct and plenum sealing. Duct and plenum sealing must comply
16.26	with Minnesota Rules, chapter 1346.

1323.0644 16

	01/12/09	REVISOR	CEL/JC	AR3719
7.1		6.4.4.3 Pipe insulation. Pipe insulation n	nust comply with Mir	nesota Rules,

17.1	6.4.4.3 Pipe insulation. Pipe insulation must comply with Minnesota Rules
17.2	chapter 1346.
17.3 17.4	1323.0646 SECTION 6.4.6, PROHIBITION OF HEATED COMMERCIAL PARKING FACILITIES.
17.5	ASHRAE Standard 90.1, Section 6.4, is amended by adding a section to read:
17.6	6.4.6 Prohibition of heated commercial parking facilities. An enclosed
17.7	structure or portion of an enclosed structure used primarily as a parking garage
17.8	or ramp for three or more motor vehicles shall not be heated.
17.9	Exceptions:
17.10	(a) Parking facilities where a majority of parking spaces are within the same
17.11	building structure as dwelling unit occupancies.
17.12	(b) Parking facilities used exclusively to house vehicles for public emergency,
17.13	ambulance, or public utility emergency response.
17.14	(c) Parking facilities that are incidentally heated by building relief or
17.15	environmental exhaust air, provided that it does not create a safety hazard.
17.16	1323.0651 SECTION 6.5.1, ECONOMIZERS.
17.17	Subpart 1. Economizers. ASHRAE Standard 90.1, Section 6.5.1, is amended to read:
17.18	6.5.1 Economizers. Economizers are required on cooling systems having
17.19	a fan system capacity of 3,000 cfm or greater. Economizers must meet the
17.20	requirements of Sections 6.5.1.1 through 6.5.1.4.
17.21	Exceptions: Economizers are not required for the systems listed below.
17.22	(a) Systems that include nonparticulate air treatment as required by Section 6.2.1
17.23	of ASHRAE Standard 62.1.
17.24	(b) Where more than 25 percent of the air designed to be supplied by the system
17.25	is to spaces that are designed to be humidified above 35 degrees Fahrenheit dew
17.26	point temperature to satisfy process needs.

1323.0651 17

01/12/09	REVISOR	CEL/JC	AR3719

18.1	(c) Systems that	include a condenser heat recove	ery system complying with		
18.2	Section 6.5.6.2.				
18.3	(d) Systems that	serve spaces with a sensible coo	oling load at design conditions,		
18.4	excluding transm	nission and infiltration loads, that	at is less than or equal to		
18.5	transmission and	infiltration losses at an outdoor	temperature of 60 degrees		
18.6	Fahrenheit.				
18.7	(e) Systems expe	ected to operate less than 20 hou	rs per week.		
18.8	(f) Where the us	e of outdoor air for cooling will	affect supermarket open		
18.9	refrigerated disp	lay casework systems.			
18.10	(g) The use of ou	tdoor air cooling may affect the	operation of other systems so as		
18.11	to increase the o	verall energy consumption of th	e building.		
18.12	(h) Energy recov	ery from an internal/external zo	one energy recovery system		
18.13	exceeds the energ	exceeds the energy conserved by outdoor air cooling on an annual basis.			
18.14	(i) The quality of	(i) The quality of the outdoor air is so poor as to require extensive treatment			
18.15	of the air.				
18.16	Subp. 2. High-limit sl	nutoff. ASHRAE Standard 90.1	, Section 6.5.1.1.3, is amended		
18.17	to read:				
18.18	6.5.1.1.	3 High-limit shutoff. All air ea	conomizers shall be capable		
18.19	of autor	matically reducing outdoor air in	ntake to the design minimum		
18.20	outdoor	air quality when outdoor air in	take will no longer reduce		
18.21	cooling energy usage. High-limit shutoff control types for specific				
18.22	climates shall be chosen from Table 6.5.1.1.3A, All Other Climates.				
18.23	High-lin	mit shutoff control settings for the	nese control types shall be those		
18.24	listed in	Table 6.5.1.1.3B.			
18.25	TABLE 6.5.1.1.3A H	ligh-Limit Shutoff Control Op	tions for Air Economizers		
18.26	Climate Zones	Allowed Control Types	Prohibited Control Types		
18.27	1b, 2b, 3b, 3e, 4b, 4e,	Fixed Dry Bulb	Fixed Enthalpy		

01/12/09	REVISOR	CEL/IC	AR3719

19.1	5b, 5c, 6b <u>6</u> , 7 , 8	Differential Dry Bulb	
19.2		Electronic Enthalpy ^a	
19.3		Differential Enthalpy	
19.4 19.5		Dew Point and Dry Bulb Temperature	
19.6	1a, 2a, 3a, 4a	Fixed Dry Bulb	Differential Dry Bulb
19.7		Fixed Enthalpy	
19.8		Electronic Enthalpy ^a	
19.9		Differential Enthalpy	
19.10 19.11		Dew Point and Dry Bulb Temperature	
19.12	All Other Climates	Fixed Dry Bulb	
19.13		Differential Dry Bulb	
19.14		Fixed Enthalpy	
19.15		Electronic Enthalpy ^a	
19.16		Differential Enthalpy	
19.17 19.18		Dew Point and Dry Bulb Temperature	
	N. (apr	. 11 1 1 1 1	1: 4: 01 :1:4

Note: ^aElectronic enthalpy controllers are devices that use a combination of humidity and dry bulb temperature in their switching algorithm.

TABLE 6.5.1.1.3B High-Limit Shutoff Control Settings for Air Economizers

19.22 19.23 19.24	Device Type	Climate	Equation	Required High-Limit (Economizer Off When): Description
19.25 19.26	Fixed Dry Bulb	1b, 2b, 3b, 3c, 4b, 4c, 5b, 5c, 6b, 7, 8	; T _{<u>04</u>} >75°F	Outdoor air temperature exceeds 75°F
19.27 19.28		5a, 6a, 7a <u>6</u>	T _{OA} >70°F	Outdoor air temperature exceeds 70°F
19.29 19.30		All Other Zones	T _{OA} >65°F	Outdoor air temperature exceeds 65°F

1323.0651

	01/12/07		KL VISOK	CEL/JC /MG/1)
20.1 20.2 20.3	Differential Dry Bulb	1b, 2b, 3b, 3c, 4b 4c, 5a, 5b, 5c, 6a, 6b, 7, 8	$T_{OA} > T_{RA}$	Outdoor air temperature exceeds return air temperature
20.4 20.5	Fixed Enthalpy	All	h_{OA} >28 Btu/lb ^a	Outdoor air enthalpy exceeds 28 Btu/lb of dry air a
20.6 20.7 20.8	Electronic Enthalpy	All	$(T_{OA}, RH_{OA}) > A$	Outdoor air temperature/RH exceeds the "A" set point curve ^b
20.9 20.10	Differential Enthalpy	All	$h_{OA} > h_{RA}$	Outdoor air enthalpy exceeds return air enthalpy
20.11 20.12 20.13	Dew Point and Dry Bulb Temperature	All	$DP_{OA} > 55$ °F or $T_{OA} > 75$ °F	Outdoor air dry bulb exceeds 75°F or outside dew point exceeds 55°F (65 gr/lb)
20.14 20.15 20.16	set to the enthalpy va	alue at 75°F and 50	percent relative h	ed Enthalpy limit shall be umidity. As an example, at is approximately 30.7 Btu/lb.
20.17 20.18 20.19	at approximately 75°	F and 40 percent r	elative humidity an	chart that goes through a point d is nearly parallel to dry bulb lines at high humidity levels.
20.20	1323.0652 SECTIO	ON 6.5.2.1, ZONE	CONTROLS.	
20.21	ASHRAE Standar	rd 90.1, Section 6.5	5.2.1, is amended to	read:
20.22	6.5.2.1	Zone controls. Z	one thermostatic co	ontrols shall be capable of
20.23	operati	ng in sequence the	supply of heating a	and cooling energy to the zone.
20.24	Such c	ontrols shall preve	nt:	
20.25	1. rehe	eating;		
20.26	2. reco	ooling;		
20.27	3. mix	ing or simultaneou	ısly supplying air tl	hat has been previously
20.28	mechan	nically heated and	air that has been pr	reviously cooled, either by
20.29	mechan	nical cooling or by	economizer system	ns; and
20.30	4. othe	r simultaneous ope	eration of heating ar	nd cooling systems to the same
20.31	zone.			

REVISOR

CEL/JC

AR3719

1323.0652 20

01/12/09

01/12/09 REVISOR CEL/JC AR3719

21.1	Exceptions:
21.2	(a) Zones for which the volume of air that is reheated, recooled, or mixed is
21.3	no greater than the larger of the following:
21.4	1. the volume of outdoor air required to meet the ventilation requirements of
21.5	Section 6.2 of ASHRAE Standard 62.1-2004 for the zone;
21.6	2. 0.4 cfm/ft ² of the zone conditioned floor area;
21.7	3. 30 percent of the zone design peak supply rate;
21.8	4. 300 cfm- this exception is for zones whose peak flow rate totals no more
21.9	than ten percent of the total fan system flow rate; and
21.10	5. any higher rate that can be demonstrated, to the satisfaction of the
21.11	authority having jurisdiction, to reduce overall system annual energy usage
21.12	by offsetting reheat/recool energy losses through a reduction in outdoor air
21.13	intake for the system.
21.14	(b) Zones where special pressurization relationships, cross-contamination
21.15	requirements, or code-required minimum circulation rates are such that
21.16	variable air volume systems are impractical.
21.17	(c) Zones where at least 75 percent of the energy for reheating or for
21.18	providing warm air in mixing systems is provided from a site-recovered,
21.19	including condenser heat, or site-solar energy source.
21.20	(d) Recovered energy in excess of the new energy expended in the recovery
21.21	process may be used for control of temperature and humidity.
21.22	(e) New energy may be used to prevent relative humidity from rising above
21.23	60 percent or to prevent condensation on terminal units or outlets, or
21.24	functioning of special equipment. New energy may be used for temperature
21.25	control if minimized in accordance with this subitem.
21.26	1. Systems employing reheat and serving multiple zones, other than those
21.27	employing variable air volume for temperature control, must be provided

1323.0652 21

01/12/09	REVISOR	CEL/JC	AR3719

22.1	with a control that will automatically reset the system cold-air supply to the
22.2	highest temperature level that will satisfy the zone requiring the highest
22.3	cooling load.
22.4	2. Single-zone reheat systems must be controlled to sequence reheat and
22.5	cooling.
22.6	3. Dual duct and multizone systems, other than those employing variable air
22.7	volume for temperature control, must be provided with a control that will
22.8	automatically reset:
22.9	a. the cold-deck air supply to the highest temperature that will satisfy the
22.10	zone requiring the highest cooling load; and
22.11	b. the hot-deck air supply to the lowest temperature that will satisfy the zone
22.12	requiring the highest heating load.
22.13	4. Systems in which heated air is recooled, directly or indirectly, to maintain
22.14	space temperature must be provided with a control that will automatically
22.15	reset the temperature to which the supply air is heated to the lowest level
22.16	that will satisfy the zone requiring the highest heating load.
22.17	5. For systems with multiple zones, one or more zones may be chosen to
22.18	represent a number of zones with similar heating and cooling characteristics.
22.19	A multiple zone system that employs reheating or recooling for control
22.20	of not more than 5,000 cfm, or 20 percent of the total supply air of the
22.21	system, whichever is less, is exempt from the supply air temperature reset
22.22	requirements in subitems 1 to 4.
22.23	6. Concurrent operation of independent heating and cooling systems serving
22.24	common spaces and requiring the use of new energy for heating or cooling
22.25	must be minimized by:
22.26	a. providing sequential temperature control of both heating and cooling
22.27	capacity in each zone; or

1323.0652 22

01/12/09	REVISOR	CEL/JC	AR3719
(11/1/2//10)	DEVISOR	('E1 /I/ '	A D 2 / LO

23.1	b. limiting	the heat energy input through	automatic reset control of the
23.2	heating med	lium temperature, or energy in	put rate, to only that necessary to
23.3	offset heat l	oss due to transmission and in	filtration and, where applicable, to
23.4	heat the ver	tilation air supply to the space) .
23.5	1323.0653 SECTION 6.	5.3, AIR SYSTEM DESIGN	AND CONTROL.
23.6	Subpart 1. Table 6.5.3	.1 fan power limitation. ASI	HRAE Standard 90.1, Section
23.7	6.5.3.1, Table 6.5.3.1, is a	mended to read:	
23.8	,	TABLE 6.5.3.1 Fan Power Li	imitation
23.9		Allowable Brake Motor P	ower
23.10	Supply Air Volume	Constant Volume	Variable Volume
23.11	<20,000 cfm	1.2 Bhp/1000 cfm	1.7 Bhp/1000 cfm
23.12	≥20,000 cfm	1.1 Bhp/1000 cfm	1.5 Bhp/1000 cfm
23.13	Allowable Fan System Po	ower = [Table 6.5.3.1 Fan Pow	er Limitation x (Temperature
23.14	Ratio) + Pressure Credit -	Relief Fan Credit] where	
23.15	Table 6.5.3.1 Fan Power	Limitation = Table Value x <i>CF</i>	<u>/1000</u> <u></u>
23.16	Temperature Ratio = (T_{t-s})	$_{tat}$ - T_S)/20	
23.17	Pressure Credit (hp) = Su	m of $[CFM_n \times (SP_n - 1.0)/371]$	8] + Sum of $[CFM_{HR} \times SP_{HR}]$
23.18	/3718]		
23.19	Relief Fan Credit HP (kW	$V(t) = F_R HP (kW) \times [1 - (CFM)]$	(CFM_n)
23.20	$CF_{\underline{Mn}}CFM_{\underline{n}} = \text{supply air}$	volume of the unit with the fil	tering system (cfm)
23.21	CFM_{HR} = supply air volu	me of heat recovery coils or di	rect evaporative humidified/cooler
23.22	humidifier/cooler (cfm)		
23.23	CFM_{RF} = relief fan air vo	lume at normal cooling design	operation
23.24	SP_n = air pressure drop of	f the filtering system when filter	ers are clean (in. w.g.)
23.25	SP_{HR} = air pressure drop	of heat recovery coils	s or direct evaporative
23.26	humidifier/cooler (in. w.g	g.)	
24.1	T_{t-stat} = room thermostat	set point	

1323.0653 23

	01/12/09	REVISOR	CEL/JC	AR3719
24.2	$T_S = $ design supply air te	mperature for the zone in which	the thermostat is loc	cated
24.3	F_R = relief fan in horse	oower		
24.4	Subp. 2. Part-load 1	an power limitation. ASHRAI	E Standard 90.1, Sec	etion
24.5	6.5.3.2.1, is amended to	read:		
24.6	6.5.3.	.1 Part-load fan power limitat	t ion. Individual VAV	fans with
24.7	motor	7-1/2 hp and larger shall meet	one of the following	:
24.8	(a) Th	e fan shall be driven by a mecha	nical or electrical va	riable-speed
24.9	drive.			
24.10	(b) Th	e fan shall be a vane-axial fan w	vith variable-pitch bla	ades.
24.11	(c) Th	e fan shall have other controls a	and devices that will	result in
24.12	fan m	otor demand of no more than 30	percent of design w	attage at
24.13	50 per	cent of design air volume when	static pressure set po	oint equals
24.14	one-th	ird of the total design static pres	ssure, based on manu	ıfacturer's
24.15	certifi	d fan data.		
24.16	Subp. 3. Static pres	ure sensor location. ASHRAE	E Standard 90.1, Sec	tion
24.17	6.5.3.2.2, is amended to	read:		
24.18	6.5.3.	.2 Static pressure sensor locat	ion. Static pressure	sensors used
24.19	to con	rol variable air volume fans sha	all be placed in a pos	ition such
24.20	that th	e controller set point is optimize	d to maintain the mi	nimum static
24.21	pressu	re required for proper system op	peration throughout it	ts range.
24.22	Excep	tion: Systems with zone reset c	ontrol complying wi	th Section
24.23	6.5.3.3	.3.		
24.24	1323.0657 SECTION (.5.7.2, FUME HOODS.		

1323.0657 24

24.25

ASHRAE Standard 90.1, Section 6.5.7.2, is amended to read:

01/12/09	REVISOR	CEL/JC	AR3719

25.1	6.5.7.2 Fume hoods. Buildings with fume hood systems having a total
25.2	exhaust rate greater than 15,000 cfm shall include at least one of the
25.3	following features:
25.4	(a) Variable air volume hood exhaust and room supply systems capable of
25.5	reducing exhaust and makeup air volume to 50 percent or less of design
25.6	values except when higher volumes are required to maintain safe operating
25.7	conditions.
25.8	(b) Direct makeup (auxiliary) air supply equal to at least 75 percent of the
25.9	exhaust rate, heated no warmer than two degrees Fahrenheit below room
25.10	set point, cooled to no cooler than three degrees Fahrenheit above room set
25.11	point, no humidification added, and no simultaneous heating and cooling
25.12	used for dehumidification control.
25.13	(c) Heat recovery systems to precondition makeup air from fume hood
25.14	exhaust in accordance with Section 6.5.6.1 (Exhaust air energy recovery)
25.15	without using any exception.

1323.0672 SECTION 6.7.2, COMPLETION REQUIREMENTS.

25.16

25.17

25.18

25.19

25.20

25.21

25.22

25.23

25.24

25.25

Subpart 1. **Drawings.** ASHRAE Standard 90.1, Section 6.7.2.1, is amended to read: **6.7.2.1 Drawings.** Construction documents shall require that within 60 days after the date of system acceptance, record drawings of the actual installation be provided to the building owner or the designated representative of the building owner. Record drawings shall include as a minimum the location and performance data on each piece of equipment, general configuration of duct and pipe distribution system including sizes, and the terminal air or water design flow rates.

Subp. 2. Manuals. ASHRAE Standard 90.1, Section 6.7.2.2, is amended to read:

1323.0672 25

01/12/09	REVISOR	CEL/JC	AR3719
11/1/2//10	DEVISIO	/ 'E/I /I/ '	A D 2 / 1 C

26.1	6.7.2.2 Manuals. Construction documents shall require that an operating
26.2	manual and a maintenance manual be provided to the building owner or
26.3	the designated representative of the building owner within 60 days after
26.4	the date of system acceptance. These manuals shall be in accordance
26.5	with industry-accepted standards (see Appendix E) and shall include, at
26.6	a minimum, the following:
26.7	(a) Submittal data stating equipment size and selected options for each piece
26.8	of equipment requiring maintenance.
26.9	(b) Operation manuals and maintenance manuals for each piece of
26.10	equipment requiring maintenance, except equipment not furnished as part of
26.11	the project. Required routine maintenance actions shall be clearly identified.
26.12	(c) Names and addresses of at least one service agency.
26.13	(d) HVAC controls system maintenance and calibration information,
26.14	including wiring diagrams, schematics, and control sequence descriptions.
26.15	Desired or field-determined setpoints shall be permanently recorded on
26.16	control drawings at control devices or, for digital control systems, in
26.17	programming comments.
26.18	(e) A complete narrative of how each system is intended to operate,
26.19	including suggested setpoints.
26.20	Subp. 3. HVAC system acceptance testing. ASHRAE Standard 90.1, Section
26.21	6.7.2.4, is amended to read:
26.22	6.7.2.4 HVAC system acceptance testing. HVAC systems shall be tested
26.23	and adjusted for function and performance to ensure that control elements
26.24	are calibrated, and in proper working condition and that components,
26.25	equipment, systems, and interfaces between systems conform to the
26.26	construction documents. Acceptance testing and documentation shall be
26.27	completed in accordance with Sections 7.2.9, 7. 2.10 7.2.10, 7.2.13, and

1323.0672 26

01/12/09	REVISOR	CEL/JC	AR3719

27.1	7.2.15 of ASHRAE Guideline 0-2005, "The Commissioning Process," and
27.2	the documentation shall be submitted to the building official upon request.
27.3	Exceptions:
27.4	(a) Semiconditioned spaces within buildings.
27.5	(b) Buildings complying with the HVAC provisions in Appendix A of
27.6	Acceptance Requirements from "Advanced Buildings: Energy Benchmark
27.7	for High Performance Buildings," 2004, New Buildings Institute and
27.8	documented as required by Section 6.7.2.4.

1323.0681 SECTION 6.8, MINIMUM EQUIPMENT EFFICIENCY TABLES.

ASHRAE Standard 90.1, Table 6.8.1C, is amended to read:

27.9

27.10

27.11

TABLE 6.8.1C Water Chilling Packages - Minimum Efficiency Requirements

27.12 27.13 27.14	Equipment Type	Size Category	Subcategory or Rating Condition	Minimum Efficiencies ^a	Test Procedure b
27.15 27.16 27.17	Air Cooled, with Condenser, Electrically Operated	All Capacities		2.80 COP 3.05 IPLV	ARI 550/590
27.18 27.19 27.20	Air Cooled, without Condenser, Electrically Operated	All Capacities		3.10 COP 3.45 <u>IPLV</u>	
27.21 27.22 27.23 27.24	Water Cooled, Electrically Operated, Positive Displacement (Reciprocating)	All Capacities		4.20 COP 5.05 IPLV	ARI 550/590
27.25 27.26 27.27 27.28 27.29	Water Cooled, Electrically Operated, Positive Displacement (Rotary Screw and Scroll)	<150 tons		4.45 COP 5.20 IPLV	ARI 550/590
27.30 27.31		≥150 tons and <300 tons		4.90 COP 5.60 IPLV	

1323.0681 27

01/10/00	DELUCOD	ODI /IO	1 D 2 = 1 0
01/12/09	REVISOR	CEL/IC	AR3719

	≥300 tons	5.50 COP 6.15 IPLV	
Water Cooled, Electrically Operated, Centrifugal	<150 tons	5.00 COP 5.25 IPLV	ARI 550/590
	≥150 tons and <300 tons	5.55 COP 5.90 IPLV	
	≥300 tons	6.10 COP 6.40 IPLV	
Air-Cooled Absorption Single Effect ^c	All Capacities	<u>0.60 COP</u>	ARI 560
Water-Cooled Absorption Single Effect ^c	All Capacities	<u>0.70 COP</u>	
Absorption Double Effect, Indirect-Fired	All Capacities	1.00 COP 1.05 IPLV	
Absorption Double Effect, Direct-Fired	All Capacities	1.00 COP 1.00 IPLV	

^aThe chiller equipment requirements do not apply for chillers used in low-temperature applications where the design leaving fluid temperature is <40° F.

28.24

28.25

28.26

28.27

28.28

28.29

28.30

28.31

28.32

1323.0690 SECTION 6.9, WATER CHILLING PACKAGES AND ONCE-THROUGH COOLING SYSTEMS.

ASHRAE Standard 90.1, Section 6, is amended by adding a new section 6.9 and subsections to read:

6.9 Single effect absorption water chilling packages and once-through cooling systems.

6.9.1 Single effect absorption water chillers. Single effect absorption water chilling systems shall only be used when all the energy input is from waste heat or renewable energy sources.

1323.0690 28

b Section 12 contains a complete specification of the referenced test procedure, including the reference year version of the test procedure.

^{28.23 &}lt;sup>c</sup>See Section 6.9.1.

	01/12/09	REVISOR	CEL/JC	AR3719
29.1	6.9.2 Prohibition of o	once-through cooling syste	ems. Once-throug	h cooling
29.2	systems as defined by	Minnesota Rules, chapter	7685, are prohibit	ed when
29.3	proscribed prescribed	by Minnesota Statutes, sect	tion 103G.271, sul	bdivision 5.
29.4	1323.0741 SECTION 7.4.1, L	OAD CALCULATIONS.		
29.5	ASHRAE Standard 90.1, Sec	ction 7.4.1, is amended to r	ead:	
29.6	7.4.1 Load calculatio	ns. Service water heating s	system design load	ds for the
29.7	purpose of sizing syste	ems and equipment shall be	determined in acc	cordance with
29.8	the procedures describ	ed in the ASHRAE Handb	ook-HVAC Appli	cations or
29.9	an equivalent computa	ation procedure.		
29.10	1323.0745 SECTION 7.4.5, P	OOLS.		
29.11	ASHRAE Standard 90.1, Sec	ction 7.4.5, and all subsecti	ons are deleted ar	nd replaced
29.12	with the following:			
29.13	7.4.5 Pools.			
29.14	7.4.5.1 Pool heat	ers. Pool heaters shall be	equipped with a r	eadily
29.15	accessible on-off	switch to allow shutting of	f the heater withou	ut adjusting
29.16	the thermostat set	ting.		
29.17	7.4.5.2 Pool cove	rs. Heated swimming pools	s shall be equipped	d with a vapor
29.18	retardant pool cov	er in compliance with Min	nesota Rules, part	t 4717.1575,
29.19	the Minnesota De	partment of Health pool co	over safety standar	rd. Pools
29.20	heated to more the	an 90 degrees Fahrenheit sl	hall have a pool co	over with a
29.21	minimum insulati	on value of R-12.		
29.22	Exception: Pools	deriving over 60 percent of	of the energy for h	eating from
29.23	site-recovered ene	ergy or renewable energy so	ource.	
29.24	1323.0780 TABLE 7.8, PERF	ORMANCE REQUIREM	MENTS FOR WA	ATER
29.2529.26	HEATING EQUIPMENT. ASHRAE Standard 90.1, See	ction 7. Table 7.8. is amend	led to read:	

TABLE 7.8 Performance Requirements for Water Heating Equipment

1323.0780 29

01/12/09 REVISOR CEL/JC AR3719

Equipment Type	Size Category (Input)	Subcategory or Rating Condition	Performance Required ^a
Electric Water Heaters	≤12 kW	Resistance ≥20 gal	0.97-0.00132V EF
	>12 kW	Resistance ≥20 gal	$20+35 \sqrt{\text{V SL, Btu/h}}$
	≤24 Amps and ≤250 Volts	Heat Pump	0.97-0.00132V EF
Gas Storage Water Heaters	≤75,000 Btu/h	≥20 gal	0.67-0.0019V EF
	>75,000 Btu/h	<4,000(Btu/h)/gal	80% $E_t(Q/800+110 \text{ JV})$ SL, Btu/h
Gas Instantaneous Water Heaters	>50,000 Btu/h and <200,000 Btu/h	≥4,000(Btu/h)/gal and <2 gal	0.67-0.0019V EF
	≥200,000 Btu/h ^c	≥4,000(Btu/h)/gal and <10 gal	80% E _t
	≥200,000 Btu/h	≥4,000(Btu/h)/gal and ≥10 gal	80% $E_t(Q/800+110 \text{ JV})$ SL, Btu/h
Oil Storage Water Heaters	≤105,000 Btu/h	≥20 gal	0.59-0.0019V EF
	>105,000 Btu/h	<4,000(Btu/h)/gal	78% $E_t(Q/800+110 \text{ JV})$ SL, Btu/h
Oil Instantaneous Water Heaters	≤210,000 Btu/h	≥4,000(Btu/h)/gal and <2 gal	0.59-0.0019V EF
	>210,000 Btu/h	≥4,000(Btu/h)/gal and <10 gal	80% E _t
	>210,000 Btu/h	≥4,000(Btu/h)/gal and ≥10 gal	78% $E_{t}(Q/800+110 \text{ JV})$ SL, Btu/h
Hot Water Supply Boilers, Gas and Oil	≥300,000 Btu/h and <12,500,000 Btu/h	≥4,000(Btu/h)/gal and <10 gal	80% E _t
Hot Water Supply Boilers, Gas		≥4,000(Btu/h)/gal and ≥10 gal	80% $E_t(Q/800+110 \text{ JV})$ SL, Btu/h
Hot Water Supply Boilers, Oil		≥4,000(Btu/h)/gal and ≥10 gal	78% $E_t(Q/800+110 \text{ JV})$ SL, Btu/h

1323.0780 30

	01/12/09		REVISOR	CEL/JC	AR3719
31.1 31.2	Pool Heaters Oil and Gas	All		78% E _t	
31.3 31.4	Heat Pump Pool Heaters	All		4.0 COP	
31.5	Unfired Storage Tanks	All		R-12.5	
31.6 31.7 31.8 31.9 31.10 31.11	^a Energy factor (EF) and loss (SL) is maximum and ambient requirement equation, V is the rate of the section 12 contains a test procedure.	Btu/h based on a 70 ents. In the EF equal volume in gallons complete specificat	or F temperature diffication, V is the rated value and Q is the name parties, including the year.	ference between a volume in gallon late input rate in ear version, of the	stored water s. In the SL Btu/h.
31.12 31.13 31.14	^c _Instantaneous water these requirements if to or higher.				
31.15	1323.0871 SECTION	8.7.1, DRAWING	SS.		
31.16	ASHRAE Standard	90.1, Section 8.7.1	, is amended to read	l :	
31.17	8.7.1 Drawin	gs. Construction de	ocuments shall requi	ire that within 60	days after
31.18	the date of sy	stem acceptance, re	ecord drawings of the	ne actual installa	tion be
31.19	provided to the	ne building owner o	or the designated rep	resentative of the	e building
31.20	owner. Recor	d drawings shall in	clude at a minimum	the following in	formation:
31.21	(a) a single-li	ne diagram of the b	uilding electrical dis	stribution system	n; and
31.22	(b) floor plan	s indicating location	n and area served fo	r all distribution.	
31.23	1323.0872 SECTION	8.7.2, MANUALS	S.		
31.24	ASHRAE Standard	90.1, Section 8.7.2	, is amended to read	l:	
31.25	8.7.2 Manua	ls. Construction do	cuments shall requi	re that operating	g and
31.26	maintenance	manuals be provide	ed to the building ov	wner or the desig	gnated
31.27	representative	e of the building ov	oner within 60 days	after the date of	system

acceptance. These manuals shall include, at a minimum, the following:

1323.0872

01/12/09	REVISOR	CEL/IC	AR3719

32.1	(a) Submittal data stating equipment rating and selected options for each piece
32.2	of equipment requiring maintenance.
32.3	(b) Operation manuals and maintenance manuals for each new piece of
32.4	equipment requiring maintenance, except equipment not furnished as part of the
32.5	project. Required routine maintenance actions shall be clearly identified.
32.6	(c) Names and addresses of at least one qualified service agency.
32.7	(d) A complete narrative of how each system is intended to operate.
32.8	1323.0891 SECTION 8.9.1, ELECTRICAL ENERGY DETERMINATION.
32.9	ASHRAE Standard 90.1, Section 8, is amended by adding a section to read:
32.10	8.9 Electrical energy determination.
32.11	8.9.1 Electrical energy determination. In new multifamily dwellings, the
32.12	electrical energy consumed by each individual dwelling unit must be separately
32.13	metered with individual metering readily accessible to the individual occupants.
32.14	Exception: Motels, hotels, college dormitories, other transient facilities, and
32.15	buildings intended for occupancy primarily by persons who are 62 years of age
32.16	or older or handicapped, or which contain a majority of units not equipped with
32.17	complete kitchen facilities.
32.18	1323.0911 SECTION 9.1.1, LIGHTING SCOPE.
32.19	ASHRAE Standard 90.1, Section 9.1.1, is amended to read:
32.20	9.1.1 Scope. This section shall apply to the following:
32.21	(a) interior spaces of buildings;
32.22	(b) exterior building features, including facades, illuminated roofs, architectural
32.23	features, entrances, exits, loading docks, and illuminated canopies; and
32.24	(c) exterior building grounds provided through the building's electrical service.
32.25	Exceptions:
32.26	(a) emergency lighting that is automatically off during normal building operation
33.1	(b) lighting within living units;

1323.0911 32

	01/12/09		REVISOR	CEL/JC	AR3/19
33.2		(c) lighting that is specifically	designated as	required by a health	or life safety
33.3		statute, ordinance, or regulation	n; and/or and	<u>[</u>	
33.4		(d) decorative gas lighting syst	ems that med	et the requirements o	of Minnesota
33.5		Statutes, section 216C.19.			
33.6	1323.09	44 SECTION 9.4.4, EXTERIO	OR BUILDI	NG GROUNDS LIC	GHTING.
33.7	ASHI	RAE Standard 90.1, Section 9.4	.4, is amende	ed to read:	
33.8		9.4.4 Exterior building groun	ds lighting.	All exterior building	g grounds
33.9		luminaries that operate at great	er than 100 v	watts, except parking	; lot lighting,
33.10		shall contain lamps having a m	inimum effic	acy of 60 lm/W unle	ess the luminaire
33.11		is controlled by a motion sensor	or or qualifies	s for one of the excep	ptions under
33.12		Section 9.1.1 or 9.4.5. Parking	lot lighting s	hall be in accordance	e with Minnesota
33.13		Rules, chapter 8885.			
33.14	1323.09	91 SECTION 9.9.1, COMCH	ECK OPTIO	ON.	
33.15	ASHI	RAE Standard 90.1, Section 9, i	s amended by	y adding a section to	read:
33.16	9.9	COMcheck option.			
33.17		9.9.1 COMcheck option. Bui	ldings shall	be deemed to compl	y with
33.18		requirements of Sections 9.5 ar	nd 9.6 if the (COMcheck program	published by the
33.19		Pacific National Laboratories d	emonstrates	it to be in compliance	e.
33.20	1323.11	14 SECTION 11.1.4, COMPL	IANCE.		
33.21	ASHI	RAE Standard 90.1, Section 11.	1.4, is amend	led to read:	
33.22	11.1	.4 Compliance. Compliance w	ith Section 1	1 will be achieved if	• •
33.23		(a) all requirements of Sections	5.4, 6.4, 7.4	, 8.4, 9.4, and 10.4 a	re met;
33.24		(b) the design energy cost, as o	alculated in	Section 11.3 does no	t exceed the
33.25		energy cost budget, as calculate	ed by the sim	ulation program desc	cribed in Section

1323.1114 33

11.2; and

01/12/09	REVISOR	CEL/JC	AR3719

(c) the energy efficiency level of components specified in the building design meet or exceed the efficiency levels used to calculate the design energy cost.

1323.1121 SECTION 11.2.1, SIMULATION PROGRAM.

34.1

34.2

34.3

34.4

34.5

34.6

34.7

34.8

34.9

34.10

34.11

34.12 34.13

34.1434.1534.16

34.17

34.18

34.19

34.20

34.21

34.22

34.23

34.24

34.25

ASHRAE Standard 90.1, Section 11.2.1, is amended to read:

11.2.1 Simulation program. The simulation program shall be a computer-based program for the analysis of energy consumption in buildings (a program such as, but not limited to, DOE-2 or BLAST). The simulation program shall include calculation methodologies for the building components being modeled.

1323.1132 SECTION 11.3.2, HVAC SYSTEMS.

ASHRAE Standard 90.1, Section 11, Table 11.3.2C, is amended to read:

TABLE 11.3.2C Water Chiller Types.

Individual Chiller Plant Capacity	Electric Chiller Type	Fossil Fuel Chiller Type
≤100 tons	Reciprocating	Double-effect absorption direct/indirect fired or Single-effect absorption using waste heat
>100 tons, <300 tons	Screw	Double-effect absorption, direct fired
≥300 tons	Centrifugal	Double-effect absorption, direct fired

1323.1300 SECTION 13, OTHER BUILDINGS.

ASHRAE Standard 90.1, is amended by adding a section to read:

Section 13. Other buildings.

13.1 Greenhouse structures. Greenhouse structures that require heating for cold weather protection are regulated by this section. A greenhouse structure is a structure that is used for plant growth.

13.1.1 Envelope requirements for greenhouse structures.

01/12/09 REVISOR CEL/JC AR3719

35.1	13.1.1.1 Foundation walls; slab-on-grade floors. Foundation walls and
35.2	slab-on-grade floors must comply with the requirements of ASHRAE
35.3	Standard 90.1, Section 5.
35.4	13.1.1.2 Transparent and translucent components. Transparent and
35.5	translucent components are exempt from the requirements of Section 5
35.6	provided that they are either single-pane glass, twin wall polycarbonate,
35.7	two-ply polyethylene or equivalent.
35.8	13.1.1.3 Coverings. Greenhouse structures must have either an exterior
35.9	anti-infrared covering or internal thermal blanket that reduces nighttime
35.10	radiation in compliance with this section.
35.11	13.1.1.3.1 Anti-infrared covering. The anti-infrared covering must be
35.12	not less than 4-mill 4-mil thick polyethylene greenhouse covering film
35.13	that retards nighttime heat radiation from greenhouse structures and has
35.14	a minimum energy saving rating of 20 percent.
35.15	13.1.1.3.2 Thermal blanket. The thermal blanket must be not less
35.16	than 4-mill 4-mil thick internally installed material used in greenhouse
35.17	structures that provides both plant shading and retards nighttime
35.18	radiation in greenhouse structures and has a minimum energy saving
35.19	rating of 20 percent.
35.20	13.1.1.3.3 Energy saving rating. The energy saving rating shall
35.21	be determined by comparing the heating energy required by similar
35.22	greenhouse structures having similar plant contents; either adjusted for
35.23	weather or co-located during the same heating season. A greenhouse
35.24	structure covered with an anti-infrared polyethylene covering is
35.25	compared to a similar structure covered with a polyethylene covering
35.26	not having anti-infrared characteristics. A greenhouse structure having

01/12/09	REVISOR	CEL/JC	AR3719
01/12/09	VE A 12OV	CEL/JC	AN3/19

36.1	an internally installed thermal blanket material is compared to a similar
36.2	structure not having a thermal blanket installed.
36.3	13.1.2 Heating requirements for greenhouse structures. Mechanical
36.4	components of greenhouse structures must comply with the ASHRAE Standard
36.5	90.1, Section 6. In addition, unit heating systems must be power vented or
36.6	direct vented.
36.7	13.1.3 Additional requirements for greenhouse structures. Greenhouse
36.8	structures must comply with the requirements of ASHRAE Standard 90.1,
36.9	Sections 7, 8, 9, and 10.
36.10	13.2 Inflated structures. Inflated structures that require heating for cold weather
36.11	protection are regulated by this section. An inflated structure is a structure that is
36.12	air supported.
36.13	13.2.1 Envelope requirements for inflated structures. Foundation walls and
36.14	slab-on-grade floors must meet the requirements of ASHRAE Standard 90.1,
36.15	Section 5.
36.16	13.2.1.1 Minimum insulation. The structure membrane must have a
36.17	minimum insulation value of R-12.
36.18	Exception: Inflated structures that are designed to deflate during the
36.19	summer months.
36.20	13.2.2 Requirements for inflated structures. Inflated structures must comply
36.21	with the requirements of ASHRAE Standard 90.1, Section 6. Air pressure
36.22	controls for inflated structures must have the capability for manual and automated
36.23	control with respect to outdoor wind speed.
36.24	13.2.3 Additional requirements for inflated structures. Inflated structures
36.25	must comply with the requirements of ASHRAE Standard 90.1, Sections 7,
36.26	8, 9, and 10.

01/10/00	DELUCOD	CEL /IC	1 D 2 = 1 C
01/12/09	REVISOR	CEL/JC	AR3719
01/12/09	KE VISOK	CEL/JC	ANJ/12

37.1 **REPEALER.** Minnesota Rules, parts 7676.0100; 7676.0200; 7676.0300; 7676.0400;

- 7676.0500; 7676.0600; 7676.0700; 7676.0800; 7676.0900; 7676.1000; 7676.1100;
- 7676.1200; 7676.1300; 7676.1400; 7676.1500; 7678.0100; 7678.0200; 7678.0300;
- 7678.0400; 7678.0500; 7678.0600; 7678.0700; 7678.0800; and 7678.0900, are repealed.
- 37.5 **EFFECTIVE DATE.** These amendments are effective five working days after
- 37.6 publication of the notice of adoption June 1, 2009.