- **Pollution Control Agency**
- 2 Adopted Permanent Rules Relating to Water Quality Standards

7050.0185 NONDEGRADATION FOR ALL WATERS.

3

1

- 4

5

Subp. 4. Additional requirements for significant discharges. If a person proposes a 6 new or expanded significant discharge from either a point or nonpoint source, the 7 agency shall determine whether additional control measures beyond those required by 8 subpart 3 can reasonably be taken to minimize the impact of the discharge on the 9 receiving water. In making the decision, the agency shall consider the importance of 10 economic and social development impacts of the project, the impact of the discharge on 11 the quality of the receiving water, the characteristics of the receiving water, the 12 cumulative impacts of all new or expanded discharges on the receiving water, the costs 13 of additional treatment beyond what is required in subpart 3, and other matters as shall 14 be brought to the agency's attention.

[For text of subps 1 to 3, see M.R.]

15 Subp. 5. Determination of significance. A person proposing a new or expanded 16 discharge of sewage, industrial waste, or other wastes shall submit to the commissioner 17 the information required to determine whether the discharge is significant under 18 subpart 2. If the discharge is sewage, the flow rate used to determine significance under 19 this part is the design average wet weather flow for the wettest 30-day period. For 20 discharges of industrial and other wastes, the flow rate to be used is the design 21 maximum daily flow rate. In determining the significance of a discharge to a lake or 22 other nonflowing receiving water, a mixing zone may be established under the guidelines of part 7050.0210, subpart 5. 23

[For text of subps 6 to 9, see M.R.]

7050.0200 WATER USE CLASSIFICATIONS FOR WATERS OF THE STATE.

7050.0200

 24°

Approved by Revisor

1 [For text of subps 1 to 7, see M.R.] 2 Subp. 8. Class 7 waters, limited resource value waters. Limited resource value 3 waters include surface waters of the state which have been subject to a use attainability 4 analysis and have been found to have limited value as a water resource. Water 5 quantities in these waters are intermittent or less than one cubic foot per second at the 6 once in ten year, seven-day low flow as defined in part 7050.0210, subpart 7. These 7 waters shall be protected so as to allow secondary body contact use, to preserve the 8 groundwater for use as a potable water supply, and to protect aesthetic qualities of the 9 water. It is the intent of the agency that very few waters be classified as limited resource 10 value waters. The use attainability analysis must take into consideration those factors 11 listed in Minnesota Statutes, section 115.44, subdivisions 2 and 3. The agency, in 12 cooperation and agreement with the Department of Natural Resources with respect to 13 determination of fisheries values and potential, shall use this information to determine 14 the extent to which the waters of the state demonstrate: 15 [For text of items A to C, see M.R.] 16 7050.0210 GENERAL STANDARDS FOR DISCHARGERS TO WATERS OF THE 17 STATE. 18 [For text of subps 1 to 6c, see M.R.] 19 Subp. 7. Minimum stream flow. Dischargers of sewage, industrial waste, or other 20 wastes shall be controlled so that the water quality standards will be maintained at all 21 stream flows which are equal to or exceeded by 90 percent of the seven consecutive 22 daily average flows of record (the lowest weekly flow with a once in ten-year recurrence 23 interval) for the critical month(s), except for the purpose of setting ammonia effluent 24 limits. Dischargers of ammonia in sewage, industrial waste, or other wastes shall be 25 controlled so that the ammonia water quality standard will be maintained at all stream 26 flows which are equal to or exceeded by 90 percent of the 30 consecutive daily average

7050.0210

1 flows of record (the lowest 30-day flow with a once in ten-year recurrence interval) for 2 the critical month(s). The period of record for determining the specific flow for the 3 stated recurrence interval, where records are available, shall include at least the most 4 recent ten years of record, including flow records obtained after establishment of flow 5 regulation devices, if any. The calculations shall not be applied to lakes and their 6 embayments which have no comparable flow recurrence interval. Where stream flow 7 records are not available, the flow may be estimated on the basis of available 8 information on the watershed characteristics, precipitation, run-off, and other relevant 9 data.

10 Allowance shall not be made in the design of treatment works for low stream flow 11 augmentation unless the flow augmentation of minimum flow is dependable and 12 controlled under applicable laws or regulations.

13

[For text of subps 9 and 10, see M.R.]

Subp. 12. Liquid substances. Liquid substances which are not commonly considered to be sewage or industrial waste but which could constitute a pollution hazard shall be stored in accordance with chapter 7151. Other wastes as defined by law or other substances which could constitute a pollution hazards, including substances from nonpoint sources and households, shall not be deposited in any manner such that the same may be likely to gain entry into any waters of the state in excess of or contrary to any of the standards herein adopted, or cause pollution as defined by law.

21

[For text of subps 13 to 18, see M.R.]

22 7050.0211 FACILITY STANDARDS.

Subpart 1. Minimum secondary treatment for municipal point source and other point source dischargers of sewage. It is established that the agency shall require secondary treatment as a minimum for all municipal point source dischargers and other point source dischargers of sewage. For purposes of this part, municipal has the

7050.0211

1	adjective meaning of municipality as defined	d in part 7001.1020, subpart 18. Secondary
2	treatment facilities are defined as works w	hich will provide effective sedimentation,
3	biochemical oxidation, and disinfection,	or the equivalent, including effluents
4	conforming to the following:	
5	Substance or Characteristic	Limiting Concentration or Range*
6		
7	Five-day carbonaceous	
8 9	biochemical oxygen demand*	25 milligrams per liter
10	Fecal coliform group	200 organisms per
11	organisms **	100 milliliters
12		
13	Total suspended solids*	30 milligrams per liter
14	-	
15	Oil	Essentially free of visible oil
16		·
17	Phosphorus	See subpart 1a
18	-	•
19	pH range	6.0 - 9.0
20		
21	Toxic or	Concentrations of toxic
22	corrosive pollutants	or corrosive pollutants
23	-	shall not cause acute
24		toxicity to humans or
25		other animals or plant
26		life or directly damage
27		real property or exceed
28		the final acute value
29		unless the effluent satisfies
30		the whole effluent toxicity
31		test below. If a whole
32		effluent toxicity test
33		performed on the effluent
34		results in less than 50
35		percent mortality of the
36		test organisms, the effluent
37		will not be considered
38		acutely toxic unless the
<u>3</u> 9		commissioner finds that the
40		test species do not represent
41		sensitive organisms in the
42		affected surface water body
43		or the whole effluent test

7050.0211

1

2

3

4

5

6

7

8

was performed on a sample not representative of the effluent quality. The final acute value and whole effluent toxicity test are defined in part 7050.0218, subpart 3, items O and HH, respectively.

CMR/KI

9 *The arithmetic mean for concentrations of five-day carbonaceous biochemical 10 oxygen demand and total suspended solids shall not exceed the stated values in any 11 calendar month. In any calendar week, the arithmetic mean for concentrations of 12 five-day carbonaceous biochemical oxygen demand shall not exceed 40 milligrams per 13 liter and total suspended solids shall not exceed 45 milligrams per liter.

14 **Disinfection of wastewater effluents to reduce the levels of fecal coliform organisms 15 to the stated value is required from April 1 through October 31 (Class 2 waters) and 16 May 1 through October 31 (Class 7 waters) except that where the effluent is discharged 17 25 miles or less upstream of a water intake supplying a potable water system, the 18 reduction to the stated value is required year around. The stated value is not to be 19 exceeded in any calendar month as determined by the geometric mean of all the 20 samples collected in a given calendar month. The application of the fecal coliform group 21 organism standards shall be limited to sewage or other effluents containing admixtures 22 of sewage and shall not apply to industrial wastes except where the presence of sewage, 23 fecal coliform organisms, or viable pathogenic organisms in such wastes is known or 24 reasonably certain. Analysis of samples for fecal coliform group organisms by either the 25 multiple tube fermentation or the membrane filter techniques is acceptable.

Subp. 1a. **Total phosphorus effluent limits.** Where the discharge of effluent is directly to or affects a lake or reservoir, phosphorus removal to one milligram per liter shall be required. The limit must be a calendar month arithmetic mean unless the commissioner finds, after considering the three criteria listed in items A to C and B, that a different averaging period is acceptable. In no case shall the one milligram per liter

7050.0211

limit exceed a moving mean of 12 monthly values reported on a monthly basis, or a simple mean for a specified period, not to exceed 12 months. Calendar month effluent limits in effect on the effective date of this part must remain in effect unless an assessment of the following criteria indicates listed in items A and B indicate a different averaging period is acceptable. A different averaging period is acceptable when:

A. the effects of the phosphorus loading <u>from the facility</u> on the <u>receiving water or</u> downstream water resources <u>is generally not measurable</u>; <u>and</u>

8 B. the final recommendations to reduce total phosphorus loading to a watershed to 9 achieve nutrient reduction goals established as part of a TMDL, or as part of an 10 approved watershed plan, local water plan, or other equivalent planning process; and 11 \leftarrow the overall treatment technologies being considered offer environmental, 12 treatment process, financial, or other benefits offered by the relevant technologies. 13 In addition, removal of nutrients from all wastes shall be provided to the fullest 14 practicable extent wherever sources of nutrients are considered to be actually or 15 potentially detrimental to preservation or enhancement of the designated water uses. 16 Dischargers required to control nutrients by this subpart are subject to the variance 17 provisions of part 7050.0190.

18

6

7

[For text of subps 2 and 3, see M.R.]

19 **7050.0213 ADVANCED WASTEWATER TREATMENT REQUIREMENTS.**

20 In any instance where it is evident that the minimal treatment specified in part 21 7050.0211, subpart 1, or 7050.0212 and dispersion are not effective in preventing 22 pollution, or if at the applicable flows it is evident that the specified stream flow is 23 inadequate to protect the specified water quality standards, the specific standards may 24 be interpreted as effluent standards for control purposes. In addition, the following 25 effluent standards may be applied without any allowance for dilution where stream 26 flow or other factors are such as to prevent adequate dilution, or where it is otherwise 27 necessary to protect the waters of the state for the stated uses:

7050.0213

Limits*

Item

1

2 3

4

5

6

7

Five-day carbonaceous biochemical oxygen demand

5 milligrams per liter (arithmetic mean of all samples taken during any calendar month)

8 *If a discharger is required by the commissioner to implement a pretreatment 9 program for the control of toxic pollutants from industrial contributors and the program 10 has not yet been implemented, the discharger's effluent limitation for total suspended 11 solids shall be five milligrams per liter until such time as the program has been 12 implemented.

The five milligram per liter limit shall not apply to discharges to surface waters classified as limited resource value waters pursuant to parts 7050.0200, subpart 8, and 7050.0400 to 7050.0470.

The concentrations specified in part 7050.0211, subpart 1, or, if applicable, part 7050.0212 may be used in lieu of this limit if the discharge of effluent is restricted to the spring flush or other high runoff periods when the stream flow rate above the discharge point is sufficiently greater than the effluent flow rate to insure that the applicable water quality standards are met during such discharge period.

21 If treatment works are designed and constructed to meet the specified limits given 22 above for a continuous discharge, at the discretion of the agency the operation of such 23 works may allow for the effluent quality to vary between the limits specified above and 24 in part 7050.0211, subpart 1, or, if applicable, part 7050.0212, provided the water quality 25 standards and all other requirements of the agency and the United States Environmental 26 Protection Agency are being met. Such variability of operation must be based on 27 adequate monitoring of the treatment works and the effluent and receiving waters as 28 specified by the agency.

7050.0214 REQUIREMENTS FOR POINT SOURCE DISCHARGERS TO LIMITED RESOURCE VALUE WATERS.

7050.0214

[REVISOR] CMR/KJ AR3044

11/08/99

1 Subpart 1. Effluent limitations. For point source discharges of sewage, industrial, or 2 other wastes to surface waters classified as limited resource value waters pursuant to 3 parts 7050.0200, subpart 8, and 7050.0400 to 7050.0470, the agency shall require 4 treatment facilities which will provide effluents conforming to the following limitations: 5 Substance or Characteristic Limiting Concentration* 6 7 Five-day carbonaceous 15 milligrams per liter 8 biochemical oxygen demand (arithmetic mean of all 9 samples taken during any calendar month) 10 11 12 *This limit shall not apply to discharges to limited resource value waters if the 13 principal method of treatment is through stabilization ponds, in which case the 14 limitations in parts 7050.0211, subpart 3, and 7050.0212, subpart 5, shall apply. All 15 effluent limitations specified in part 7050.0211, subpart 1, shall also be applicable to 16 dischargers of sewage to limited resource value waters, provided that toxic or corrosive 17 pollutants shall be limited to the extent necessary to protect the designated uses of the 18 receiving water or affected downstream waters. 19 [For text of subps 2 to 4, see M.R.] 20 7050.0218 METHODS FOR PROTECTION OF SURFACE WATERS FROM TOXIC 21 POLLUTANTS FOR WHICH NUMERICAL STANDARDS NOT PROMULGATED. 22 [For text of subps 1 to 4, see M.R.] 23 Subp. 5. Toxicity-based criteria. Toxicity-based aquatic life criteria shall be 24 determined using the methods in this subpart when no USEPA criterion is available. 25 [For text of items A to F, see M.R.] 26 G. If the acute data available do not meet the requirements in items A and B, 27 toxicity-based criteria can be determined by the method in this item. This method is not 28 applicable to ionizable organic chemicals, or to bioaccumulative organic chemicals and 29 pesticides with BCFs greater than 5,000 or log K_{ow} values greater than 5.19.

7050.0218

	11/08/99	[REVISOR]	CMR/KJ	AR3044
1	(1) Acute data are assembled.	A minimum of two act	ute values in th	e following
2	groups must be available:			
3	(a) a member of the class C	Osteichthyes (fish); and		
4	(b) a member of one of t	he following genera i	n the family	Daphnidae:
5	Daphnia, Ceriodaphnia, Simocephalus.			
6	(2) For insecticides, a third acu	te value must be availa	ble for an inse	ct species in
7	addition to the acute values required	in subitem (1).		
8	(3) For herbicides, two acute v	values for plant species	s, one of which	ı is an algal
9	species, must be available in additio	on to the acute values	required in s	subitem (1).
10	(4) Data for saltwater specie	es shall no <u>t</u> be used	except for p	ourposes of
11	determining ACRs.			
12	(5) SMAVs are calculated as th	ne geometric mean of a	ll the acute val	lues for one
13	species.		•	
14	(6) GMAVs are calculated as t	he geometric mean of	the SMAVs.	
15	(7) The lowest GMAV from an	nong the available GM	IAVs is selecte	d.
16	(8) The FAV is calculated by	dividing the lowest C	GMAV by the	appropriate
.7	factor listed below, depending on the	ne number of GMAV	s available tha	at meet the
.8	minimum data requirements in subite	ms (2) and (3) and in	item A.	· ·
19 20 21 22 23 24 25 26 27 28	Number of GMAVs 2 3 4 5 6 7 (9) The MC is calculated by di (10) A final ACR is determine ACR shall be 18 for all chemicals for w	13.0 8.0 7.0 6.1 5.2 4.3 ividing the FAV by tw d as described in item	F, except that	
29	item.		L	
	7050.0218	9		

4

(11) The CC is calculated by dividing the FAV by the appropriate ACR.
 (12) If chronic data are available, they are used to determine measured ACRs as
 described in item F, and chronic data are compared to the CC.

[For text of subps 6 to 10, see M.R.]

5 7050.0220 SPECIFIC STANDARDS OF QUALITY AND PURITY BY ASSOCIATED
6 USE CLASSES.

Subpart 1. General. The numerical and narrative water quality standards in parts 7050.0221 to 7050.0227 prescribe the qualities or properties of the waters of the state that are necessary for the designated public uses and benefits. If the standards in this part are exceeded, it is considered indicative of a polluted condition which is actually or potentially deleterious, harmful, detrimental, or injurious with respect to designated uses or established classes of the waters of the state.

Standards for metals are expressed as total metal but must be converted to dissolved metal standards to determine water quality-based effluent limits. Water quality-based effluent limits for metals are expressed as total metal. Conversion factors for converting total to dissolved metal standards are listed in part 7050.0222, subpart 9. The conversion factor for metals not listed in part 7050.0222, subpart 9, is one. The dissolved metal standard equals the total metal standard times the conversion factor.

19The standards are listed for associated classes in tables under subparts 3a to 6a:20A. subpart 3a, Classes 1B, 2A, 3A or 3B, 4A and 4B, and 5;

- B. subpart 4a, Classes 1B or 1C, 2Bd, 3A or 3B, 4A and 4B, and 5;
- 22 C. subpart 5a, Classes 2B, 2C, or 2D; 3A, 3B, 3C, or 3D; 4A and 4B or 4C; and 5; and
- D. subpart 6a, Classes 3C, 4A and 4B, 5, and 7.
- Subp. 2. Explanation of tables. Class 1 standards listed in the tables in subparts 3a and 4a are the United States Environmental Protection Agency primary (maximum

7050.0220

1 contaminant levels) and secondary drinking water standards, as contained in Code of 2 Federal Regulations, title 40, part 141, subparts B and G, and part 143 (1992); and 3 sections 141.61 and 141.62 as amended through July 17, 1992, excluding the 4 bacteriological, radiological, treatment technological, and water treatment additive 5 standards. 6 The tables include the following abbreviations and acronyms: 7 AN means aesthetic enjoyment and navigation, Class 5 8 waters 9 10 (c) means the chemical is assumed to be a human carcinogen 11 12 CS or "chronic standard" means the highest water 13 concentration of a toxicant to which organisms can be 14 exposed indefinitely without causing chronic toxicity 15 16 DC means domestic consumption (drinking water), 17 Class 1 waters 18 19 exp. () means the natural antilogarithm (base e) of the 20 expression in parenthesis 21 22 FAV or "final acute value" means an estimate of the 23 concentration of a pollutant corresponding to the 24 cumulative probability of 0.05 in the distribution of 25 all the acute toxicity values for the genera or species 26 from the acceptable acute toxicity tests conducted on a 27 pollutant 28 29 IC means industrial consumption, Class 3 waters 30 31 ·IR means agriculture irrigation use, Class 4A waters 32 33 LS means agriculture livestock and wildlife use, 34 Class 4B waters 35 36 MS or "maximum standard" means the highest concentration 37 of a toxicant in water to which aquatic organisms can 38 be exposed for a brief time with zero to slight 39 mortality. The MS equals the FAV divided by two 40 41 (S) means the associated value is a secondary drinking

7050.0220

1		water stand	lard									
2 3 4	su	means "star unit for pH		" It is the rep	orting							
5 6 7	TH			n mg/l, whi im concentra								
8 9 10	TON means threshold odor number For the FAV and MS values noted with an asterisk (*), see part 7050.0222, subpart 7,											
11	item E.											
12	Important synonyms or acronyms for some chemicals are listed in parentheses below											
13	the primary name. Standards that vary with total hardness or pH are in the form of											
14	formulas a	nd are listed	l as numbe	red notes at	the end c	of the tab	les.					
15	When t	wo or more	use classe	s have stan	dards for	the sam	e pollutant	, the most				
16	stringent s	tandard appl	lies pursua	nt to part 70)50.0450. A	all surface	e waters ar	e protected				
17	for Class 6	, but this clas	ss has no n	umerical sta	ndards so	it is not	included in	the tables.				
18	Subp. 3.	[See repeale	er.]									
19	Subp. 3a	a. Water qua	lity standa	rds applica	ble to use	Classes	1B, 2A, 3A	or 3B, 4A				
20	and 4B, ar	d 5.										
21	Rules as P	roposed (all	new mater	ial)								
22	A. MISCEI	LANEOUS	SUBSTANC	ce or cha	RACTERI	STIC						
23			STAND	ARDS FOR	USE CLAS	SSES						
24 25 26	2A CS	2A MS	2A FAV	1B DC	3A/3B IC	4A IR	4B LS	5 AN				
27	(1) Ammor	nia, un-ionize	ed as N - U	Jnits: µg/l								
28 29	16 (2) Asbestc	none s, >10 μm (c	none) - Units: fi	- ibers/l	-	-	-	-				
30 31	(3) Bicarbo	7.0e+06										

7050.0220

	11/08/99				[REVISOR] CMR/KJ		AR3044	
1 2	- (4) Chloride	- - Units: mg	- /l	-	-	5	-	-
3 4	230 (5) Chlorine,	860 total residu	1720 1al - Units:	250(S) μg/l	50/100	-	-	-
5 6	11 (6) Color - U	19 nits: Pt-Co	38	-	-	-	-	- ,
7 8	30 (7) Cyanide,	none free - Units	none : µg/l	15(S)	-	-	-	-
9 10	5.2 (8) Dissolved	22 oxygen - L	45 Jnits: mg/l	200	-	-	-	-
11 12 13 14	- (9) Fecal coli	7 as a daily minimur form organi		- Note No. 1	- below	-	-	-
15	(10) Fluoride							· ·
16 17 18 19 20	- 2A CS (11) Fluoride	- 2A MS - Units: mg	- 2A FAV 5/1	4 1B DC	- 3A/3B IC	- 4A IR	- 4B LS	- 5 AN
17 18 19	CS	MS - Units: mg -	FAV g/l	1 B				
17 18 19 20 21	CS (11) Fluoride -	MS - Units: mg - agents - U -	FAV g/l nits: µg/l	1B DC 2(S) 500(S)	IC -			
17 18 19 20 21 22 23	CS (11) Fluoride - (12) Foaming -	MS - Units: mg agents - U - s, Ca+Mg a -	FAV g/l nits: μg/l s CaCO ₃ - 1	1B DC 2(S) 500(S) Units: mg/	IC -			
17 18 19 20 21 22 23 24 25	CS (11) Fluoride (12) Foaming (13) Hardness -	MS - Units: mg agents - U s, Ca+Mg a - n sulfide - -	FAV g/l nits: μg/l s CaCO ₃ - 1 - Units: mg/t -	1B DC 2(S) 500(S) Units: mg/	IC - - /1			
17 18 19 20 21 22 23 24 25 26 27	CS (11) Fluoride (12) Foaming (13) Hardness (14) Hydroge -	MS - Units: mg agents - U s, Ca+Mg a - n sulfide - - as N - Units -	FAV g/l nits: μg/l s CaCO ₃ - 1 - Units: mg/l - s: mg/l -	1B DC 2(S) 500(S) Units: mg/	IC - - /1			AN - -
17 18 19 20 21 22 23 24 25 26 27 28 29	CS (11) Fluoride (12) Foaming (12) Foaming (13) Hardness (13) Hardness (14) Hydroge (15) Nitrate, a -	MS - Units: mg agents - U agents - U s, Ca+Mg a - n sulfide - - as N - Units - s N - Units -	FAV g/l nits: μg/l s CaCO ₃ - 1 - Units: mg/l - s: mg/l - : mg/l	1B DC 2(S) 500(S) Units: mg/ - 1 - 10 1	IC - - /1			AN - -

	11/08/99				[REVISOR	[] CM	R/KJ	AR3044
1	(18) Odor - U	nits: TON						
2 3	- (19) Oil - Uni	- ts: μg/l	-	3(S)	-	-	-	-
4 5	500 (20) pH, low	5000 - Units: su	10000	-	-	-	-	-
6 7 8 9	6.5 2A CS	none 2A MS	none 2A FAV	6.5(S) 1 B DC	6.5/6.0 3A/3B IC	6.0 4A IR	6.0 4B LS	6.0 5 AN
10	(21) pH, high	- Units: su						
11 12	8.5 (22) Radioacti	none ve material	none s - See Not	8.5(S) te No. 2 be	8.5/9.0 elow	8.5	9.0	9.0
13	(23) Salinity, t	otal - Units	:: mg/l					
14 15	- (24) Sodium -	- Units: meg	_ [/]	-	-	-	1000	-
16 17 18 19	- (25) Sulfate - 1	- Units: mg/l	-	-	-	60% of total cations	-	-
20 21	- (26) Sulfates, v	wild rice pr	- resent - Un	250(S) its: mg/l	-	-	-	-
22 23	- (27) Specific co	- onductance,	- , at 25°C -	- Units: μm	- hos/cm	10	-	-
24 25	(28) Temperat	- ure - Units:	- °F - No m	- naterial inc	rease	1000	-	-
26	(29) Total diss	olved salts	- Units: m	g/l				
27 28	- (30) Total diss	- olved solid	- s - Units: r	- ng/l	-	700	-	-
29 30	- (31) Turbidity	- - Units: NI	- [U	500(S)	-	-	-	- .
31 32	10 B. METALS A	none ND ELEMI	none ENTS SUBS	1-5 STANCE (DR CHARA	CTERISTI	C.	-

•

	11/08/99				[REVISOI	R] C	MR/KJ	AR3044
1			STAND	ARDS FOR	USE CLAS	SES		
2 3 4	2A CS	2A MS	2A FAV	1B DC	3A/3B IC	4A IR	4B LS	5 AN
5	(1) Aluminu	m - Units:	µg/1					_ .
6 7	87	748	1496	50-200 (S)	-	-	-	-
8	(2) Antimon	y - Units: µ	ıg/l					
9 10	5.5 (3) Arsenic -	90 · Units: μg/	180 ′1	6	-	-	-	-
11 12	2.0 (4) Barium -	360 Units: μg/	720 1	50	-		-	-
13 14	- (5) Beryllium	- n - Units: μ	- .g/l	2000	-	-	-	-
15 16	- (6) Boron - U	- Jnits: μg/l	-	4.0	-	-	-	-
17 18	- (7) Cadmiun	- n - Units: μ	- 1g/l - See N	- Tote No. 3 b	- Delow	500	-	-
19 20	- (8) Chromiu:	- m, +3 - Un	- its: μg/1 - S	5 ee Note No	- o. 4 below	-	-	-
21	(9) Chromiu	m, +6 - Un	its: μg/l					
22 23	11 (10) Chromiu	16 um, total -	32 Units: μg/l	-	-	-	-	
24 25 26 27	- 2A CS	- 2A MS	- 2A FAV	100 1 B DC	- 3A/3B IC	- 4A IR	- 4B LS	- 5 AN
28	(11) Cobalt -	Units: µg/	' 1					
29 30	2.8 (12) Copper	436 - Units: μg	872 /1 - See No	- te No. 5 be	- elow	-	-	-
31 32	(13) Iron - U	nits: μg/l	-	1000(S)	-	-	-	-
33	-	-	-	300(S)	-	-	-	-
	7050.0220			15				

	11/08/99				[REVISOF	R]	CMR/KJ	AR3044
.1	(14) Lead - U	Inits: µg/l	- See Note	No. 6 belo)W			
2	(15) Mangane	ese - Units	:µg/1		,			
3 4	- (16) Mercury	- - Units: μ	- g/l	50(S)	-	-	-	-
5 6	0.0069 (17) Nickel -	2.4* Units: μg/	4.9* 1 - See Not	2 te No. 7 be	- low	-	-	-
7 8	- (18) Selenium	η - Units: μ	- g/1	100	-	-	-	-
9 10	5.0 (19) Silver - U	20 Jnits: μg/l	40 - See Note	50 e No. 8 bel	- ow	-	-	
11 12	0.12 (20) Thallium	- Units: μ	- g/l	100(S)	-	_	-	-
13 14	0.28 (21) Zinc - Ui	64 nits: μg/1 -	128 See Note	2 No. 9 belo [,]	- W	-		
15 16	- C. ORGANIC	- S SUBSTA	- NCE OR (5000(S) CHARACT	ERISTIC		-	-
17			STAND.	ARDS FOR	USE CLAS	SES		
18 19 20	2A CS	2A MS	2A FAV	1B DC	3A/3B IC	4A IR	4B LS	5 AN
21	(1) Acenaphtl	nene - Uni	ts: μg/l					
22 23	20 (2) Acrylonitr	56 ile (c) - U1	112 nits: μg/l	-	-	-	-	-
24 25	0.38 (3) Alachlor (1140* c) - Units:	2281* μg/l	-	-	-	-	-
26 27	3.8 (4) Aldicarb -	800* Units: μg,	1600* /1	2	- .	-	-	-
28 29	- (5) Aldicarb s	- ulfone - U	- nits: μg/l	3	-	-	-	-
30 31	(6) Aldicarb s	- ulfoxide -	- Units: μg/	2 1	-	-	-	-

AR3044

							-	
1 2	- (7) Anthrace	- ne - Units:	- μg/l	4	-	-	-	-
3 4	0.035 (8) Atrazine	0.32 (c) - Units:	0.63 μg/l	-	-	-	-	-
5 6	3.4 (9) Benzene (323 (c) - Units:	645 μg/l	3	-	-	-	-
7 8	9.7 (10) Benzo(a)	4487* pyrene - L	8974* Jnits: μg/l	5	-	-	-	-
9 10 11 12	2A CS	2A MS	2A FAV	0.2 1B DC	3A/3B IC	- 4A IR	- 4B LS	5 AN
13 14 15	(11) Bromofo33(12) Carbofut	2900	5800	-	-	-	-	-
16 17	(13) Carbon t	- tetrachloric	- le (c) - Uni	40 ts: μg/l	-	-	~	-
18 19	1.9 (14) Chlordai	1750* ne (c) - Un	3500* its: ng/1	5	~	-	-	-
20 21	0.073 (15) Chlorobe	1200* enzene (Mo	2400* onochlorob	2000 enzene) -	- Units: μg/l	-	-	-
22 23	20 (16) Chlorofo	423 orm (c) - U	846 nits: μg/l	100	-	-	-	-
24 25	53 (17) Chlorpyr	1392 rifos - Unit	2784 s: μg/l	100	- -	-	-	-
26 27	0.041 (18) Dalapon	0.083 - Units: με	0.17 g/l	-	-	-	- .	-
28 29	- (19) DDT (c)	- - Units: ng	- 5/1	200	-	-	-	-
30 31	0.11 (20) 1,2-Dibro	550* omo-3-chlo	1100* ropropane	- (c) - Unite	s: μg/1	-	-	-
32 33	- 2A	- 2A	- 2A	0.2 1 B	- 3A/3B	- 4A	- 4B	- 5

7050.0220

[REVISOR] CMR/KJ AR3044

11/08/99

1 2	·	CS	MS	FAV	DC	IC	IR	LS	AN
3	(21)	Dichlorobe	enzene (ort	ho) - Units	: μg/l				
4 5	(22)	- 1,4-Dichlor	- robenzene	- (para) (c) -	600 Units: μg/	·1	-	-	-
6 7	(23)	- 1,2-Dichlor	- roethane (c	-) - Units: µ	75 lg/l	-	-	-	-
8 9	(24)	3.5 1,1-Dichlor	45050* roethylene	90100* - Units: μg	5 ;/1	-	-	-	-
10 11	(25)	- 1,2-Dichlor	- roethylene	- (cis) - Unit	7 :s: μg/l	-	-	-	-
12 13	(26)	- 1,2-Dichlor	- coethylene	- (trans) - U	70 nits: μg/l	-	-	-	-
14 15	(27)	- 2,4-Dichlor	- cophenoxya	- acetic acid	100 (2,4-D) - U	- nits: μg/l	-	-	-
16 17	(28)	- 1,2-Dichlor	- ropropane	- (c) - Units:	70 μg/l	-	-	-	-
18 19	(29)	- Dieldrin (o	- c) - Units: r	- ng/l	5	-	-	-	-
20 21	(30)	0.0065 Di-2 - ethyll	1300* nexyl adipa	2500* ate - Units:	- μg/l	-	-	-	-
22 23 24 25		2A CS	- 2A MS	- 2A FAV	400 1 B DC	- 3A/3B IC	- 4A IR	- 4B LS	- 5 AN
26	(31)	Di-2-ethyll	nexyl phtha	alate (c) - L	Jnits: µg/l				
27 28	(32)	1.9 Di-n-Octyl	none* phthalate	none* - Units: µg	6 ;/1	-	-	-	-
29 30	(33)	30 Dinoseb -	825 Units: μg/2	1650 l	- .	-	, : -	-	-
31 32	(34)	- Diquat - U	- Inits: μg/l	-	7	-	-	-	-
33		-	-	-	20	-	-	-	-

7050.0220

	×	11/08/99	[REVISOR]	CMR/KJ	AR3044
1		(35) Endosulfan - Units: μg/l	•		· .
2 3		0.0076 0.084 0.17 - (36) Endothall - Units: μg/l			-
4 5		100 (37) Endrin - Units: μg/l	- -	· -	-
6 7		0.0039 0.090 0.18 2 (38) Ethylbenzene (c) - Units: μg/l		· -	-
8 9		68 1859 3717 700 (39) Ethylene dibromide - Units: μg/l		· -	-
10 11		(40) Fluoranthene - Units: μg/l			-
12 13 14 15		1.93.56.9-2A2A2A1BCSMSFAVDC		IA 4B IR LS	- 5 AN
16		(41) Glyphosate - Units: μg/l			
17 18		700 (42) Heptachlor (c) - Units: ng/l		-	-
19 20		0.10 260* 520* 400 (43) Heptachlor epoxide (c) - Units: ng/l		_``	-
21 22		0.12 270* 530* 200 (44) Hexachlorobenzene (c) - Units: ng/l		-	-
23 24		0.061 none* none* 1000 (45) Hexachlorocyclopentadiene - Units: μg/l		-	-
25 26		(46) Lindane (c) (Hexachlorocyclohexane, gar	 nma-) - Units:	- μg/l	-
27 28		0.0087 1.0* 2.0* 0.2 (47) Methoxychlor - Units: μg/l		. <u>-</u>	-
29 30		(48) Methylene chloride (c) (Dichloromethane	- e) - Units: μg/	-	-
31 32		45 13875* 27749* 5 (49) Oxamyl (Vydate) - Units: μg/l		- -	-

1 2	- (50) Naphtha	- ilene - Units	- .: μg/l	200	-	-	-	
3 4 5 6	81 2A CS	409 2A MS	818 2A FAV	- 1B DC	- 3A/3B IC	- 4A IR	- 4B LS	- 5 AN
7	(51) Parathio	n - Units: µį	g/l					
8 9	0.013 (52) Pentachl	0.07 orophenol -	0.13 Units: μg	- :/l	-	-	-	-
10 11 12 13	0.93 - (53) Phenantl	See Note No. 10 below	-	1	-	-	-	-
14 15	3.6 (54) Phenol -	32	64	-	- - -	-	- :	-
16 17	123 (55) Picloram	2214 1 - Units: μg	4428 /1	-	-		-	-
18 19	- (56) Polychlo	- rinated bipł	- nenyls (c)	500 (PCBs, tot	- al) - Units: 1	- ng/l	-	-
20 21	0.014 (57) Simazine	1000* e - Units: µg	2000* ;/1	500	-	-	-	-
22 23	- (58) Styrene	- (c) - Units: 1	- ug/l	4	-	-	-	-
24 25	- (59) 2,3,7,8-Te	- etrachlorodi	- benzo-p-d	100 lioxin (TCI	- DD-dioxin) ·	- - Units: r	- ng/l	-
26 27	- (60) 1,1,2,2-Te	- etrachloroet	- hane (c) -	0.03 Units: μg,	- 1	-	- .	-
28 29 30 31	1.1 2A CS	1127* 2A MS	2253* 2A FAV	- 1B DC	- 3A/3B IC	- 4A IR	- 4B LS	- 5 AN
32	(61) Tetrachlo	oroethylene	(c) - Unit	s: µg/l				
33 34	3.8 (62) Toluene	428* - Units: μg/	85 7* ′1	5		-	- -	-

1 2	25 (63) To:		52 2703 - Units: ng/l	1000	-	-	-	-
3 4	0.: (64) 2,4)* 1500* x) - Units: μg		-	-	-	-
5 6	(65) 1,2	- 4-Trichloro	- benzene - Un	50 its: μg/l	-	-	-	-
7 8	- (66) 1,1	- .1-Trichloro	- ethane - Unit	70 s: μg/l	-	-	-	-
9 10	32 (67) 1,1,		57 5913 ethane - Units	200 s: μg/l	-	-	-	-
11 12	- (68) 1,1,	- 2-Trichloro	ethylene (c) -	5 Units: µg/	- 1	-	-	-
13 14	25 (69) 2 <i>,</i> 4,		38* 13976 phenol - Unit		-	-	-	-
15 16	2.((70)) 102 Trihalomet		al (c)	- (Bromodic	- hlorometh	- nane) (B	- romoform)
17	(Chloro	dibromome	thane) (Chlor	oform) - U	nits: µg/l			
18 19 20 21 22	- 2A CS (71) Vir	S MS		100 1 B DC	- 3A/3B IC	- 4A IR	- 4B LS	- 5 AN
23 24	0.1	7 noi	ne* _ none* - Units: μg/l	-	, -	-	-	-
25 26	16 Note No)7 2814 L COLIFORM	10000 ORGANIS	- SMS	-	-	-
27	No	t to exceed	200 organisr	ns per 100	milliliters a	s a geom	etric mean	of not less
28	tha	in five sam	ples in any ca	alendar mo	onth, nor sha	all more t	han ten pe	rcent of all
29	sai	nples taken	during any c	alendar m	onth individ	ually exce	eed 400 org	anisms per
30	100) milliliters.	The standard	d applies o	nly betweer	April 1 a	and Octobe	r 31.
31	Note No	. 2, RADIO	DACTIVE MA	TERIALS				

7050.0220

		[. j	110011
1	See parts 7050.0221, subparts 2, 3, 4,	and 5; 7050.0)222, su	bparts 4	1, 5, and	d 6; and
2.	7050.0224, subparts 2, 3, and 4.					
3	Note No. 3, CADMIUM					
4 5 6	STANDARDS THAT VARY WITH TOTAL HARDNESS (TH)			ANDAF ARDNE 200	•	ug/l 400
7 8 9 10	CS = exp.(0.7852[ln(TH mg/l)]-3.49)	0.66	1.1	2.0	2.7	3.4
11 12 13	MS = exp.(1.128[ln(TH mg/l)]-3.828)	1.8	3.9	8.6	14	19
14 15 16	FAV = exp.(1.128 [ln(TH mg/l)]-3.1349)	3.6	7.8	17	27	37
10 1 7	Note No. 4, CHROMIUM +3					
18 19 20	STANDARDS THAT VARY WITH TOTAL HARDNESS (TH)			ANDAR ARDNE 200		ug/l 400
21 22 23 24	CS = exp.(0.819[ln(TH mg/l)]+1.561)	117	207	365	509	 644
25 26 27	MS = exp.(0.819[ln(TH mg/l)]+3.688)	984	1737	3064	4270	5405
28 29 30	FAV = exp.(0.819[ln(TH mg/l)]+4.380)	1966	3469	6120	8530	10797
31	Note No. 5, COPPER					
32 33 34	STANDARDS THAT VARY WITH TOTAL HARDNESS (TH)	EXAMI AT TO 50		ANDAR ARDNE: 200	•	ug/l 400
35 36 37	CS = exp.(0.620[ln(TH mg/l)]-0.57)	6.4	9.8	15	19	
38 39 40	MS = exp.(0.9422[ln(TH mg/l)]-1.464)	9.2	18	34	50	65
41 42	FAV =					

	11/08/99	[REVISOR]	(CMR/K	J	AR3044
1 2	exp.(0.9422[ln(TH mg/l)]-0.7703)	18	35	68 _.	100	131
3	Note. No. 6, LEAD					
4 5 6	STANDARDS THAT VARY WITH TOTAL HARDNESS (TH)	EXAMP AT TOT 50				μg/l 400
7 8 9 10	CS = exp.(1.273[ln(TH mg/l)]-4.705)	1.3	3.2'	7.7	13	 19
11 12 13	MS = exp.(1.273[ln(TH mg/l)]-1.460)	34	82	197	331	477
14 15 16	FAV = exp.(1.273[ln(TH mg/l)]-0.7643)	68	164	396	663	956
17	Note No. 7, NICKEL					
18 19	STANDARDS THAT VARY WITH TOTAL HARDNESS (TH)	EXAMP AT TOT				µg/l
20 21		50	100	200	300	400
22 23 24	CS = exp.(0.846[ln(TH mg/l)]+1.1645) not to exceed 297 μg/l	88	158	283	297	297
25 26 27	MS = exp.(0.846]ln(TH mg/l)]+3.3612)	789	1418	2549	3592	4582
28 29	FAV = exp.(0.846[ln(TH mg/l)]+4.0543)	1578	2836	5098	7185	9164
30 31	Note No. 8, SILVER					
32 33	STANDARDS THAT VARY WITH TOTAL HARDNESS (TH)	EXAMP AT TOT				µg/l
34 35		50	100	200	300	400
36 37 38	CS = 0.12	0.12	0.12	0.12	0.12	0.12
39 - 40 41	MS = exp.(1.72[ln(TH mg/l)]-7.2156)	0.61	2.0	6.7	13	22
42	FAV =					

	11/08/99	[REVISOF	k]	CMR/K	IJ	AR3044		
1 2		n(TH mg/l)] nd FAV shall		:han 0.12 μg/]	1.2 l	4.1	13	27	44
3 4	Note No. 9,	, ZINC	1997 - 19						
5 6 7 8		RDS THAT V ARDNESS (T		ł			ANDAF ARDNE 200		μg/l 400
9 10 11	CS = exp.(0.8473	3[ln(TH mg/l)]+0.7615)		59	106	191	269	 343
12 ⁻ 13 14	MS = exp.(0.8473	3[ln(TH mg/l)]+0.8604)		65	117	211	297	379
15 16 17	FAV = exp.(0.8473[ln(TH mg/l)]+1.5536)					234	421	594	758
18	Note No. 10), PENTACH	ENOL						
19 20 21	STANDARD THAT VARIES WITH pH				EXAMI AT pH 6.5		ANDAR 7.5	2DS IN 8.0	μg/l 8.5
22 23 24 25	CS = 0.93				0.93	0.93	0.93	0.93	0.93
26 27 28	MS = exp.(1.005(5.5	9.1	15	25	41			
29 30 31 32	- · ·	pH)-4.1373)	11	18	30	50	82		
	-	See repealer.						oD 1 o	
33 34	4A and 4B ,		y standarc	ls applicable	to use Cl	asses	LB or IC	, 2 B d, 3	SA or 3B,
35				-1)					
		posed (all no							
36	A. MISCELI	LANEOUS SI		E OR CHAR					
37	0D 1	0D 1		ARDS FOR US					_
38 39	2Bd CS	2Bd MS	2Bd FAV		3A/3B IC	4A IR	4E LS		5 AN
	7050.0220			24					

· .

	· · · · · ·							
2	(1) Ammoni	a, un-ionize	ed as N - I	Jnits: µg/l				
3 4	40 (2) Asbestos	none , >10 µm (c	none) - Units: f	- ibers/l	-	-	-	-
5 6	- (3) Bicarbon	ates (HCO ₃)	-) - Units: n	7.0e+06 neq/1	- ,		-	-
7 8	- (4) Chloride	- - Units: mę	- 5/1	-		5	-	-
9 0	230 (5) Chlorine,	860 , total residu	1720 ual - Units	250(S) : μg/l	50/100	-	-	-
1 2	11 (6) Color - U	19 Jnits: Pt-Co	38	-	-	-	- .	-
3 1	- (7) Cyanide,	- free - Unite	- s: μg/l	15(S)	-	-	-	-
5	5.2 (8) Dissolved	22 1 oxygen - I	45 Units: mg/	200 1 - See part	- 7050.0222,	- subp. 3	-	-
7	(9) Fecal coli	form organ	isms - See	Note No. 1	. below			
3	(10) Fluoride	e - Units: m	g/l	·				
)	-							
) L 2	2Bd CS	2Bd MS	2Bd FAV	4 1B/1C DC	- 3A/3B IC	- 4A IR	- 4B LS	5 AN
L 2 3		MS	FAV	1B/1C DC				-
L 2	CS	MS e - Units: ma	FAV g/l	1B/1C				-
L 2 3 L .	CS (11) Fluoride	MS e - Units: mg - g agents - U -	FAV g/l Jnits: µg/l	1 B/1C DC 2(S) 500(S)	IC -			_
L 2 3 4 5	CS (11) Fluoride (12) Foaming -	MS e - Units: m g agents - U ss, Ca+Mg a -	FAV g/l Inits: μ g/l as CaCO ₃ -	1B/1C DC 2(S) 500(S) Units: mg/	IC -			-

7050.0220

-

	11/08/99	[REVISOR] CMI	R/KJ	AR3044
1	(16) Nitrite, as N - Units: mg/l				
2 3	(17) Nitrate + Nitrite, as N - Units: mg/l	-	-	-	-
4 5	(18) Odor - Units: TON	-	- ,	-	-
6 7	(19) Oil - Units: μg/l	-	-	-	-
8 9	500 5000 10000 - (20) pH, low - Units: su	-	-	-	-
10 11 12 13	6.5 none none 6.5(S) 2Bd 2Bd 2Bd 1B/1C CS MS FAV DC	6.5/6.0 3A/3B IC	6.0 4A IR	6.0 4B LS	6.0 5 AN
14	(21) pH, high - Units: su				
15 16	9.0 none none 8.5(S) (22) Radioactive materials - See Note No. 2 b	8.5/9.0 pelow	8.5	9.0	9.0
17	(23) Salinity, total - Units: mg/l				
18 19	(24) Sodium - Units: meq/l	-	-	1000	-
20 21 22		-	60% of total cations	-	-
23	(25) Specific conductance, at 25°C - Units: μr	nhos/cm			
24 25	(26) Sulfate - Units: mg/l	-	1000	-	-
26 27	(27) Sulfates, wild rice present - Units: mg/l		-	-	-
28 29	(28) Temperature - Units: °F - See Note No.	3 below	10	-	- .
30 ⁻	(29) Total dissolved salts - Units: mg/l				
31 32	(30) Total dissolved solids - Units: mg/l	-	700	-	-

-

7050.0220

	11/08/99				[REVISO]	R] C	MR/KJ	AR3044
1 2	- (31) Turbidit	- y - Units: N	- ITU	500(S)	-	-	-	-
3 4	25 B. METALS	none AND ELEN	none 1ENTS SUE	1-5/25 BSTANCE	- OR CHAR	ACTERIS	TIC	-
5			STANDA	ARDS FOR	USE CLAS	SES		
6 7 8	2Bd CS	2Bd MS	2Bd FAV	1 B /1C DC	3A/3B IC	4A IR	4B LS	5 AN
9	(1) Aluminu	m - Units: µ	ıg/l					
10 11 12	125 (2) Antimony	1072	2145	50-200 (S)	-	-		-
12 13 14	5.5 (3) Arsenic -	90	180	6	-		-	-
15 16	2.0 (4) Barium -	360 Units: μg/l	720	50	-	· _	-	-
17 18	- (5) Beryllium	- ι - Units: μg	- ;/1	2000	-	-	-	-
19 2 0	- (6) Boron - U	- Jnits: μg/l	-	4	-	-	-	-
21 22	- (7) Cadmium	- ι - Units: με	- 5/1 - See No	- ote No. 4	- below	500	_	-
23 24	- (8) Chromiur	- n, +3 - Uni	- ts: μg/1 - Se	5 ee Note N	- o. 5 below	-	-	-
25	(9) Chromiur	n, +6 - Unit	ts: μg/l					
26 27	11 (10) Chromiu	16 ım, total - L	32 Jnits: µg/l	-	-	-	-	-
28 29 30 31	- 2Bd CS	- 2Bd MS	- 2Bd FAV	100 1 B/1C DC	- 3A/3B IC	- 4A IR	- 4B LS	5 AN
32	(11) Cobalt -	Units: µg/l						

7050.0220

AR3044

1 2	2.8 (12) Copper	436 - Units: μg/	872 /l - See No	- ote No. 6 be	- elow	-	-	-
3 4	- (13) Iron - U	- nits: μg/l	-	1000(S)	-	-	-	-
5 6	- (14) Lead - U	- Jnits: μg/l -	- See Note	300(S) No. 7 belo	- W	-	-	-
7	(15) Mangan	ese - Units:	µg/l					
8 9	(16) Mercury	- γ - Units: μg	- ;/l	50(S)	· -	-	-	
10 11	0.0069 (17) Nickel -	2.4* Units: µg/l	4.9* - See Not	2 e No. 8 bel	ow	-	-	-
12 13	- (18) Seleniun	- n - Units: μį	- g/l	100		_ ,	-	-
14 15	5.0 (19) Silver -	20 Units: µg/l	40 - See Note	50 e No. 9 belo	- DW	-	-	-
16 17	1.0 (20) Thalliun	- n - Units: με	- g/l	100(S)	-	-	-	-
18 19	0.28 (21) Zinc - U	64 Inits: μg/l -	128 See Note	2 No. 10 belo	- W	-	·_	-
20 21	C. ORGANIC	- CS SUBSTA	- NCE OR (5000(S) CHARACTI	ERISTIC	-	-	-
22			STAND.	ARDS FOR	USE CLAS	SES		
23 24 25	2Bd CS	2Bd MS	2Bd FAV	1B/1Ċ DC	3A/3B IC	4A IR	4B LS	5 AN
26	(1) Acenapht	hene - Unit	s: μg/l					
27 28	20 (2) Acrylonit	56 rile (c) - Un	11 2 its: μg/l	-		-	.	-
29 30	0.38 (3) Alachlor	1140* (c) - Units:	2281* μg/l	-	-	-	-	-
31	4.2	800*	1600*	2	-	-	-	-

7050.0220

	11/08/99				[REVISOR	.]	CMR/KJ	AR3044
1	(4) Aldicarb ·	- Units: μg/	′1					
2 3	- (5) Aldicarb s	- sulfone - Ui	- nits: μg/l	3	-	-	-	-
4 5	(6) Aldicarb	- sulfoxide -	- Units: μg/l	2	-	-	-	_ .
6 7	- (7) Anthracer	- ne - Units: µ	- ıg/l	4		-	-	-
8 9	0.035 (8) Atrazine (0.32 (c) - Units:	0.63 μg/1	-	-	-	· -	-
10 11	3.4 (9) Benzene (323 c) - Units: µ	645 1g/l	3	-	-	-	-
12 13	11 (10) Benzo(a)	4487* pyrene - Ui	8974* nits: μg/l	5	-	-	-	-
14 15 16 17	- 2Bd CS	- 2Bd MS	- 2Bd FAV	0.2 1 B/1C DC	- 3A/3B IC	- 4A IR	- 4B LS	- 5 AN
18	(11) Bromofo	rm - Units:	µg/l					
19 20	41 (12) Carbofur	2900 ran - Units:	5800 μg/l	-	-	-	-	-
21 22	- (13) Carbon t	- etrachloride	- e (c) - Units	40 : μg/1	-	-	-	-
23 24	1.9 (14) Chlordar	1750* ne (c) - Unit	3500* ts: ng/1	5	-	-		-
25 26	0.29 (15) Chlorobe	1200* enzene (Mo	2400* nochlorober	2000 1zene) - U	- nits: μg/l	-	,	-
27 28	20 (16) Chlorofo	423 rm (c) - Un	846 .its: μg/l	100	- .	-	-	-
29 30	53 (17) Chlorpyr	1392 ifos - Units	2784 :: μg/l	100	<u>-</u>	-	-	-
31 32	0.041 (18) Dalapon	0.083 - Units: μg	0.17 /l	-	-	-	-	-

	11/08/99				[REVISO]	R] (CMR/KJ	AR3044	
1 2	(19) DDT (c)	- - Units: nş	- g/l	200	-	-	-	-	
3 4	1.7 (20) 1,2-Dibr	550* omo-3-chlo	1100* ropropane	- (c) - Units:	- μg/1	-	· _	-	
5 6 7 8	- 2Bd CS	- 2Bd MS	- 2Bd FAV	0.2 1B/1C DC	- 3A/3B IC	- 4A IR	- 4B LS	5 AN	
9	(21) Dichloro	benzene (c	ortho) - Un	its: µg∕l					
10 11	- (22) 1,4-Dich	- lorobenzen	e (para) (c	600) - Units: μ	g/l	. –	-	- - -	
12 13	- (23) 1,2-Dich	- loroethane	- (c) - Units	75 : μg/l	-	-	-	-	
14 15	3.8 (24) 1,1-Dich	45050* loroethylen	90100* e - Units:	5 µg/l	-	· -	-	- .	
16 17	- (25) 1,2-Dich	- loroethylen	- le (cis) - Ui	7 nits: μg/l	 .	-	-	- .	
18 19	- (26) 1,2-Dichl	- loroethylen	- le (trans) -	70 Units: μg/l	- I	-	-	-	
20 21	- (27) 2,4-Dichl	- lorophenox	- yacetic aci	100 d (2,4-D) -	- Units: μg/l	- l	-	-	
22 23	- (28) 1,2-Dichl	- loropropan	- e (c) - Uni	70 ts: μg/l	-	-	-	-	
24 25	- (29) Dieldrin	(c) - Units	ng/l	5	-	-	-	-	
26 27	0.026 (30) Di-2-ethy	1300* /lhexyl adi	2500* pate - Unit	- ts: μg/l	-	-	-	-	
28 29 30 31	2Bd CS	2Bd MS	- 2Bd FAV	400 1 B/1C DC	3A/3B IC	- 4A IR	- 4B LS	- 5 AN	
32	(31) Di-2-ethy	lhexyl pht	halate (c) -	• Units: µg/	/1				
33 34	1.9 (32) Di-n-Oct	none* yl phthalat	none* e - Units: J	6 ug/l	-	-	-	-	
	7050.0220			30					

1 2	(33)	30 Dinoseb -	825 Units: µg/l	1650	-	-	-	-	-
3 4	(34)	- Diquat - U	- Jnits: μg/l	-	7	-		-	-
5 6	(35)	- Endosulfai	- n - Units: μ	- g/l	20	-	-	-	-
7 8	(36)	0.029 Endothall	0.28 - Units: μg	0.56 /1	-	-	-	- .	-
9 10	(37)	- Endrin - U	- Inits: μg/l	-	100	-	-	- .	-
11 12	(38)	0.016 Ethylbenze	0.090 ene (c) - Ur	0.18 uts: μg/1	2	-		-	-
13 14	(39)	68 Ethylene d	1859 ibromide -	3717 Units: μg/	700 /1	-		-	-
15 16	(40)	- Fluoranthe	- ene - Units:	- μg/l	0.05	-	-	-	-
17 18 19 20		1.9 2Bd CS	3.5 2Bd MS	6.9 2Bd FAV	- 1B/1C DC	- 3A/3B IC	4A IR	- 4B LS	- 5 AN
18 19	(41)	2Bd	2Bd MS	2Bd FAV					
18 19 20		2Bd CS	2Bd MS e - Units: μ -	2Bd FAV g/l					
18 19 20 21 22	(42)	2Bd CS Glyphosate	2Bd MS e - Units: μ - : (c) - Units 260*	2Bd FAV g/l 	DC 700 400				
18 19 20 21 22 23 24	(42) (43)	2Bd CS Glyphosate - Heptachlor 0.39	2Bd MS e - Units: μ - (c) - Units 260* epoxide (α 270*	2Bd FAV g/l - s: ng/l 520* c) - Units: n 530*	DC 700 400 ng/1 200				
18 19 20 21 22 23 24 25 26	(42) (43) (44)	2Bd CS Glyphosate - Heptachlor 0.39 Heptachlor 0.48	2Bd MS e - Units: μ - (c) - Units 260* epoxide (α 270* obenzene (α none*	2Bd FAV g/l - s: ng/l 520* c) - Units: n 530* c) - Units: n none*	DC 700 400 ng/1 200 ng/1 1000				
18 19 20 21 22 23 24 25 26 27 28	 (42) (43) (44) (45) 	2Bd CS Glyphosate - Heptachlor 0.39 Heptachlor 0.48 Hexachlor 0.24	2Bd MS e - Units: μ - (c) - Units 260* epoxide (α 270* obenzene (α none* ocyclopenta	2Bd FAV g/l - s: ng/l 520* c) - Units: n 530* c) - Units: n none* idiene - Un	DC 700 400 ng/1 200 ng/1 1000 nits: µg/1 50	IC	IR - -		
18 19 20 21 22 23 24 25 26 27 28 29 30	 (42) (43) (44) (45) (46) 	2Bd CS Glyphosate Heptachlor 0.39 Heptachlor 0.48 Hexachlor 0.24 Hexachlor	2Bd MS e - Units: μ - (c) - Units 260* epoxide (α 270* obenzene (α none* ocyclopenta -) (Hexachla 4.4*	2Bd FAV g/l - s: ng/l 520* c) - Units: n 530* c) - Units: n none* diene - Un - procyclohes 8.8*	DC 700 400 ng/1 200 ng/1 1000 nits: µg/1 50	IC	IR - -		

7050.0220

CMR/KJ

1 2		- (48) Methyle	- ne chloride	- (c) (Dichlo	40 promethane	- e) - Units: µ	- ıg/l	· -	-
3 4		46 (49) Oxamyl	13875* (Vydate) -	27749* Units: μg/l	5 I	-	-	-	- .
5 6		- (50) Naphtha	- lene - Unit	- s: μg/l	200	-	-	-	-
7 8 9 10		81 2Bd CS	409 2Bd MS	818 2Bd FAV	- 1B/1C DC	- 3A/3B IC	- 4A IR	- 4B LS	- 5 AN
11		(51) Parathio	n - Units: µ	ıg/l					
12 13		0.013 (52) Pentachl	0.07 orophenol	0.13 - Units: μg,	- /1 - See No	- ote No. 11	- below		-
14 15		1.9 (53) Phenantl	- nrene - Uni	- its: μg/l	1	-	-	-	-
16 17		3.6 (54) Phenol -	32 Units: μg/	64 1	-	-	-	_ ·	-
18 19		123 (55) Picloram	2214 - Units: μ _ξ	4428 g/l	-	-	-	-	-
20 21		- (56) Polychlo	- rinated hin	- benuls (c) (500	- 1) - Unite:	- ng/1	-	-
22 23		0.029 (57) Simazine	1000*	2000*	500	-	-	-	- -
24 25		- (58) Styrene (c) - Units:	- μg/l	4	-	· _	-	-
26 27		- (59) 2,3,7,8-Te	- etrachlorod	- ibenzo-p-d	100 ioxin (TCE	- DD-dioxin)	- - Units: 1	ng/l	-
28 29		- (60) 1,1,2,2-Te	- etrachloroe	- thane (c) - `	0.03 Units: μg/	-	-	-	-
30 31 32 33		1.5 2Bd CS	1127* 2Bd MS	2253* 2Bd FAV	- 1B/1C DC	- 3A/3B IC	- 4A IR	- 4B LS	- 5 AN
34	•	(61) Tetrachlo	oroethylene	(c) - Units	« μg/l				

7050.0220

1 2	(62)	3.8 Toluene -	428* Units: μg/3	857* I	5	-	-	-	-
3 4	(63)	253 Toxaphen	1352 e (c) - Unita	2703 s: ng/l	1000		-	-	-
5 6	(64)	1.3 2,4,5-TP (S	730* Silvex) - Un	1500* uits: μg/l	3000	-	-	-	-
7 8	(65)	- 1,2,4-Trich	- lorobenzen	- le - Units: I	50 1g/1	-	-	-	-
9 10	(66)	- 1,1,1 - Trich	- loroethane	- - Units: με	70 g/1	-	-		-
11 12	(67)	329 1,1,2 - Trich	2957 loroethane	5913 - Units: με	200 g/1	-	-	-	-
13 14	(68)	- 1,1,2-Trich	- loroethylen	- ne (c) - Uni	5 ts: μg/1	-	-	-	-
15 16	(69)	25 2,4,6-Trich	6988* lorophenol	13976* - Units: με	5 g/1	-	-	-	-
17 18	(70)	2.0 Trihalo	102 methanes,	203 total	- (c) (B	- romodichla	- promethan	e) (Bron	- noform)
19	(Chl	orodibrom	omethane)	(Chlorofor	m) - Units	: μg/l			
20 21 22 23		- 2Bd CS	- 2Bd MS	- 2Bd FAV	100 1 B/1C DC	3A/3B IC	4A IR	- 4B LS	- 5 AN
24	(71)	Vinyl chlo	ride (c) - U	nits: µg/l	•				
25 26	(72)	0.18 Xylenes, to	none* otal - Units:	none* : µg/1	2	-	- ·	-	-
27 28	Note	166 e No. 1, FE	1407 CAL COLI	2814 Form or	10000 GANISMS	-	-	-	-
29		Not to ex	ceed 200 of	rganisms p	er 100 mil	lliliters as a	a geometri	c mean of	not less
30		than five	samples in	any calend	dar month	, nor shall	more thar	n ten perce	nt of all
31		samples ta	ıken during	g any calend	dar month	individual	ly exceed 2	,000 organi	sms per
32		100 millili	ters. The st	andard ap	plies only	between A	pril 1 and	October 3	1.

7050.0220

	·	11/08/99	[REVISOR]	Ċ	CMR/K]	Ţ	AR3044		
1		Note No. 2, RADIOACTIVE MATERIALS							
2		See parts 7050.0221, subparts 2, 3, 4, and 5; 7050.0222, subparts 4, 5, and 6; and							
3		7050.0224, subparts 2, 3, and 4.							
4		Note No. 3, TEMPERATURE							
5		Five degrees Fahrenheit above natural in streams and three degrees Fahrenheit							
6		above natural in lakes, based on monthly average of maximum daily temperature,							
7		except in no case shall it exceed the daily average temperature of 86 degrees							
8		Fahrenheit.							
9		Note No. 4, CADMIUM							
10 11		STANDARDS THAT VARY WITH TOTAL HARDNESS (TH)	EXAMPLE STANDARDS IN µg/l AT TOTAL HARDNESS OF:						
12 13			50	100	200	300	400		
13 14		CS =					-		
15 16 ⁻		exp.(0.7852[ln(TH mg/l)]-3.490)	0.66	1.1	2.0	2.7	3.4		
17		MS =							
18 19		exp.(1.128[ln(TH mg/l)]-1.685)	15	33	73	116	160		
20		FAV =							
21 22		exp.(1.128 [ln(TH mg/l)]-0.9919)	31	67	146	231	319		
23		Note No. 5, CHROMIUM +3							
24 25		STANDARDS THAT VARY WITH TOTAL HARDNESS (TH)	EXAMPLE STANDARDS IN µg/l AT TOTAL HARDNESS OF:						
26		IOIAL HARDNESS (III)	50	100	200	300	400		
27		CS =	<u></u>						
28 29		CS = exp.(0.819[ln(TH mg/l)]+1.561)	117	207	365	509	644		
30									
31 32		MS = 0.0000000000000000000000000000000000	984	1737	3064	4 27 0	5405		
32 33		exp.(0.819[ln(TH mg/l)]+3.688)	904	1757	5004	4270	5405		
34		FAV =							
35 36		exp.(0.819[ln(TH mg/l)]+4.380)	1966	3469	6120	8530	10 797		
38 37		Note No. 6, COPPER							

[REVISOR] CMR/KJ AR3044

1 2	STANDARDS THAT VARY WITH TOTAL HARDNESS (TH)		EXAMPLE STANDARDS IN μg/l AT TOTAL HARDNESS OF:					
3		50	100	200	300	400		
4 5 6	CS =	6.4	9.8	15	19	 23		
6 7	exp.(0.620[ln(TH mg/l)]-0.57)	0.4	9.0	15	19	23		
8 9	MS = 0.0422[ln(TH m c (l)] + 1.4(4)]	9.2	18	34	50	65		
9 10	exp.(0.9422[ln(TH mg/l)]-1.464)	9.2	10	54	50	00		
11	FAV =	10	05	(0 ¹	100	101		
12 13	exp.(0.9422[ln(TH mg/l)]-0.7703)	18	35	68	100	131		
14	Note. No. 7, LEAD							
15 16	STANDARDS THAT VARY WITH TOTAL HARDNESS (TH)		EXAMPLE STANDARDS IN μg/l AT TOTAL HARDNESS OF:					
17		50	100	200	300	400		
18 19	CS =							
20 21	exp.(1.273[ln(TH mg/l)]-4.705)	1.3	3.2	7.7	13	19		
22 23	MS = exp.(1.273[ln(TH mg/l)]-1.460)	34	82	197	331	477		
24 25	FAV =							
26 27	exp.(1.273[ln(TH mg/l)]-0.7643)	68	164	396	663	956		
28	Note No. 8, NICKEL							
29 30	STANDARDS THAT VARY WITH TOTAL HARDNESS (TH)		EXAMPLE STANDARDS IN μg/l AT TOTAL HARDNESS OF:					
31			100	200	300	400		
32 33	CS =				·			
34 35	exp.(0.846[ln(TH mg/l)]+1.1645) not to exceed 297 μg/l	88	158	283	297	297		
36	MS =							
37 38	exp.(0.846[ln(TH mg/l)]+3.3612)	789	1418	2549	3592	4582		
39	FAV =							
40 41	exp.(0.846[ln(TH mg/l)]+4.0543)	1578	2836	5098	7185	9164		
41 42	Note No. 9, SILVER							

7050.0220

1	1/	08	/99
	1/	00	

1 2	STANDARDS THAT VARY WITH TOTAL HARDNESS (TH)	EXAMPLE STANDARDS IN µg/l AT TOTAL HARDNESS OF:						
3		50	100	200	300	400		
4								
5		· .						
6	CS = 1.0	1.0	1.0	1.0	1.0	1.0		
7								
8	MS =							
9	exp.(1.72[ln(TH mg/l)]-7.2156)	1.0	2.0	6.7	13	22		
10								
11	FAV =							
12	exp.(1.72[ln(TH mg/l)]-6.520)	1.2	4.1	13	27	44		
13	The MS and FAV shall be no less than 1.0 μ g/l							
14								
15	Note No. 10, ZINC							
17						/1		
16 17	STANDARDS THAT VARY WITH			STANDARDS IN $\mu g/l$				
17	TOTAL HARDNESS (TH)	AT TOTAL HARDNESS OF:						
18 19		50	100	200	300	400		
19 20	CS =							
20 21		FO	100	101	2(0	242		
22	exp.(0.8473[ln(TH mg/l)]+0.7615)	59	106	191	269	343		
22	MS =							
23 24		65	117	211	297	270		
24 25	exp.(0.8473[ln(TH mg/l)]+0.8604)	60	11/	211	297	379		
23 26	FAV =							
20 27	$r_{\rm AV} = exp.(0.8473[ln(TH mg/l)]+1.5536)$	130	234	421	594	758		
28	exp.(0.04) o[m(111 mg/1)]+1.0000)	150	204	441	394	758		
20 29	Note No. 11, PENTACHLOROPHENOL							
<u></u>	Note No. 11, I ENTACILOROTTENOL							
30 31	STANDARD THAT VARIES WITH pH	EXAMPLE STANDARDS IN µg/l AT pH OF:						
32		6.5 [°]	7.0	7.5	8.0	8.5		
33								
34								
35	CS = 1.9	1.9	1.9	1.9	1.9	1.9		
36								
37	MS =							
38	exp.(1.005(pH)-4.830)	5.5	9.1	15	25	41		
39								
40	FAV =							
41	exp.(1.005(pH)-4.1373)	11	18	30	50	82		
42								
43	Subp. 5. [See repealer.]							

1	Subp. 5a. Water quali	ty standard	ls applicable to	use Classes	s 2B, 2C, or	2D; 3A, 3B,				
2	3C, or 3D; 4A and 4B or 4C; and 5. See Note No. 1 below.									
3	Rules as Proposed (all ne	ew materia	1)							
4	A. MISCELLANEOUS SU	JBSTANCE	E OR CHARACT	ERISTIC						
5		STANDA	RDS FOR USE C	LASSES						
6 7 8	2B,C&D 2B,C&D CS MS	2B,C&D FAV	3A/3B/3C IC	4A IR	4B LS	5 AN				
9	(1) Ammonia, un-ionized as N - Units: μg/l									
10 11	40 none (2) Bicarbonates (HCO ₃) -	none - Units: me	- eq/l	-	-	-				
12 13	(3) Chloride - Units: mg/	- ′1	-	5	-	-				
14 15	230 860 (4) Chlorine, total residua	1720 al - Units: 1	50/100/250 1g/l	-	-	-				
16 17	11 19 (5) Cyanide, free - Units:	38 μg/l	-	-	- '	-				
18 19	5.2 22 (6) Dissolved oxygen - U	45 nits: mg/l	- - See Note No. 2	2 below	• -					
20	(7) Fecal coliform organis	sms - See N	Jote No. 3 below	7						
21	(8) Hardness, Ca+Mg as	CaCO ₃ - U	nits: mg/l							
22 23	- (9) Hydrogen sulfide - U	nits: mg/l	50/250/500	-	-	-				
24 25	- (10) Oil - Units: μg/l	-	-	-	-	0.02				
26 27 28 29	500 5000 2B,C&D 2B,C&D CS MS	10,000 2 B,C&D FAV	- 3A/3B/3C IC	- 4A IR	- 4B LS	- 5 AN				
30	(11) pH, low - Units: su -	See Note	No. 4 below							
31	6.5 -	-	6.5/6.0/6.0	6.0	6.0	6.0				
	7050 0000									

	11/08/99			[]	REVISOR]	CMR/KJ	AR3044
1	(12) pH, high	- Units: su	- See Note	e No. 4 belov	W		
2 3	9.0 (13) Radioactiv	- ve material	- s - See No	8.5/9.0/9.0 te No. 5 belo		9.0	9.0
4	(14) Salinity, to	otal - Units	s: mg/l				
5 6	- (15) Sodium -	- Units: mec	-]/1	-	- '	1000	-
7 8 9	-	-	-	-	60% of total cations	-	<u>-</u> ·
10	(16) Specific co	onductance	e, at 25°C -	Units: µmho			
11 12	- (17) Sulfates, v	- vild rice pr	- cesent - Un	- its: mg/l	1000	-	-
13 14	- (18) Temperati	- ure - Units	- : °F - See N	- Note No. 6 b	10 elow	- .	-
15	(19) Total dissolved salts - Units: mg/l						
16 17	- (20) Turbidity	- - Units: N'	- TU	-	700	-	-
18 19	25 B. METALS A	none ND ELEM	none ENTS SUB	STANCE OF	- R CHARACTE	- RISTIC	* _
20 21			STANDA	RDS FOR US	SE CLASSES		
22 23 24	2B,C&D CS	2B,C&D MS	2B,C&D FAV	3A/3B/3C IC	4A IR	4B LS	5 AN
25	(1) Aluminum	- Units: με	g/l				
26 27	125 (2) Antimony -	1072 - Units: μg	2145 /l	-	-	-	-
28 29	31 (3) Arsenic - U	90 Inits: µg/l	180	-	-	-	- .
30 31	53 (4) Boron - Un	360 .its: μg/l	720	-	-		-

AR3044

1 2	(5) Cadmium	- - Units: μg	- /l - See No	- ote No. 7 belo	500 w		
3	(6) Chromium	, +3 - Unit	s: μg/l - Se	e Note No. 8	below		
4	(7) Chromium	, +6 - Unit	s: µg/l				
5 6	11 (8) Cobalt - U:	16 nits: μg/l	32	-	-		-
7 8	5.0 (9) Copper - L	436 Jnits: μg/l	872 - See Note	No. 9 below	-	-	-
9	(10) Lead - Ur	nits: µg/l -	See Note N	No. 10 below			
10 11 12	2B,C&D CS	2B,C&D MS	2B,C&D FAV	3A/3B/3C IC	4A IR	4B LS	5 AN
13	(11) Mercury -	· Units: µg,	/1				
14 15	0.0069 (12) Nickel - L	2.4* Jnits: μg/l	4.9* - See Note	- No. 11 below	-		-
16	(13) Selenium	- Units: μg	/1				
17 18	5.0 (14) Silver - U	20 nits: μg/l -	40 See Note 2	- No. 12 below	-	-	-
19 20	1.0 (15) Thallium	- - Units: μg	/1		-	-	-
21 22	0.56 (16) Zinc - Un	64 its: μg/l - 5	128 See Note N	Io. 13 below	-	-	· - ·
23	C. ORGANICS	SUBSTAN	ICE OR CI	HARACTERIS	TIC		
24			STANDA	RDS FOR USE	E CLASSES		
25 26 27	2B,C&D CS	2B,C&D MS	2B,C&D FAV	3A/3B/3C IC	4A IR	4B LS	5 AN
28	(1) Acenaphthe	ene - Units	: µg/l				
29 30	20 (2) Acrylonitri	56 le (c) - Uni	112 ts: μg/l	-	-	-	-
31	0.89	1140*	2281*	-	-	-	-
·	7050.0220			39		•	

	11/08/99	[REVISOR]	CMR/KJ	AR3044
1	(3) Alachlor - Units: μg/l		· .	
2 3	59 800 1600 - (4) Anthracene - Units: μg/l	-		
4 5	0.035 0.32 0.63 - (5) Atrazine - Units: μg/l	-		
6 7	10 323 645 - (6) Benzene - Units: μg/l			
8 9	114 4487 8974 - (7) Bromoform - Units: μg/l	-		
10 11	466 2900 5800 - (8) Carbon tetrachloride (c) - Units: μg/	- 1		
12 13	5.9 1750* 3500* - (9) Chlordane (c) - Units: ng/l	-		
14 15	0.29 1200* 2400* - (10) Chlorobenzene (Monochlorobenzen	e) - Units: μg/l		
16 17 18 19	20 423 846 - 2B,C&D 2B,C&D 3A CS MS FAV IC	- /3B/3C 4A IR	 4B LS	5 AN
20	(11) Chloroform - Units: µg/l			
21 22	155 1392 2784 - (12) Chlorpyrifos - Units: μg/l	- -	-	
23 24	0.041 0.083 0.17 - (13) DDT (c) - Units: ng/l	7	-	-
25 26	1.7 550* 1100* - (14) 1,2-Dichloroethane (c) - Units: μg/l	-		-
27 28	190 45050* 90100* - (15) Dieldrin (c) - Units: ng/l		-	-
29 30	0.026 1300* 2500* - (16) Di-2-ethylhexyl phthalate (c) - Units	- s: μg/l	-	-
31 32	2.1 none* none* - (17) Di-n-Octyl phthalate - Units: μg/l	· -	-	-

[REVISOR]

CMR/KJ

AR3044

11/08/99

			•							
1 2	30 (18) Endosulfa	825 an - Units: 1	1650 ug/l	-	-	-	-			
3 4	0.031 (19) Endrin -	0.28 Units: μg/l	0.56	-	-	-	-			
5 6	0.016 (20) Ethylbenz	0.090 zene (c) - U	0.18 nits: μg/l	-	-	-	-			
7 8 9 10	68 2B,C&D CS	1859 2 B,C&D MS	3717 2 B,C&D FAV	- 3A/3B/3C IC	- 4A IR	- 4B LS	- 5 AN			
11	(21) Fluoranthene - Units: $\mu g/l$									
12 13	1.9 (22) Heptachle	3.5 or (c) - Unit	6.9 ts: ng/l	-	-	-	-			
14 15	0.39 (23) Heptachle	260* or epoxide	520* (c) - Units:	ng/l	-	-				
16 17	0.48 (24) Hexachlo	270* robenzene (530* (c) - Units:	ng/l	-	-	-			
18 19	0.24 (25) Lindane (none* (c) (Hexachl	none* lorocyclohe	- exane, gamma-) -	- Units: μg/	-	-			
20 21	0.036 (26) Methylen	4.4* e chloride (8.8* (c) (Dichlor	- omethane) - Unit	- ts: μg/l	-	-			
22 23	1940 (27) Naphthal	13875 ene - Units	27749 : μg/l		-	-	-			
24 25	81 (28) Parathion	409 - Units: με	818 ;/l	-	-	-	-			
26 27	0.013 (29) Pentachlo	0.07 prophenol	0.13 Units: μg/	- l - See Note No.	- 14 below	-	-			
28	(30) Phenanth	rene - Units	s: μg/l							
29 30 31 32	3.6 2 B,C&D CS	32 2B,C&D MS	64 2 B,C&D FAV	- 3A/3B/3C IC	- 4A IR	4B LS	- 5 AN			
33	(31) Phenol -	Units: µg/l								

7050.0220

[REVISOR] CMR/KJ

AR3044

11/08/99

1 2	123 (32) Polychlor	2214 inated biph	4428 nenyls (c) (1	- PCBs, total) - U	- Jnits: ng/l	-	-
3 4	0.029 (33) 1,1,2,2-Tet	1000* trachloroetl	2000* hane (c) - L	- Jnits: μg/l	-	-	-
5 6	13 (34) Tetrachlor	11 27 roethylene	2253 (c) - Units:	- μg/l	-	-	-
7 8	8.9 (35) Toluene -	428 Units: μg/	857 1	· _	-	-	
9 10	253 (36) Toxaphen	1352 e (c) - Unit	2703 ts: ng/l	-	-	- .	-
11 12	1.3 (37) 1,1,1-Trich	730* nloroethane	1500* e - Units: μ	- g/l	-	-	-
13 14	329 (38) 1,1,2-Trich	2957 Noroethyle	5913 ne (c) - Un	- its: μg/l	-	-	-
15 16	120 (39) 2,4,6-Trich	6988 Noropheno	13976 l - Units: μ	- g/l	e.	-	
17 18	2.0 (40) Vinyl chlo	102 oride (c) - U	203 Jnits: μg/l	-	-	-	-
19 20 21 22	9.2 2B,C&D CS	none* 2B,C&D MS	none* 2B,C&D FAV	- 3A/3B/3C IC	- 4A IR	- 4B LS	- 5 AN
23	(41) Xylenes, t	otal - Units	s: μg/l				
24 25	166 Note No. 1, Cl	1407 LASS 3D, 4	2814 IC, and 5 S	- STANDARDS,	- applicable to	- o wetlands	-
26	In genera	l, if Class 3	3, 4, or 5 st	andards are ex	ceeded, bacl	kground coi	nditions shall
27	be mainta	ained. See p	oarts 7050.0	223, subpart 5;	7050.0224, s	subpart 4; a	nd 7050.0225,
28	subpart 2						
29	Note No. 2, D	ISSOLVED	OXYGEN				
30	See part !	7050.0222,	subparts 4	and 5 for the	Class 2B ar	nd 2C Disso	lved Oxygen
31	standards	s, respectiv	ely. Class 2	D standard: If	background	is less thar	15 mg/l, as a
32	2	umum, ma	intain back	ground.			
	7050.0220			42			

1	Note No. 3, FECAL COLIFORM ORGANI	SMS						
2	Not to exceed 200 organisms per 100	milliliters as	s a geor	netric n	nean of	not less		
3	than five samples in any calendar mo	onth, nor sha	ll more	than te	n perce	ent of all		
4	samples taken during any calendar mo	onth individu	ally exc	eed 2,00	0 organ	isms per		
5	100 milliliters. The standard applies o	nly between	April 1	and O	ctober 3	1.		
6	Note No. 4, pH							
7	Class 2D standard: Maintain backgrou	ınd.						
8	Note No. 5, RADIOACTIVE MATERIALS							
9	See parts 7050.0222, subparts 4, 5, and 6; and 7050.0224, subparts 2, 3, and 4.							
10	Note No. 6, TEMPERATURE							
11	Class 2B standard: Five degrees Fahrenheit above natural in streams and three							
12	degrees Fahrenheit above natural in lakes, based on monthly average of maximum							
13	daily temperature, except in no case shall it exceed the daily average temperature							
14	of 86 degrees Fahrenheit. Class 2C standard: five degrees Fahrenheit above natural							
15	in streams and three degrees Fahrenhe	eit above nati	ural in l	akes, ba	sed on	monthly		
16	average of maximum daily temperatu	re, except in	no case	shall it o	exceed t	he daily:		
17	average temperature of 90 degrees	Fahrenheit.	Class 2	2D stan	dard: 1	Maintain		
18	background.							
19	Note No. 7, CADMIUM							
20 21	STANDARDS THAT VARY WITH TOTAL HARDNESS (TH)	AT TC	PLE ST.	ARDNE	SS OF:			
22 23		50	100	200	300	400		
24	CS =	0.44		•	0.7	0.4		
25 26	exp.(0.7852[ln(TH mg/l)]-3.490)	0.66	1.1	2.0	2.7	3.4		
27	MS =							
28 29	exp.(1.128[ln(TH mg/l)]-1.685)	15	33	73	116	160		
30	FAV =							
31	exp.(1.128 [ln(TH mg/l)]-0.9919)	31	67	146	231	319		

7050.0220

	11/08/99	[REVISOR]	(CMR/K	J	AR3044
1						
2	Note No. 8, CHROMIUM +3					
3 4	STANDARDS THAT VARY WITH TOTAL HARDNESS (TH)	EXAMPL AT TOTA				µg/l
5 6		50	100	200	300	400
7 8	CS =					
9 10	exp.(0.819[ln(TH mg/l)]+1.561)	117	207	365	509	644
11	MS =					
12 13	exp.(0.819[ln(TH mg/l)]+3.688)	984	1737	3064	4270	5405
14 15	FAV = (1)(1 + (T) + (1)) + (1)(1 + (1))	1066	24(0	(100	0520	10707
15 16	exp.(0.819[ln(TH mg/l)]+4.380)	1966	3469	6120	8530	10797
17	Note No. 9, COPPER					
18	STANDARDS THAT VARY WITH	EXAMPL				µg/1
19	TOTAL HARDNESS (TH)	AT TOTA		-		400
20 21		50	100	200	300	400
22	CS =	······			. *	
23	exp.(0.620[ln(TH mg/l)]-0.570)	6.4	9.8	15	19	23
24						
25 26	MS = 0.0422[ln(TH mg/l)] 1.464)	9.2	18	34	50	65
20 27	exp.(0.9422[ln(TH mg/l)]-1.464)	7.L.	10	54	50	05
28	FAV =					
29	exp.(0.9422[ln(TH mg/l)]-0.7703)	18	35	68	100	131
30						
31	Note. No. 10, LEAD					
32	STANDARDS THAT VARY WITH	EXAMPL	E STA	NDAR	DS IN	ug/l
33	TOTAL HARDNESS (TH)	AT TOTA				1.0,
34		50	100	200	300	400
35						
36						
37	CS = (1.272) [1 + (TLL = - (1))] (1.705)	1.0	2.2	77	10	10
38 39	exp.(1.273[ln(TH mg/l)]-4.705)	1.3	3.2	7.7	13	19
40	MS =					
41	exp.(1.273[ln(TH mg/l)]-1.460)	34	82	197	331	477
42						
43	FAV =					

	11/08/99	[REVISOR]	CMR/K	J	AR3044
1 2	exp.(1.273[ln(TH mg/l)]-0.7643)	68	164	396	663	956
3	Note No. 11, NICKEL					
4 5	STANDARDS THAT VARY WITH TOTAL HARDNESS (TH)	EXAMF AT TOT 50				μg/l 400
6 7 8	CS =					
9 10	exp.(0.846[ln(TH mg/l)]+1.1645)	88	158	283	399	509
11 12 13	MS = exp.(0.846[ln(TH mg/l)]+3.3612)	789	1418	2549	3592	4582
14 15 16	FAV = exp.(0.846[ln(TH mg/l)]+4.0543)	1578	2836	5098	7185	9164
10	Note No. 12, SILVER					
18 19 20 21 22	STANDARDS THAT VARY WITH TOTAL HARDNESS (TH)	EXAMF AT TOT	AL HA	ARDNE	SS OF:	µg/l
		50 	100	200	300	400 —
23 24	CS = 1.0	1.0	1.0	1.0	1.0	1.0
25 26 27	MS = exp.(1.72[ln(TH mg/l)]-7.2156)	1.0	2.0	6.7	13	22
28 29	FAV = exp.(1.72[ln(TH mg/l)]-6.520)	1.2	4.1	13	27	44
30 31	The MS and FAV shall be no less than 1.0 μ g/	1				
32 33	Note No. 13, ZINC					
34 35	STANDARDS THAT VARY WITH TOTAL HARDNESS (TH)	EXAMP AT TOT	AL HA	ARDNE	SS OF:	-
36 37		50 	100	200	300	400
38 39 40	CS = exp.(0.8473[ln(TH mg/l)]+0.7615)	59	106	191	269	343
41 42 43	MS = exp.(0.8473[ln(TH mg/l)]+0.8604)	65	117	211	297	379

	11/08/99		.	[REVISOF	<u></u>	CMR/I	KJ	AR3044		
1 2 3	FAV = exp.(0.8473[ln(TH mg/l)]+	1.5536)		130	234	421	594	758		
4	Note No. 14, PENTACHLC									
5	STANDARD THAT VARI	ES WITH pH		EXAMPLE STANDARDS IN µg/l AT pH OF:						
6 7				АТ рн 6.5	7.0	7.5	8.0	8.5		
8 9 10 11	CS = exp.(1.005(pH)-5.290) not to exceed 5.5 μg/l			3.5	5.5	5.5	5.5	5.5		
12 13 14 15	MS = exp.(1.005(pH)-4.830)			5.5	9.1	15	25	41		
15 16 17 18	FAV = exp.(1.005(pH)-4.1373)		11	18	30	50	82			
18 19	Subp. 6. [See repealer.]									
20	Subp. 6a. Water quality s	tandards app	licable	e to use C	lasses	3C, 4A	and 4B,	5, and 7.		
21	Rules as Proposed (all new	material)								
22	MISCELLAN	IEOUS SUBST	FANCE	E OR CHA	ARACI	FERISTI	С			
23	S	TANDARDS	FOR U	ISE CLAS	SES					
24 25 26 27	7 LIMITED RESOURCES	3C IC	4A IR	4E LS			5 AN			
28	(1) Bicarbonates (HCO ₃) - L	Jnits: meq/l					_			
29 30	- (2) Boron - Units: μg/l	-	5	-			-			
31 32	(3) Chloride - Units: mg/l	-	500	-			-			
33 34	- (4) Dissolved oxygen - Unit	250 ts: mg/l - See	- e Note	- No. 1 bel	.0W		-			
35	(5) Fecal coliform organism	s - See Note I	No. 2 l	below						

AR3044

receiving

1	(6) Hardnes	s, Ca+Mg as Ca	CO ₃ - Units: 1	mg/l		
2 3	(7) Hydroge	- en sulfide - Unit	500 s: mg/l	-	-	-
4 5	(8) pH, low	-	-	-	- ·	0.02
6 7	(9) pH, high	6.0 1 - Units: su	6.0	6.0	6.0	6.0
8 9	(10) Radioad	9.0 ctive materials -	9.0 See Note No.	8.5 . 3 below	9.0	9.0
10 11 12 13		7 LIMITED RESOURCES	3C IC	4A IR	4B LS	5 AN
14	(11) Salinity	, total - Units: n	ng/l			
15 16	(12) Sodium	- - Units: meq/l	-		1000	-
17 18 19		-	-	60% of total cations	-	
20	(13) Specific	conductance, a	t 25°C - Units	: µmhos/cm	l	
21 22	(14) Sulfates	- , wild rice prese	- ent - Units: m	1000 g/l		-
23 24	(15) Total di	- issolved salts - I	- Jnits: mg/l	10	-	-
25 26	(16) Toxic p	- ollutants - See N	- Note No. 4 be	700 low		-
27 28	Note No. 1,	DISSOLVED O	XYGEN			
29	At con	centrations whi	ch will avoid	odors or p	utrid conditions	s in the

water or at concentrations at not less than 1 mg/l (daily average) provided that measurable concentrations are present at all times.

32 Note No. 2, FECAL COLIFORM ORGANISMS

7050.0220

30

31

1	Not to exceed 1,000 organisms per 100 milliliters in any calendar month as
2	determined by a geometric mean of a minimum of five samples, nor shall more
3	than ten percent of all samples taken during any calendar month individually
4	exceed 2,000 organisms per 100 milliliters. The standard applies only between May
5	1 and October 31.
6	Note No. 3, RADIOACTIVE MATERIALS
7	See part 7050.0224, subparts 2, 3, and 4.
8	Note No. 4, TOXIC POLLUTANTS
9	Toxic pollutants shall not be allowed in such quantities or concentrations that will
10	impair the specified uses.
11	7050.0221 SPECIFIC STANDARDS OF QUALITY AND PURITY FOR CLASS 1
12	WATERS OF THE STATE; DOMESTIC CONSUMPTION.
13	[For text of subps 1 to 3, see M.R.]
14	Subp. 4. Class 1C waters. The quality of Class 1C waters of the state shall be such that
15	with treatment consisting of coagulation, sedimentation, filtration, storage, and
16	chlorination, or other equivalent treatment processes, the treated water will meet both
17	the primary (maximum contaminant levels) and secondary drinking water standards
18	issued by the United States Environmental Protection Agency as contained in Code of
19	Federal Regulations, title 40, part 141, subparts B and G, and part 143, (1992); and
20	sections 141.61 and 141.62, as amended through July 17, 1992; except that the
21	bacteriological standards shall not apply, and the turbidity standard shall be 25 NTU.
22	These Environmental Protection Agency standards, as modified in this part, are adopted
23	and incorporated by reference. These standards will ordinarily be restricted to surface
24	waters, and groundwaters in aquifers not considered to afford adequate protection
	waters, and groundwaters in aquiters not considered to anota adequate protection
25	against contamination from surface or other sources of pollution. Such aquifers

- hard rock where water is obtained from mechanical fractures or joints with surface
 connections, and coarse gravels subjected to surface water infiltration. These standards
 shall also apply to these waters in the untreated state.
- 4

T

5

7050.0222 SPECIFIC STANDARDS OF QUALITY AND PURITY FOR CLASS 2

WATERS OF THE STATE; AQUATIC LIFE AND RECREATION.

[For text of subps 5 and 6, see M.R.]

6

7 Subpart 1. General. The numerical and narrative water quality standards in this part 8 prescribe the qualities or properties of the waters of the state that are necessary for the 9 aquatic life and recreation designated public uses and benefits. If the standards in this 10 part are exceeded in waters of the state that have the Class 2 designation, it is 11 considered indicative of a polluted condition which is actually or potentially 12 deleterious, harmful, detrimental, or injurious with respect to the designated uses. 13 Standards for metals are expressed as total metal but must be converted to dissolved 14 metal standards to determine water quality-based effluent limits. Water quality-based 15 effluent limits for metals are expressed as total metal. Conversion factors for converting 16 total to dissolved metal standards are listed in subpart 9. The conversion factor for 17 metals not listed in subpart 9 is one. The dissolved metal standard equals the total metal 18 standard times the conversion factor.

19 Subp. 2. Class 2A waters; aquatic life and recreation. The quality of Class 2A surface 20 waters shall be such as to permit the propagation and maintenance of a healthy 21 community of cold water sport or commercial fish and associated aquatic life, and their 22 habitats. These waters shall be suitable for aquatic recreation of all kinds, including 23 bathing, for which the waters may be usable. This class of surface waters is also 24 protected as a source of drinking water. The applicable standards are given below, with 25 substances considered carcinogenic followed by a (c). The basis columns to the right of 26 the chronic standards and to the right of the acute standards indicate whether the

7050.0222

chronic and acute standards, respectively, are based on the protection of the aquatic
community from adverse toxic effects (Tox.), or the protection of human consumers of
drinking water and sport-caught fish (HH). "NA" means not applicable. Subpart 7, item
E, should be referenced for FAV and MS values and "none" noted with an asterisk (*):

5 6 7	Substance or Characteristic (c) = carcinogen		Class 2A Chronic Standard		Class 2 Acute Standa		
8	-	Units	CS	Basis	MS	FAV	Basis
9							
10	Acenaphthene	µg/l	20	ΗH	56	112	Tox.
11	Acrylonitrile (c)	$\mu g/l$	0.38	HH	1140*	2281*	Tox.
12	Alachlor (c)	μg/1	3.8	HH	800*	1600*	Tox.
13	Aluminum, total	$\mu g/l$	87	Tox.	748	1496	Tox.
14	' Ammonia un-ionized	μg/1	16	Tox.	None	None	NA
15	as N						

The percent un-ionized ammonia can be calculated for any temperature and pH by using the following formula taken from Emerson, K., R.C. Russo, R.E. Lund, and R.V. Thurston. 1975. Aqueous ammonia equilibrium calculations; effect of pH and temperature. Journal of the Fisheries Research Board of Canada 32: 2379-2383.

$$f = \frac{1}{(pk_a - pH)} \times 100$$

where:

f = the percent of total ammonia in the un-ionized state

$pk_a = 0.09 + \frac{2730}{T}$, dissociation constant for ammonia

T = temperature in degrees Kelvin (273.16° Kelvin = 0° Celsius)

32 33 34	Substance or Characteristic (c) = carcinogen		Class 2A Chronic Standard	Chronic Acute			
35 36	C	Units	CS	Basis	MS	FAV	Basis
37 38 39 40	Anthracene Antimony Arsenic, total Atrazine (c)	μg/l μg/l μg/l μg/l	0.035 5.5 2.0 3.4	Tox. HH HH HH	0.32 90 360 323	0.63 180 720 645	Tox. Tox. Tox. Tox.

7050.0222

1									
2	Benzene (c)		µg/l	9.7		ΗH	4487*	8974*	Tox.
3	Bromoform		μg/l	33		ΗH	2900	5800	Tox.
4			10						
5	Cadmium, total		μg/1	Formula	L	Tox.	Formula	Formula	Tox.
6			. 0						
7	Cadmium, total								
8	The CS shall not	exce	ed: exp	(0.7852[]r	n(to	tal har	dness mg/l)	-3.490)	
9	The MS shall not		-				•		
10			-				-		
	The FAV shall no			-			-		1 (.
11	For hardness val			than 400	Jm	1g/1, 4	100 mg/1 sh	all be used	d to
12	calculate the stand				_	_			
13	Cadmium standar					dness	values:		
14	Hardness (m	.g/l))		50		100	200	
15								<u>. </u>	
16		~ ~				•			
17	Standard:	CS			0.66)	1.1	2.0	
18		MS			1.8		3.9	8.6	
19		FA	V		3.6		7.8	17	
20									_
21	Carbon tetra-		µg/l	1.9		ΗH	1750*	3500*	Tox.
22	chloride(c)								_
23	Chlordane (c)		ng/l	0.073		HH	1200*	2400*	Tox.
24	Chloride		mg/L	230		Tox.	860	1720	Tox.
25	Chlorine, total		µg/l	11		Tox.	19	38	Tox.
26	residual								
27								1. 1	
28	Chlorine standard								
29	continuous exposi							discharged	for
30	more than a total	of t	wo hou	2		hour p			
31	Substance or			Class 2A			Class 2A	L	
32	Characteristic			Chronic			Acute		
33	(c) = carcinogen		•	Standar	d		Standar		
34			Units	CS		Basis	MS	FAV	Basis
35									
36	Chlorobenzene		μg/1	20		ΗH	423	846	Tox.
37	(Monochlorobenzene)				•				
38	Chloroform (c)		μg/l	53		ΗH	1392	2784	Tox.
39	Chlorpyrifos		μg/1	0.041		Tox.	0.083	0.17	Tox.
40	Chromium +3,		μg/l	Form	ula	Tox.	Formula	Formula	Tox.
41	total								
42									
43	Chromium +3, tot	al							
44	The CS shall not e	exce	ed: exp.	(0.819[ln(i	tota	l hard	ness mg/l)l+	1.561)	
			r ·	(()				,	

AR3044

1	The MS shall not	exceed: exp	o.(0.819[lr	n(total]	hardness mg/l)]+3.688)	
2	The FAV shall no	-		•	-		
3	For hardness val		-		-		ed to
4	calculate the stan			/o mg/	1, 400 mg/1 .		
5			~/1 for t	hmaa ha	ndpace values		
	Chromium +3 sta		.g/1 for t				
6 7	Hardness (m	ng/1)		50	100	200	
8							
9	Standard:	CS		117	207	365	
10	Standard.	MS		984	1737	3064	
11		FAV		1966	3469	6120	
12		~ ~ ~ ~ ~		1700	0.209	01-0	
13	Chromium +6,	μg/l	11	To	ox. 16	32	Tox.
14	total	1.01					
15	Cobalt	μg/l	2.8	H	H 436	872	Tox.
16	Color value	Pt/Co	30	N.	A None	None	NA
17	Copper, total	μg/l	Formul	a To	ox. Formul	a Formula	Tox.
18	· ·						
19	Copper, total						
20	The CS shall not	exceed: exp	.(0.620[ln	(total h	ardness mg/l)	1-0.570)	
21	The MS shall not	-			-		
22	The FAV shall no	-			-		
			1		-		ما لم
23	For hardness val calculate the stand		than 40	iu mg/	1, 400 mg/1 s	shall be use	eu to
24			.1 1	1			
25	Copper standards	-	three ha			• • • •	
26	Hardness (m	ng/1)		50	100	200	
27							
28 29	Standard:	CS		6.4	9.8	15	
30	Stanuaru.	MS		9. 1 9.2	18	13 34	
31		FAV		18	35	68	
32				10	00	00	
33	Substance or		Class 2	A	Class	2A	
34	Characteristic		Chroni		Acute		
35	(c) = carcinogen		Standa	rd	Stand	ards	
36	Ũ	Units	CS	Ba	asis MS	FAV	Basis
37							
38	Cyanide, free	μg/l	5.2	To	ox. 22	45	Tox.
39							
40	DDT (c)	ng/l	0.11	H		1100*	Tox.
41	1,2-Dichloro-	μg/1	3.5	H	H 45,050*	90,100*	Tox.
42	ethane (c)		_		<u>. </u>		
43	Dieldrin (c)	ng/l	0.0065	H		2500*	Tox.
44	Di-2-ethylhexyl	μg/l	1.9	H	H None*	None*	NA

	11/08/99			[REVISC	DR] CM	IR/KJ	AR3044
1 2	phthalate (c) Di-n-octyl	µg/l	30	Tox.	825	1650	Tox.
3 4 5	phthalate Dissolved oxygen	mg/l	7.0 as a da	ily minin	num		
5 6 7 8 9	This dissolved oxy percent of the days lowest weekly flow	at which	the flow of	the rece	iving water	is equal to	o the
10	Endosulfan	μg/1	0.0076	HH	0.084	0.17	Tox.
11	Endrin	μg/1	0.0039	HH	0.090	0.18	Tox.
12 13	Ethylbenzene	μg/l	68	Tox.	1859	3717	Tox.
14 15 16 17 18 19 20 21 22 23	Fecal coliform organisms	millili not les calend percer calend 400 or The sta	exceed 200 ters as a geor s than five s ar month, n at of all samp ar month in ganisms per andard appl and Octobe	metric me amples ir or shall m oles taken dividuall 100 milli ies only b	ean of n any nore than ten n during any y exceed liters.		
24 25	Fluoranthene	μg/1	1.9	Tox.	3.5	6.9	Tox.
26	Heptachlor (c)	ng/l	0.10	HH	260*	520*	Tox.
27 28	Heptachlor epoxide (c)	ng/l	0.12	HH	270*	530*	Tox.
29 30	Hexachloro- benzene (c)	ng/l	0.061	HH	None*	None*	Tox.
31							
32	Substance or		Class 2A		Class 2A	ł	
33	Characteristic		Chronic		Acute		
34	(c) = carcinogen	.	Standard	- ·	Standar		- ·
35		Units	CS	Basis	MS	FAV	Basis
36 37	Lead, total	μg/1	Formula	Tox.	Formula	Formula	Tox.
38 39	Lead, total						
40		read an	(1.272[1+(+-)])	tal hards	eee ma / 1)1	4 705)	•
40 41	The CS shall not ex	-			÷		
	The MS shall not ex				-		
42	The FAV shall not		-		-		1.
43	For hardness value	os oreator	than 400	$m\sigma/1$ 40	1) mo/l ch	all be use	d to

For hardness values greater than 400 mg/l, 400 mg/l shall be used to 43 calculate the standard. 44

Lead standards in $\mu g/l$ for three hardness values: 45

7050.0222

1 Hardness (mg/l) 2		50					
				100	200		
3 4 Standard: CS 5 MS 6 FAV	•	1.3 34 68	8	3.2 82 164	7.7 197 396		
 7 8 Lindane (c) μg/l 9 (Hexachlorocyclo- 10 hexane, gamma-) 11 	0.0087]	HH	1.0*	2.0*	Tox.	
12Mercury, totalμg/l13Methyleneμg/l14chloride (c)15(Dichloromethane)16	0.0069 45		HH HH	2.4* 13,875*	4.9* 27,749*	Tox. Tox.	
10μg/l17Naphthaleneμg/l18Nickel, totalμg/l191919	81 Formul		Tox. Tox/H	409 H Formula	818 Formula	Tox. Tox.	
 waters with total hardness values exp.(0.846[ln(total hardness raises The MS shall not exceed: exp The FAV shall not exceed: exp For hardness values greater calculate the standard. 	exp.(0.846[ln(total hardness mg/l)]+1.1645) The MS shall not exceed: exp.(0.846[ln(total hardness mg/l)]+3.3 The FAV shall not exceed: exp.(0.846[ln(total hardness mg/l)]+4 For hardness values greater than 400 mg/l, 400 mg/l shall						
 28 Nickel standards in µg/l for 29 Hardness (mg/l) 30 31 	three ha	rdnes: 50 		es: 100	200		
32 Standard: CS 33 MS 34 FAV 35		88 789 1578		158 1418 2836	283 2549 5098		
36Substance or37Characteristic38(c) = carcinogen39Units	Class 2 Chroni Standa CS	c rd	Basis	Class 2A Acute Standar MS		Basis	
40 41 Oil μg/l 42	500	1	NA	5000	10,000	NA	
 42 43 Parathion μg/l 44 Pentachlorophenol μg/l 45 	0.013 0.93		Tox. HH	0.0 7 Formula	0.13 Formula	Tox. Tox.	

[REVISOR]

AR3044

1	Pentachloropheno	1					
2	The CS shall not e		3				
3	The MS shall not			oH]-4.830)			
4	The FAV shall no	-			3)		
5	Pentachloropheno		.	-			
6	pH (su)	i otanaanao	, <u>m</u> µ6, i	7.0	7.5	8.0	
7	pri (ou)				7.0		
8							
9	Standard:	CS		0.93	0.93	0.93	
10		MS		9.1	15	25	
11		FAV		18	30	50	
12		NT. 1 1-	a a tha a c	-	to a library O.F.		
13 14	pH (su) Phenanthrene		3.6	.5 nor grea Tox.	ter than 8.5 32	64	Tox.
15	Phenol	μg/l μg/l	123	Tox.	2214	4428	Tox.
16	Polychlorinated	ng/l	0.014	HH	1000*	2000*	Tox.
17	biphenyls,	- '0' -	0.0-2				
18	total (c)						
19						•	
20	Radioactive				concentration		
21	materials	-			d to an uncor		
22					l by the appro		
23 24		author	city navii	ng control (over their use	•	
24 25	Selenium	µg∕l	5.0	Tox.	20	40	Tox.
26	Silver, total	$\mu g/l$	0.12	Tox.	Formula	Formula	Tox.
27		r.0/ *	0	2070			
28	Silver, total					·	
29	The CS shall not e	exceed: 0.12	2				
30	The MS shall not	exceed: ext	b.(1.720[1	n(total har	dness mg/l)]	-7.2156)	
31	The FAV shall	-	•		0		.520)
32	provided that the		-			-	,
33	For hardness valu						d to
34	calculate the stand	0					••••
35	Silver standards ir	n ug/l for t	three hai	dness valu	ies:		
36	Hardness (m			50	100	200	
37		0' -/					
38							
39	Standard:	CS		0.12	0.12	0.12	
40		MS		0.61	2.0	6.7	
41		FAV		1.2	4.1	13	
42	Cuboton es su		Class	La	Class D	D 4	
43 44	Substance or Characteristic		Class 2 Chron		Class 2 Acute	DU	
77			Chron		Acute		
	F050 0000						

7050.0222

1 2	(c) = carcinogen	Units	Standard CS	Basis	Standar MS	ds FAV	Basis
3							
4	Temperature	No ma	iterial increa	se			
5	1,1,2,2	μg/1	1.1	HH	1127*	2253*	Tox.
6	-Tetrachloroethane	, Ç					
7	(c)						
8	Tetrachloroethylene	μg/1	3.8	ΗH	428*	857*	Tox.
9	(c)	-					
10	Thallium	μg/1	0.28	HH	64	128	Tox.
11	Toluene	μg/l	2 53	Tox.	1352	27 03	Tox.
12	Toxaphene (c)	ng/l	0.31	HH	730*	1500*	Tox.
13	1,1,1	μg/l	329	Tox.	2957	5913	Tox.
14	-Trichloroethane						
15	1,1,2	μg/l	25	HH	6988*	13,976*	Tox.
16	-Trichloroethylene						
17	(c)						
18	2,4,6	μg/1	2.0	HH	102	203	Tox.
19	-Trichlorophenol						
20	Turbidity value	NTU	10	NA	None	None	NA
21							
22	Vinyl chloride (c)	µg/l	0.17	HH	None*	None*	NA
23		(1					_
24	Xylene, total m,p,o	μg/1	166	Tox.	1407	2814	Tox.
25	57 1	(1	. 1	-	F 1	I 1	-
26	Zinc, total	μg/1	Formula	Tox.	Formula	Formula	Tox.
27							
28	Zinc, total						
29	The CS shall not exce	eed: exp.	.(0.8473[ln(to	otal hardn	ess mg/l)]	+0.7615)	
30	The MS shall not exc	eed: exp	0.(0.8473[ln(t	otal hardı	ness mg/l)]+0.8604)	
31	The FAV shall not ex	ceed: ex	p.(0.8473[ln	(total hard	dness mg/l	l)]+1.5536)	
32	For hardness values		-				d to
33	calculate the standard		inun 100 i		, 11.6, 1 011	un de ude	u to
34	Zinc standards in μg ,		roo hardnoo	e waluoe			
35					00	200	
35 36	Hardness (mg/l)	50	1	00	200	
30 37							
38	Standard: CS		59	· 1	06	191	
39	MStanuaru. CS		65		17	211	
40	FA		13		34	421	
40 41	17	L V	10	0 2		721	
	Carbon 2 Class 2D 1	иа <u>Т</u> 1		OD -1	ufo ao	no chall h-	ouch as to
42	Subp. 3. Class 2Bd wate	-					
43	permit the propagation and	l mainte	nance of a h	ealthy cor	nmunity of	t cool or wa	irm water

7050.0222

1 sport or commercial fish and associated aquatic life and their habitats. These waters 2 shall be suitable for aquatic recreation of all kinds, including bathing, for which the 3 waters may be usable. This class of surface waters are also protected as a source of 4 drinking water. The applicable standards are given below, with substances considered 5 carcinogenic followed by a (c). The basis columns to the right of the chronic standards 6 and to the right of the acute standards indicate whether the chronic and acute standards, 7 respectively, are based on the protection of the aquatic community from adverse toxic 8 effects (Tox.), or the protection of human consumers of drinking water and sport-caught 9 fish (HH). "NA" means not applicable. Subpart 7, item E, should be referenced for FAV 10 and MS values and "none" noted with an asterisk (*):

11 12 13	Substance or Characteristic (c) = carcinogen		Class 2Bd Chronic Standard		Class 2 Acute Standa			
14	Ū.	Units	CS	Basis	MS	FAV	Basis	
15								
16	Acenaphthene	μg/1	20	HH	56	112	Tox.	•
17	Acrylonitrile (c)	$\mu g/l$	0.38	HH	1140*	2281*	Tox.	
18	Alachlor (c)	$\mu g/l$	4.2	HH	800*	1600*	Tox.	
19	Aluminum, total	$\mu g/l$	125	Tox.	1072	2145	Tox.	
20	Ammonia un-ionized	$\mu g/1$	40	Tox.	None	None	NA	
21	as N							
22								
23	The percent un-ioni	zed ammo	onia can be	calculate	d for any	temperatur	e and	
24	pH as described in				J	L		
25	Anthracene	10/1	0.035	Tox	0.32	0.63	Tox.	

Anthracene	μg/l	0.035	Tox.	0.32	0.63	Tox.
Antimony	μg/1	5.5	HH	90	180	Tox.
Arsenic, total	$\mu g/l$	2.0	HH	360	720	Tox.
Atrazine (c)	$\mu g/l$	3.4	HH	323	645	Tox.
Benzene (c)	μg/l	11	HH	4487*	8974*	Tox.
Bromoform	$\mu g/l$	41	HH	2900 [.]	5800	Tox.
Cadmium, total	µg/l	Formula	Tox.	Formula	Formula	Tox.
		·				
	Antimony Arsenic, total Atrazine (c) Benzene (c) Bromoform	Antimony $\mu g/l$ Arsenic, total $\mu g/l$ Atrazine (c) $\mu g/l$ Benzene (c) $\mu g/l$ Bromoform $\mu g/l$	Antimony $\mu g/l$ 5.5Arsenic, total $\mu g/l$ 2.0Atrazine (c) $\mu g/l$ 3.4Benzene (c) $\mu g/l$ 11Bromoform $\mu g/l$ 41	Antimony $\mu g/l$ 5.5HHArsenic, total $\mu g/l$ 2.0HHAtrazine (c) $\mu g/l$ 3.4HHBenzene (c) $\mu g/l$ 11HHBromoform $\mu g/l$ 41HH	Antimony $\mu g/l$ 5.5 HH 90 Arsenic, total $\mu g/l$ 2.0 HH 360 Atrazine (c) $\mu g/l$ 3.4 HH 323 Benzene (c) $\mu g/l$ 11 HH 4487* Bromoform $\mu g/l$ 41 HH 2900	Antimony Arsenic, total Atrazine (c) $\mu g/l$ 5.5 $\mu g/l$ HH90180Atrazine (c) $\mu g/l$ 2.0 $\mu g/l$ HH360720Benzene (c) Bromoform $\mu g/l$ 11 $\mu g/l$ HH4487* HH8974* 5800

35Cadmium, total36The CS shall not

The CS shall not exceed: exp.(0.7852[ln(total hardness mg/l)]-3.490)

The MS shall not exceed: exp.(1.128[ln(total hardness mg/l)]-1.685)

The FAV shall not exceed: exp.(1.128[ln(total hardness mg/l)]-0.9919)

7050.0222

37

For hardness values greater than 400 mg/l, 400 mg/l shall be used to 1 2 calculate the standard. 3 Cadmium standards in $\mu g/l$ for three hardness values: 4 Hardness (mg/l) 100 200 50 5 6 7 Standard: CS 0.66 1.1 2.08 MS 15 33 73 9 FAV 67 146 31 10 Class 2Bd 11 Substance or Class 2Bd 12 Chronic Acute Characteristic 13 Standard (c) = carcinogenStandards CS 14 Units Basis MS FAV **Basis** 15 16 Carbon tetra-1.9 HH 1750* 3500* Tox. $\mu g/l$ 17 chloride (c) 2400* Chlordane (c) HH 1200* Tox. 18 0.29 ng/l19 Chloride 860 1720 Tox. mg/l 230 Tox. 20 Chlorine, total 11 Tox. 19 38 Tox. $\mu g/l$ 21 residual 22 23 Chlorine standard applies to conditions of continuous exposure, where 24 continuous exposure refers to chlorinated effluents that are discharged for 25 more than a total of two hours in any 24-hour period. 26 Chlorobenzene 20 HH 423 846 Tox. $\mu g/l$ (Monochlorobenzene) 27 28 Chloroform (c) $\mu g/1$ 53 HH 1392 2784 Tox. 29 Chlorpyrifos 0.041 Tox. 0.083 0.17Tox. μg/l Chromium +3, Tox. Formula Formula Tox. 30 Formula $\mu g/l$ 31 total 32 33 Chromium +3, total 34 The CS shall not exceed: exp.(0.819[ln(total hardness mg/l)]+1.561) 35 The MS shall not exceed: exp.(0.819[ln(total hardness mg/l)]+3.688) The FAV shall not exceed: exp.(0.819[ln(total hardness mg/l)]+4.380) 36 37 For hardness values greater than 400 mg/l, 400 mg/l shall be used to 38 calculate the standard. 39 Chromium +3 standards in $\mu g/l$ for three hardness values: 200 40 100 Hardness (mg/l)50 41 42 207 43 Standard: CS 117 365 3064 44 MS 984 1737

7050.0222

1	•	FAV	1	966	3469	6120	
2 3 4 5	Substance or Characteristic (c) = carcinogen		Class 2Bc Chronic Standard		Class 2 Acute Standar	rds	_ /
6 7		Units	CS	Basis	MS	FAV	Basis
, 8 9	Chromium +6, total	μg/1	11	Tox.	16	32	Tox.
10 11 12	Cobalt Copper, total	μg/l μg/l	2.8 Formula	HH Tox.	436 Formula	872 Formula	Tox. Tox.
13	Copper, total						
14	The CS shall not	exceed: exp.	.(0.620[ln(to	otal hard	ness mg/l)]-	0.570)	
15	The MS shall not	-					
16	The FAV shall no	-			-		
17	For hardness va		~		-		d to
18	calculate the star			0, ,	0,		
19	Copper standard	s in μg/l for	three hard	dness val	ues:		
20	Hardness (r	-	5		100	200	
21	Ň	0, 1					
22							
23	Standard:	CS		.4	9.8	15	
24		MS		.2	18	34	
25 26		FAV	18	8	35	68	
26	Conside free			Tau	22	45	Tax
27 28	Cyanide, free	μg/l	5.2	Tox.	22	45	Tox.
20 29	DDT (c)	ng/L	1.7	HH.	550*	1100*	Tox.
30	1,2-Dichloro-	μg/1	3.8	HH	45,050*	90,100*	Tox.
31	ethane (c)	m8/ -				, ,,	
32	Dieldrin (c)	ng/l	0.026	HH	1300*	2500*	Tox.
33	Di-2-ethylhexyl	μg/1	1.9	HH	None*	None*	NA
34	phthalate (c)						
35	Di-n-octyl	μg/1	30	Tox.	825	1650	Tox.
36	phthalate	·					
37	Dissolved oxygen	mg/l	5 as a dail	ly minim	um		
38	<u> </u>						
39	This dissolved o						
40	according to subp						
41	5 mg/l as a daily						
42 43	this standard is	-	*	•			
43 44	receiving water in recurrence interv	-	ie iowest v	veekty II		ince in tell	year
45	Substance or	ar (7Q10).		1	Class 0	L C	

45

Substance or

Class 2Bd

Class 2Bd

[REVISOR] CMR/KJ AR3044

11/08/99

1 2	Characteristic (c) = carcinogen		Chronic Standard		Acute Standar	ds	
3		Units	CS	Basis	MS	FAV	Basis
4 5	Tradaquifar	u ~ /1	0.000	тттт	0.00	0 56	Tax
5 6	Endosulfan Endrin	μg/l μg/l	0.029 0.016	HH HH	0.28 0.090	0.56 0.18	Tox. Tox.
7	Ethylbenzene	μg/1 μg/1	68	Tox.	1859	3717	Tox.
8		r.0, -					
9	Fecal coliform	Not to	exceed 200 o	organism	5 per 100		
10	organisms		ers as a geor				
11			s than five sa	-	•		
12 13	•,		ar month, no t of all samp				
13			ar month inc				
15			rganisms pe				
16			indard appli				
17		April 1	and Octobe	er 31.			
18 10	1	/1	1.0	m	0.5	()	m.
19 20	Fluoranthene	μg/1	1.9	Tox.	3.5	6.9	Tox.
20 21	Heptachlor (c)	ng/l	0.39	HH	260*	520*	Tox.
22	Heptachlor	ng/l	0.48	HH	270*	530*	Tox.
23	epoxide (c)	0/ -					
24	Hexachloro-	ng/l	0.24	ΗH	None*	None*	Tox.
25	benzene (c)						
26	Trand Latal		E a mar a la	Test	Formatala	Formala	Text
27 28	Lead, total	µg/l	Formula	Tox.	Formula	Formula	Tox.
28 29	Lead, total						
30	The CS shall not	evceed evn	(1.273[]n(tot	al hardne	$ssm\sigma/1)]_{-4}$	4 705)	
31	The MS shall not						
32		-			-		
33	The FAV shall no		-				d to
34	For hardness val calculate the stand			ing/1, 400	J mg/1 sh	all De use	u to
35	Lead standards ir		ree hardnes	s values			
36	Hardness (m		50		00	200	
37		6/1)	. 00				
38							
39	Standard:	CS	1.3		.2	7.7	
40		MS	34		2	197	
41		FAV	68	1	64	396	
42 43	Substance or		Class 2Bd		Class 2I	84	
43 44	Characteristic		Class 2Du Chronic		Acute	<i>Ju</i>	
45	(c) = carcinogen		Standard		Standar	ds	
	7050 0222		·				

.

	11/08/99			[REVI	SOR] CN	IR/KJ	AR3044
1 2		Units	CS	Basis	6 MS	FAV	Basis
2 3 4 5 6	Lindane (c) (Hexachlorocyclo- hexane, gamma-)	μg/l	0.032	ΗH	4.4*	8.8*	Tox.
7 8 9 10 11	Mercury, total Methylene chloride (c) (Dichloromethane)	μg/l μg/l	0.0069 46	HH HH	2.4* 13,875*	4.9* 27,749*	Tox. Tox.
12 13 14	Naphthalene Nickel, total	μg/l μg/l	81 Formu	Tox. la Tox/	409 HH Formula	818 Formula	Tox. Tox.
16 17 18 19 20 21 22 23 24 25	The CS shall not waters with total l exp.(0.846[ln(total The MS shall not The FAV shall no For hardness val calculate the stand Nickel standards Hardness (m	hardness va hardness n exceed: exp t exceed: ex ues greater dard. in μg/l for	lues less ng/l)]+1 p.(0.846[l xp.(0.846 r than 4	than 212 r .1645) n(total har [ln(total ha 00 mg/l,	ng/l, the CS s dness mg/l)] ardness mg/l) 400 mg/l sh	hall not exc +3.3612))]+4.0543)	eed:
26 27 28 29 30	Standard:	CS MS FAV		88 789 1578	158 1418 2836	283 2549 5098	
31 32	Oil	µg/l	500	NA	5000	10,000	NA
33 34 35	Parathion Pentachlorophenol	μg/l μg/l	0.013 1.9	Tox. HH	0.07 Formula	0.13 Formula	Tox. Tox.
36	Pentachloropheno	1					
37	The CS shall not						
38	The MS shall not		.(1.005[r	H]-4.830)			
39	The FAV shall no	-	-		(3)		
40	Pentachloropheno		-	-			
41	pH (su)	i oturidurdo	in μ6/ i	7.0	7.5	8.0	
42	P ^{II} (0u)			,			
43							
44	Standard:	CS		1.9	1.9	1.9	
	7050.0222			51			

	11/08/99			[REVISO	OR] CI	MR/KJ	AR3044
1 2 3		MS FAV	9. 18		15 30	25 50	
4 5 7 8 9	pH (su) Phenanthrene Phenol Polychlorinated biphenyls, total (c)	Not les µg/l µg/l ng/l	ss than 6.5 r 3.6 123 0.029	or greate Tox. Tox. HH	er than 9.0 32 2214 1000*	64 4428 2000*	Tox. Tox. Tox.
10 11 12 13 14 15	Substance or Characteristic (c) = carcinogen	Units	Class 2Bd Chronic Standard CS	Basis	Class 2 Acute Standa MS		Basis
16 17 18 19 20	Radioactive materials	permit enviro:	exceed the ted to be dis nment as pe ity having c	scharged ermitted l	to an unco by the appr	ntrolled opriate	
21 22 23	Selenium Silver, total	μg/1 μg/1	5.0 1.0	Tox. Tox.	20 Formula	40 Formula	Tox. Tox.
24 25 26 27 28 29 30	Silver, total The CS shall not The MS shall not The FAV shall no Provided that the For hardness val calculate the stand	exceed: exp t exceed: ex MS and FA ues greater dard.	p.(1.720[ln(AV shall be than 400	total har no less t mg/l, 4(dness mg/l han 1.0 µg 00 mg/l sl	l)]-6.520) /1	ed to
31 32 33	Silver standards i Hardness (m	-	hree hardno 50		es: 100	200	
34 35 36 37 38	Standard:	CS MS FAV	1. 1. 1.	0	1.0 2.0 4.1	1.0 6.7 13	
39 40 41 42 43 44	Temperature	above : averag except	ove natural natural in la e of the max in no case s e temperatu	ikes, base kimum d hall it ex	ed on mont aily temper ceed the da	ature,	
44	1,1,2,2 7050.0222	µg/l	1.5 62	ΗH	1127*	2253*	Tox.

[REVISOR] CMR/KJ

AR3044

				-	_	·	
1	-Tetrachloroethane						,
2	(c)						
3	Tetrachloroethylene	µg∕l	3.8	HH	428*	857*	Tox.
4	(c)	μg/1	. 0.0	* 1 * 1	420	007	107.
5	Thallium	μg/l	0.28	HH	64	128	Tox.
6	Toluene	μg/l	253	Tox.	1352	2703	Tox.
7	Toxaphene (c)	ng/l	1.3	HH	730*	1500*	Tox.
8	1,1,1	μg/1	329	Tox.	2957	5913	Tox.
9	-Trichloroethane	ro/-	0	- 0.11			
0	1,1,2	µg∕l	25	HH	6988*	13,976*	Tox.
1	-Trichloroethylene	1.0,				,	
2	(c)						
3	2,4,6	μg/1	2.0	HH	102	203	Tox.
4	-Trichlorophenol	10	· .				
5	Turbidity value	NTU	25	NA	None	None	NA
6	,						
7.	Substance or		Class 2Bd		Class 21	Bd	
8	Characteristic		Chronic		Acute		
9	(c) = carcinogen		Standard		Standar	rds	
0		Units	CS	Basis	MS	FAV	Basis
1	· ·						
2	Vinyl chloride (c)	µg/l	0.18	HH	None*	None*	NA
3		•		_			_
4	Xylene, total m,p,o	μg/1	166	Tox.	1407	2814	Tox.
5		/1	T 1	m		F 1	m
6	Zinc, total	µg∕l	Formula	Tox.	Formula	Formula	Tox.
7							
8 ,	Zinc, total						
9	The CS shall not e	-					
)	The MS shall not e	xceed: exp	0.(0.8473[ln(1	total harc	lness mg/l)]+0.8604)	
1	The FAV shall not						
2	For hardness valu			•	-		d to
3	calculate the stand		tituit 100		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		u 10
4	Zinc standards in J		roo hardnoo				
3 5		0				200	
	Hardness (mg	5/1)	50	1	100	200	
6 7							
8	Standard:	CS	59	1	106	191	
9	Stanuaru.	MS	65		100 11 7	211	
0		FAV	13		234	421	
1		TAV	10		204	721	
		r mi		0.D		-111 1	1
2	Subp. 4. Class 2B wa	ters. The q	uality of Cl	ass 2B su	irrace water	rs snall be	such as
3	permit the propagation a	and mainta	nance of a b	ealthy or	mmunity o	f cool or w	arm wa
,	Permit the propagation a		Trance of a l	warniy (C	January 0		AT 111 AA C

7050.0222

1 sport or commercial fish and associated aquatic life, and their habitats. These waters 2 shall be suitable for aquatic recreation of all kinds, including bathing, for which the 3 waters may be usable. This class of surface water is not protected as a source of drinking 4 water. The applicable standards are given below, with substances considered 5 carcinogenic followed by a (c). The basis columns to the right of the chronic standards 6 and to the right of the acute standards, indicate whether the chronic and acute 7 standards, respectively, are based on the protection of the aquatic community from 8 adverse toxic effects (Tox.), or the protection of human consumers of sport-caught fish 9 (HH). "NA" means not applicable. Subpart 7, item E, should be referenced for FAV and 10 MS values and "none" noted with an asterisk (*):

11 12 13	Substance or Characteristic (c) = carcinogen		Class 2B Chronic Standard		Class 2 Acute Standa		
14	6	Units	CS	Basis	MS	FAV	Basis
15							
16	Acenaphthene	μg/1	20	ΗH	56	112	Tox.
17	Acrylonitrile (c)	$\mu g/l$	0.89	HH	1140*	2281*	Tox.
18	Alachlor	μg/1	59	Tox.	800	1600	Tox.
19	Aluminum, total	$\mu g/l$	125	Tox.	1072	2145	Tox.
20	Ammonia un-ionized	$\mu g/1$	40	Tox.	None	None	NA
21	as N	.0					
22		ł					
23	The percent un-ioni	zed amm	onia can be	calculate	d for any	temperatui	e and
24	pH as described in				2	1	
25	Anthracene	μg/l	0.035	Tox.	0.32	0.63	Tox.
26	A subing a large	1.07	21	Tax	00	100	Tax

25	Anthracene	μg/1	0.035	IOX.	0.32	0.63	10X.
26	Antimony	μg/1	31	Tox.	90	180	Tox.
27	Arsenic, total	$\mu g/l$	53	ΗH	360	720	Tox.
28	Atrazine	$\mu g/l$	10	Tox.	323	645	Tox.
29							
30	Benzene	$\mu g/l$	114	Tox.	4487	8974	Tox.
31	Bromoform	$\mu g/1$	466	HH	2900	5800	Tox.
32		. 0					
33	Cadmium, total	μg/1	Formula	Tox.	Formula	Formula	Tox.
34							

35 Cadmium, total

36

37

38

The CS shall not exceed: exp.(0.7852[ln(total hardness mg/l)]-3.490)

The MS shall not exceed: exp.(1.128[ln(total hardness mg/l)]-1.685)

The FAV shall not exceed: exp.(1.128[ln(total hardness mg/l)]-0.9919)

1 2	For hardness val calculate the stan	dard.		Ũ	-	all be used	d to
3	Cadmium standa	-					
4	Hardness (m	ng/l)		50	100	200	
5							
6		~~				•	
7	Standard:	CS		0.66	1.1	2.0	
8		MS		15	33	73	
9	· ·	FAV		31	67	146	
10	0.1		<u></u>	•	<u>C</u> 1	D	
11	Substance or		Class 2E		Class 21	В	·
12	Characteristic		Chronic		Acute		
13	(c) = carcinogen	TLatta	Standar		Standar		Decia
14 15		Units	CS	Basis	MS	FAV	Basis
16	Carbon tetra-	μg/1	5.9	HH	1750*	3500*	Tox.
17	chloride (c)	-					
18	Chlordane (c)	ng/l	0.29	HH	1200*	2400*	Tox.
19	Chloride	mg/l	230	Tox.	860	1720	Tox.
20	Chlorine, total	μg/1	11	Tox.	19	38	Tox.
21	residual				<i>'</i>		
22							
23	Chlorine standar						
24	continuous expos					discharged	l for
25	more than a total	of two hou	rs in any	24-hour j	period.		
26	Chlorobenzene	μg/l	20	HH	42 3	846	Tox.
27	(Monochlorobenzene)	H .					
28	Chloroform	μg/1	155	Tox.	1392	2784	Tox.
29	Chlorpyrifos	µg/l	0.041	Tox.	0.083	0.17	Tox.
30	Chromium +3,	μg/1	Formula	n Tox.	Formula	Formula	Tox.
31	total						
32	Chromium 12 to	401					
33	Chromium +3, to		(0.04.051)		1 (1)]	4 5(4)	
34	The CS shall not						
35	The MS shall not	-			_		•
36	The FAV shall no		~		-		
37	For hardness val		than 40) mg/l, •	400 mg/l sh	all be use	d to
38	calculate the stand				l,		
39	Chromium +3 sta	ndards in µ	g/l for th	iree hardı	ness values:		
40	Hardness (m	1) ng/l)		50	100	200	
41							
42						_	
43	Standard:	CS		117	207	365	
44		MS		984	1737	3064	

1		FAV		1966	3469	6120		
2 3	Substance or		Class 21	,	Class 21	D		
3 4	Characteristic		Class 2I Chronic		Acute	D		
4 5	(c) = carcinogen		Standar		Standar	rds		
6	(c) – carcinogen	Units	CS	Basis		FAV	Basis	
7		U MAD	60				20000	
8	Chromium +6,	µg∕l	11	Tox.	16	32	Tox	
9	total	P.07		-	•			
10	Cobalt	μg/1	5.0	Tox.	436	872	Tox.	
11	Copper, total	μg/l	Formula	a Tox.	Formula	Formula	Tox.	
12								
13	Copper, total							
14	The CS shall not e	exceed: exp.	.(0.6200[lr	n(total ha	rdness mg/l)]	-0.570)		
15	The MS shall not							
16	The FAV shall not	*	•	•	Û,			
17			-		-		d to	
18	For hardness values greater than 400 mg/l, 400 mg/l shall be used to calculate the standard.							
19	Copper standards	in $\mu g/l$ for	three ha	rdness va	lues:			
20	Hardness (m			50	100	200	а. С	
21	· ·	0, ,						
22								
23	Standard:	CS		6.4	9.8	15		
24		MS		9.2	18	34		
25		FAV		18	35	68		
26								
27	Cyanide, free	μg/1	5.2	Tox.	22	45	Tox.	
28		(1				11004	Ŧ	
29	DDT (c)	ng/l	1.7	HH	550*	1100*	Tox.	
30	1,2-Dichloro-	µg/l	1.90	HH	45,050*	90,100*	Tox.	
31	ethane (c)	/1	0.00	T 7T T	1200*	0500*	Π -ν	
32	Dieldrin (c)	ng/l	0.026	HH	1300*	2500*	Tox.	
33 34	Di-2-ethylhexyl	μg/1	2.1	HH	None*	· None*	NA	
34 35	phthalate (c) Disp. octul	u~/1	30	Toy	825	1650	Tox.	
35 36	Di-n-octyl phthalate	µg/l	30	Tox.	620	1000	102.	
36 37	Dissolved oxygen	mg/l	50262	daily min	imum			
38	Dissorven oxygen	111 <u>8</u> /1	0.0 as a i	uuiiy 11111				
39	This dissolved ox	voen stand	ard may	he modi	ified on a sit	e-specific	basis	
		Jerr brund	min muy				.1	

This dissolved oxygen standard may be modified on a site-specific basis according to subpart 8, except that no site-specific standard shall be less than 5 mg/l as a daily average and 4 mg/l as a daily minimum. Compliance with this standard is required 50 percent of the days at which the flow of the receiving water is equal to the lowest weekly flow with a once in ten-year recurrence interval (7Q10). This standard applies to all Class 2B waters except for those portions of the Mississippi River from the outlet of the metro

7050.0222

40

41

42

43 44

1 2

3

wastewater treatment works in Saint Paul (River Mile 835) to Lock and Dam No. 2 at Hastings (River Mile 815). For this reach of the Mississippi River the standard is not less than 5 mg/l as a daily average from April 1 through November 30, and not less than 4 mg/l at other times.

standard is not it	-55 that -5		iany ave.	lage nom 1	pin i unu	Jugn
November 30, and	d not less t	han 4 mg/l	at other	times.		
Substance or		Class 2B		Class 21	3	
Characteristic		Chronic		Acute		
(c) = carcinogen		Standard		Standar	ds	
C	Units	CS	Basis	MS	FAV	Basis
Endosulfan	μg/l	0.031	ΗH	0.28	0.56	Tox.
Endrin		0.016	HH	0.090	0.18	Tox.
Ethylbenzene	μg/1	68	Tox.	1859	3717	Tox.
Fecal coliform	Not to	exceed 200	organisn	ns per 100		
organisms	millili	ters as a geo	metric m	ean of		
					,	
				oetween		
	April	1 and Octob	er 31.			
	/1	1.0		o 5		m
Fluoranthene	µg/I	1.9	Tox.	3.5	6.9	Tox.
TT 1 11 ()	(1	0.00	T TT T	0 (0*	500 *	T
	U					Tox.
	ng/I	0.48	ΗH	270*	530"	Tox.
		0.24	T.TT.T	Nonat	NJamo*	Toy
	ng/1	0.24	пп	none	none.	Tox.
Denzene (c)						
Load total	$\mu \alpha / 1$	Formula	Toy	Formula	Formula	Tox.
Lead, Iotai	μg/1	Formula	102.	rormula	Tormula	107.
Land total						
•	,	(4.0500) (1		(1)]		
	-					
The MS shall not	exceed: exp	o.(1.273[ln(to	otal hard	ness mg/l)]·	-1.460)	
The FAV shall no	t exceed: ex	xp.(1.273[ln(total har	dness mg/l)]-0.7643)	
For hardness val	ues greater	than 400	mg/l, 4	00 mg/l sh	all be use	d to
			0. ,	0		
Lead standards in	ug/l for t	hree hardne	ss values	5:		
					200	
maraness (m	6/1/	50	,	~~~	200	
Standard	CS	1	3	3.2	7.7	
Juilland.						
		0.	-			
	November 30, and Substance or Characteristic (c) = carcinogen Endosulfan Endrin Ethylbenzene Fecal coliform organisms Fluoranthene Heptachlor (c) Heptachlor epoxide (c) Hexachloro- benzene (c) Lead, total Lead, total The CS shall not The MS shall not The MS shall not For hardness val calculate the stand Lead standards in	November 30, and not less tSubstance or Characteristic (c) = carcinogenUnitsEndosulfan $\mu g/l$ Endosulfan $\mu g/l$ Endrin $\mu g/l$ Endrin $\mu g/l$ Ethylbenzene $\mu g/l$ Fecal coliform organismsNot to millili not les calend 2,000 d The st AprilFluoranthene $\mu g/l$ Heptachlor epoxide (c) Hexachloro- benzene (c) ng/l $\mu g/l$ Lead, total The MS shall not exceed: exp The MS shall not exceed: exp The FAV shall not exceed: exp For hardness values greated calculate the standard. Lead standards in $\mu g/l$ for t Hardness (mg/l)	November 30, and not less than 4 mg/lSubstance or Characteristic (c) = carcinogenClass 2B Chronic Standard UnitsEndosulfan Endrin 	November 30, and not less than 4 mg/l at otherSubstance orClass 2BCharacteristicChronic(c) = carcinogenStandardEndosulfan $\mu g/l$ 0.031Endrin $\mu g/l$ 0.031HHEndrinEthylbenzene $\mu g/l$ 0.031Fecal coliformNot to exceed 200 organism organismsorganismsNot to exceed 200 organism milliliters as a geometric m not less than five samples i calendar month, nor shall r percent of all samples taken calendar month individual 2,000 organisms per 100 mi The standard applies only I April 1 and October 31.Fluoranthene $\mu g/l$ 1.9Tox.Heptachlor (c)ng/l0.39HH HH epoxide (c)Heptachloro- ng/lng/l0.24HH benzene (c)Lead, total $\mu g/l$ FormulaTox.Lead, total $\mu g/l$ For mark $forThe MS shall not exceed:exp.(1.273[In(total hardThe MS shall not exceed:exp.(1.273[In(total hardThe AV shall not exceed:Lead standards\mu g/lforforLead standards\mu g/lforthreeLead standards\mu g/lforthree<$	November 30, and not less than 4 mg/l at other times.Substance or Characteristic (c) = carcinogenClass 2B StandardClass 2I AcuteUnitsCSBasisMSEndosulfan Endrin g/l $\mu g/l$ 0.031HH0.28 Endrin $\mu g/l$ 0.016HH0.090Ethylbenzene $\mu g/l$ 68Tox.1859Fecal coliform organismsNot to exceed 200 organisms per 100 milliliters as a geometric mean of not less than five samples in any calendar month, nor shall more than ter percent of all samples taken during any calendar month individually exceed 2,000 organisms per 100 milliliters. The standard applies only between April 1 and October 31.Fluoranthene $\mu g/l$ 1.9Tox.3.5Heptachlor (c) mg/l ng/l 0.24HHNone* benzene (c)Lead, total $\mu g/l$ FormulaTox.FormulaLead, total $\mu g/l$ FormulaTox.FormulaLead, total $\mu g/l$ FormulaTox.FormulaLead, total $\mu g/l$ for three hardness mg/l)]- The MS shall not exceed: exp.(1.273[In(total hardness mg/l)]- The FAV shall not exceed: exp.(1.273[In(total hardness mg/l)]- The FAV shall not exceed: exp.(1.273[In(total hardness mg/l)]- For hardness values greater than 400mg/l, 400mg/l sh calculate the standard. Lead standards in $\mu g/l$ for three hardness values: Hardness (mg/l)50100The FAV shall not exceed: CS1.33.2100	Substance or Characteristic (c) = carcinogenClass 2B Chronic StandardClass 2B Acute StandardsUnitsCSBasisMSFAVEndosulfan Endrin g/1 $\mu g/1$ 0.031HH0.280.56Endrin endrin g/1 $\mu g/1$ 0.016HH0.0900.18Ethylbenzene organisms $\mu g/1$ 68Tox.18593717Fecal coliform organismsNot to exceed 200 organisms per 100 milliliters as a geometric mean of not less than five samples in any calendar month, nor shall more than ten percent of all samples taken during any calendar month individually exceed 2,000 organisms per 100 milliliters. The standard applies only between April 1 and October 31.Fluoranthene $\mu g/1$ 1.9Tox.3.56.9Heptachlor epoxide (c) Hexachloro- benzene (c)ng/10.24HHNone*None*Lead, total $\mu g/1$ FormulaTox.FormulaFormulaLead, total $\mu g/1$ FormulaTox.FormulaFormulaLead, totalnot exceed: exp.(1.273[In(total hardness mg/1)]-4.705)The MS shall not exceed: exp.(1.273[In(total hardness mg/1)]-0.7643)For hardness values greater than 400 mg/1, 400mg/1 shall be use calculate the standard.Lead standards in $\mu g/1$ for three hardness values: Hardness (mg/1)50100200The Standard:CS1.33.27.7

1		FAV	e	58	164	396	
2 3 4 5 6	Substance or Characteristic (c) = carcinogen	Units	Class 2B Chronic Standarc CS		Class 2E Acute Standar MS		Basis
7		CILLO	00	24010			~ 40.0
8 9 10 11	Lindane (c) (Hexachlorocyclo- hexane, gamma-)	µg/l	0.036	ΗH	4.4*	8.8*	Tox.
11 12 13 14 15 16	Mercury, total Methylene chloride (c) (Dichloromethane)	μg/l μg/l	0.0069 1940	HH HH	2.4* 13,875	4.9* 27,749	Tox. Tox.
17 18 19	Naphthalene Nickel, total	μg/1 μg/1	81 Formula	Tox. Tox	409 Formula	818 Formula	Tox. Tox.
20	Nickel, total						
21	The CS shall not	exceed: exp.	(0.846[ln(t	otal hard	ness mg/l)]+	1.1645)	
22	The MS shall not	-			_		
23	The FAV shall no	-					
24	For hardness val	ues greater					d to
25 26	calculate the stand		.1 1				
26	Nickel standards	.0				200	
27 28	Hardness (m	g/1)	5	50	100	200	
28 29			-				
30	Standard:	CS	8	38	158	28 3	
31		MS		789	1418	2549	
32		FAV	1	.578	28 36	5098	
33							
34	Oil	μg/1	500	NA	5000	10,000	NA
35							
36	Parathion	μg/1	0.013	Tox.	0.07	0.13	Tox.
37 38 39	Pentachloro- phenol	µg/l	Formula	Tox. /HH	Formula	Formula	Tox.
40	For waters with p	oH values o	reater the	an 6.95 +	he CS shall	not exceed	l the
41	human health-bas						
42	than 6.96, the CS						· .
43	The MS shall not		-	-	- /		
		· · · · · · · · · · · · · · · · · · ·			、		

43The MS shall not exceed: exp.(1.005[pH]-4.830)44The FAV shall not exceed: exp.(1.005[pH]-4.1373)

1 2	Pentachlorophenol st pH (su)	tandards	- U	or three p 7.0	oH values: 7.5	8.0	
3	pii (su)			7.0	7.0	0.0	
4							
5	Standard: CS	5		5.5	5.5	5.5	
6	Μ			9.1	15	25	
7	FA	4V	•	18	30	50	
8	TT ()	NT (1					
9 10	pH (su) Phenanthrene		3.6 3.6	nor great Tox.	ter than 9.0 32	64	Tox.
10	Phenol	μg/l μg/l	3.8 123	Tox.	2214	04 4428	Tox.
12	Polychlorinated	ng/l	0.029	HH	1000*	2000*	Tox.
13	biphenyls,						
14	total (c)						
15							
16	Substance or		Class 2B		Class 2E	3	
17	Characteristic		Chronic		Acute Standar	1.	
18 19	(c) = carcinogen	Units	Standar CS	a Basis		as FAV	Basis
20		Units	CS	Da313	IVI S		Da313
21							
22	Radioactive	Not to	exceed th	e lowest c	oncentrations	5	
23	materials	permit	ted to be o	discharge	d to an uncon	trolled	•
24					by the appro	priate	
25 26		author	ity having	; control c	over their use.		
26 27	Selenium	$u \sim 1$	ΕO	Tox.	20	40	Tox.
27	Silver, total	μg/l μg/l	5.0 1.0	Tox.	Formula	Formula	Tox.
29	Silver, total	μg/1	1.0	107.	1 Official	1 OIIIIuiu	107.
30	Silver, total						
31	The CS shall not exc	eed: 1.0					
32	The MS shall not exc	eed: exp	.(1.720[ln(total hard	dness mg/l)]-	7.2156)	
33	The FAV shall not ex	-			-		
34	Provided that the MS						
35	For hardness values				-		d to
36	calculate the standard		tituit 100	, 11.6, 1,	100 mg/1 on		u 10
37	Silver standards in μ		hree hard	ness valu	les:		
38	Hardness (mg/l	•		50	100	200	
39		/	-		-		
40			-				
41	Standard: CS			1.0	1.0	1.0	
42	M			1.0	2.0	6.7	
43	FA	٨V		1.2	4.1	13	
44							

	11/08/99		I	[REVISOR] CM		MR/KJ	AR3044
1 2 3 4 5	Temperature	above r average except	ove natural in natural in lak e of the maxi in no case sh e temperatur	kes, based Imum da Iall it exc	d on mont ily temper eed the da	ature,	
6 7 8	1,1,2,2 -Tetrachloroethane	µg/l	13	HH	1127	2253	Tox.
9 10 11	(c) Tetrachloroethylene (c)	μg/1	8.9	HH	428	857	Tox.
12 13 14 15 16	Substance or Characteristic (c) = carcinogen	Units	Class 2B Chronic Standard CS	Basis	Class 2 Acute Standa MS		Basis
17	The 111.		0.54	T TT T	()	100	Tax
18	Thallium	µg/l	0.56	HH	64 1252	128	Tox.
19	Toluene	μg/1	253	Tox.	1352 720*	2703	Tox.
20	Toxaphene (c)	ng/l	1.3	HH	730*	1500*	Tox.
21	1,1,1	µg/l	329	Tox.	2957	5913	Tox.
22	-Trichloroethane	/1	100	T TT T	(000	12 05 (T
23	1,1,2	μg/1	120	ΗH	6988	13,976	Tox.
24	-Trichloroethylene						
25	(c)	/1	•		4.00		-
26	2,4,6	μg/1	2.0	ΗH	102	203	Tox.
27	-Trichlorophenol	> 7007 -					
28	Turbidity value	NTU	25	NA	None	None	NA
29	T 7' 1 1 1 ' 1 / \	/1	o o	T TT T	NT 4	NT 4	N.T.A
30	Vinyl chloride (c)	μg/1	9.2	ΗH	None*	None*	NA
31 32	Velope total w p a	$u \sim 1$	1//	T'est	1407	7 01 <i>4</i>	Tax
32 33	Xylene, total m,p,o	µg/l	166	Tox.	1407	2814	Tox.
33 34	Zing total	$u \sigma / 1$	Formula	Toy	Formula	Formula	Tox.
35	Zinc, total	μg/1	Pornula	10X.	ronnuid	ronnua	107.
36	Zing total						
	Zinc, total			. 1 1 1	/1		
37	The CS shall not exce	_					
38	The MS shall not exce	eed: exp.	(0.8473[ln(to	otal hard	ness mg/l)]+0.8604)	
39	The FAV shall not ex	ceed: exp	o.(0.8473[ln(total har	dness mg	/1)]+1.5536)	
40	For hardness values	greater	than 400 n	ng/l, 40	0 mg/l s	nall be use	d to
41	calculate the standard	0		0, ,	0,		
42	Zinc standards in $\mu g/$		ee hardness	values		<u>.</u> "	
43	Hardness (mg/l)		50		.00	200	
43 44		,	50	L		200	
45							
10							

	11/08/99		[REV	/ISOR]	CMR/KJ	AR3044		
1 2 3 4	Standard:	CS MS FAV	59 65 130	106 117 234	191 211 421			
5	Subp. 5. Class 2C v	Subp. 5. Class 2C waters. The quality of Class 2C surface waters shall be such as to						
6	permit the propagation and maintenance of a healthy community of indigenous fish and							
7	associated aquatic life, and their habitats. These waters shall be suitable for boating and							
8	other forms of aquatic recreation for which the waters may be usable. The standards for							
9 .	Class 2B waters listed in subpart 4 shall apply to these waters except as listed below:							
10	Substance or Characteristic							
111 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28	Dissolved oxygen 5 mg/l as a daily minimum. This dissolved oxygen standard may be modified on a site-specific basis according to subpart 8, except that no site-specific standard shall be less than 5 mg/l as a daily average and 4 mg/l as a daily minimum. Compliance with this standard is required 50 percent of the days at which the flow of the receiving water is equal to the lowest weekly flow with a once in ten-year recurrence interval (7Q10). This dissolved oxygen standard applies to all Class 2C waters except for those portions of the Mississippi River from the outlet of the metro wastewater treatment works in Saint Paul (River Mile 835) to Lock and Dam No. 2 at Hastings (River Mile 815) and except for the reach of the Minnesota River from the outlet of the Blue Lake wastewater treatment works (River Mile 21) to the mouth at Fort Snelling. For this reach of the Mississippi River the standard is not less than 5 mg/l as a daily average from April 1 through November 30, and not less than 4 mg/l at other times. For the specified reach of the Minnesota River the standard shall be not less than 5 mg/l as a daily average year-round.							
29 30 31 32	5°F above natural in streams and 3°F above natural in lakes, based on monthly average of the maximum daily temperature, except in no case shall it exceed the daily average temperature of 90°F. [For text of subp 6, see M.R.]							
33	Subp. 7. Additional	standards. The follo	owing add	litional sta	andards and rec	quirements		
34	apply to all Class 2 waters.							
35		[For text of ite	ems A to	D, see M.	R.]			
36	E. For carcinogen	ic or highly bioacc	umulative	e chemical	ls with BCFs gr	eater than		
	7050.0222		71					

5,000 or log Kow values greater than 5.19, the human health-based CS may be two or
more orders of magnitude smaller than the acute toxicity-based MS. If the commissioner
finds that a very large MS and FAV, relative to the CS for such pollutants is not
protective of the public health, the MS and FAV shall be reduced according to the
following guidelines:

If the ratio of the MS to the CS is greater than 100, the CS times 100 should be substituted for the applicable MS, and the CS times 200 should be substituted for the applicable FAV. Any effluent limitation derived using the procedures of this item shall only be required after the discharger has been given notice of the specific proposed effluent limitations and an opportunity to request a hearing as provided in part 7000.1800. The relevant MS and FAV values, or if there is no MS or FAV, the word "none," are marked by an asterisk (*) in subparts 2 to 4 and part 7050.0220.

13

[For text of subp 8, see M.R.]

14

Subp. 9. Conversion factors for dissolved metal standards.

15 [.] 16	Metal	Chronic standard	Maximum standard and Final Acute Value
10		· · ·	That Reale Value
18	Cadmium*	0.909	0.946
19	Chromium III	0.860	0.316
20	Chromium VI	0.962	0.982
21	Copper	0.960	0.960
22	Lead*	0.791	0.791
23	Mercury	1.0	0.850
24	Nickel	0.997	0.998
25	Silver	0.850	0.850
26	Zinc	0.986	0.978
27			

- *Conversion factors for cadmium and lead are hardness dependent. The
 values shown in the table are for a total hardness of 100 mg/l (as CaCO₃). The
 hardness dependent conversion factors for cadmium are calculated using the
 following formulas:
- 32 Chronic standard: 1.101672-[(ln total hardness (0.041838)]
- Maximum standard and final acute value: 1.136672-[(ln total hardness)
 (0.041838)]

1 2	The hardness dependent conversion factors for lead are calculated using the following formula:			
3 4	Chronic and maximum standards and final acute value: 1.46203-[(ln total hardness) (0.145712)]			
5	, , , , , , , , , , , , , , , , , , ,	DS OF QUALITY AND PURITY FOR CLASS 4		
6	WATERS OF THE STATE; AGR	ICULTURE AND WILDLIFE.		
7	[For te	ext of subpart 1, see M.R.]		
8	Subp. 2. Class 4A waters. The q	uality of Class 4A waters of the state shall be such as		
9	to permit their use for irrigation wi	ithout significant damage or adverse effects upon any		
10	crops or vegetation usually grown	in the waters or area, including truck garden crops.		
11	The following standards shall be	used as a guide in determining the suitability of the		
12	waters for such uses, together wi	th the recommendations contained in Handbook 60		
13	published by the Salinity Laborate	ory of the United States Department of Agriculture,		
14	and any revisions, amendments, o	or supplements to it:		
15 16	Substance or Characteristic	Class 4A Standard		
17	Bicarbonates (HCO ₃)	5 milliequivalents per liter		
18	Boron (B)	0.5 milligram per liter		
19	pH value	6.0 - 8.5		
20	Specific conductance	1,000 micromhos		
21 22	Total dissolved salts	per centimeter at 25°C 700 milligrams per liter		
23	Sodium (Na)	60% of total cations as		
24	Souriant (Iva)	milliequivalents per liter		
25	Sulfates (SO ₄)	10 milligrams per liter,		
26	Summes (804)	applicable to water used for		
27		production of wild rice during		
28		periods when the rice may be		
29		susceptible to damage by high		
30		sulfate levels.		
31	Radioactive materials	Not to exceed the lowest		
32		concentrations permitted to be		
33		discharged to an uncontrolled		
34		environment as prescribed		
35		by the appropriate authority		
36		having control over their use.		
37	[For te	xt of subps 3 and 4, see M.R.]		

1	1 7050.0227 SPECIFIC STANDARDS OF QUALITY AND PU	7050.0227 SPECIFIC STANDARDS OF QUALITY AND PURITY FOR CLASS 7				
2	WATERS OF THE STATE; LIMITED RESOURCE VALUE WATERS.					
3	3 [For text of subpart 1, see M.R.]	[For text of subpart 1, see M.R.]				
4	4 Subp. 2. Class 7 waters; limited resource value waters. The qu	uality of Class 7 waters				
5	5 of the state shall be such as to protect aesthetic qualities, second	dary body contact use,				
6	6 and groundwater for use as a potable water supply. Stand	ards of substances or				
7	7 characteristics given below shall not be exceeded in the waters:					
8 9						
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	10Fecal coliform organismsNot to exceed 1,000 or 100 milliliters in any c month as determined geometric mean of a n 	calendar by a ninimum of l more any idually ns per ndard May 1				
25 26 27 28 29 30 31 32 33	25 26 Dissolved oxygen At concentrations whi 27 avoid odors or putrid 28 conditions in the recei 29 water or at concentrat 30 at not less than 1 mg/ 31 (daily average) provid 32 that measurable conce 33 are present at all times	ving ions l led entrations				
34 35 36 37 38 39	5Toxic PollutantsToxic pollutants shall6allowed in such quant7concentrations that with8the specified uses.	ities or				
	7050.0420 74					

1	Trout lakes identified in part 6264.0050, subpart 2, as amended through [Date
2	Pending], are classified as trout waters and are listed under part 7050.0470. Trout
3	streams and their tributaries within the sections specified that are identified in part
4	6264.0050, subpart 4, as amended through [Date Pending], are classified as trout waters.
5	Trout streams are listed in part 7050.0470. Other lakes that are classified as trout waters
6	are listed in part 7050.0470. All waters listed in part 7050.0470 as Class 1B, 2A, and 3B
7	are also classified as Class 3C, 4A, 4B, 5, and 6 waters.
8	7050.0470 CLASSIFICATIONS FOR WATERS IN MAJOR SURFACE WATER
9	DRAINAGE BASINS.
10	Subpart 1. Lake Superior Basin. The water use classifications for the listed waters in
11	the Lake Superior Basin are as identified in items A, B, and D.
12	A. Streams:
13	[For text of subitems (1) to (11), see M.R.]
14	(12) Baptism River, West Branch, (T.57, R.7, S.7, 17, 18, 20; T.57, R.8, S.1, 2, 12;
15	T.58, R.8, S.2, 3, 4, 9, 10, 11, 15, 16, 20, 21, 22, 28, 33, 34, 35, 36; T.59, R.8, S. 34, 35): 1B, 2A,
16	3B;
17	[For text of subitems (13) to (23), see M.R.]
18	(24) Blind Temperance Creek, (T.60, R.4W, S.19, 29, 30, 32; T.60, R.5W, S.24, 25,
19	36): 1B, 2A, 3B;
20	[For text of subitems (25) to (34), see M.R.]
21	(35) Cabin Creek, (T.59, R.6W, S.19, 20; T.59, R.7, S.24): 1B, 2A, 3B;
22	(35) to (40) [Renumber as (36) to (41)]
23	(42) Cascade River, (T.60, R.2W, S.1; T.61, R.1W, S.19, 20, 21, 30, 31; T.61, R.2W,
24	S.1, 12, 13, 14, 24, 25, 26, 35, 36; T.62, R.2W, S.10, 11, 14, 15, 16, 22, 23, 24, 25, 36): 1B, 2A,
25	3B;

	11/08/99	[REVISOR]	CMR/KJ	AR3044
1	(42) to (57) [Renumber as (43) to	(58)]		
2	(59) Cross River, (T.58, R.4W, S.6;	T.58, R.5W, S.1; T.5	59, R.4W, S.31; 1	Г.59, R.5W,
3	S.4, 5, 8, 9, 15, 16, 21, 22, 23, 25, 26, 35, 36;	T.60, R.5W, S.30, 31	, 32; T.60, R.6, S	5.13, 24, 25,
4	36): 1B, 2A, 3B;			
5	(60) Crow Creek, (T.53, R.10, S.1,	2; T.54, R.10, S.15,	22, 23, 26, 35):	1B, 2A, 3B;
6	(61) Crown Creek, (T.57, R.8, S.2,	3, 4, 5, 9, 10, 11; T.5	58, R.8, S.5, 6, 7	, 18, 19, 20,
7	29, 30, 31, 32, 33; T.58, R.9, S.1, 12, 1	3, 14, 24, 36; T.59	9, R.8, S.32): 1	B, 2A, 3B;
8	[For text of su	ubitems (62) to (80),	, see M.R.]	
9	(82) and (83) [Renumber as (81) a	nd (82)]		
10	(83) Fry Creek, (T.62, R.2W, S.25;	T.62, 1W, S.29, 30,	31): 1B, 2A, 3B	;
11	[For text of su	ıbitems (84) to (92),	, see M.R.]	
12	(93) Hockamin Creek, (T.57, R.7, S	.17, 18, 19; T.57, R.8	, S.13, 16, 20, 21	, 22, 23, 24,
13	25, 26, 27, 28, 29, 32, 33): 1B, 2A, 3B;			
14	[For text of su	bitems (94) to (106), see M.R.]	
15	(107) Jonvick Creek, (T.60, R.2W, S	5.7, 19; T.60, R.3W, S	5.12, 13, 14, 24):	1B, 2A, 3B;
16	(108) Junco Creek, (T.62, R.1W, S.	1, 2, 9, 10, 11, 12, 1	13, 14, 15, 16, 2	1, 28; T.62,
17	R.1E, S.6, 7; T.63, R.1E, S.20, 29, 30, 31; T.	.63, R.1W, S.24, 25,	35): 1B, 2A, 3B	;;
18	[For text of su	ıbitems (109) to (11	1), see M.R.]	
19	(113) to (121) [Renumber as (112)	to (120)]		
20	(121) Lavi Creek, (T.52, R.15, S.21)	, 28): 1B, 2A, 3B;		
21	(122) Leppanen Creek (Leskinen C	Creek), (T.57, R.7, S	.15, 21, 22, 28):	1B, 2A, 3B;
22	(125) to (130) [Renumber as (123)	to (128)]		•
23	(129) Manitou River, North Brand	ch, (T.58, R.6, S.6; '	Г.58, R.7, S.1, 2	; T.59, R.6,
24	S.31; T.59, R.7, S.15, 16, 18, 19, 20, 21, 22, 2	5, 26, 27, 28, 33, 34,	35, 36; T.59, R.8	3, S.1, 2, 12,
25	13, 24, 25, 26): 1B, 2A, 3B; 7050.0470	76		

11/08/99

1	(130) Manitou River, South Branch, (T.58, R.6, S.6; T.58, R.7, S.1, 4, 5, 6, 7, 8, 9, 10,
2	11, 12, 16, 17, 18; T.58, R.8, S.1; T.59, R.7, S.29, 30, 31, 32, 33): 1B, 2A, 3B;
3	(133) to (138) [Renumber as (131) to (136)]
4	(137) Mile Post Forty-Three Creek, (T.56, R.8, S.2, 3, 10, 11, 13, 14, 15): 1B, 2A, 3B;
5	(140) to (153) [Renumber as (138) to (151)]
6	(152) Murphy Creek, (T.56, R.11, S.4, 5, 8, 17, 18, 19; T.57, R.10, S.4, 7, 8, 9, 18;
7	T.57, R.11, S.13, 21, 22, 23, 24, 26, 27, 28, 33, 34): 1B, 2A, 3B;
8	(155) to (161) [Renumber as (153) to (159)]
9	(160) Nicadoo Creek (Nicado Creek), (T.56, R.7, S.7; T.56, R.8, S.1, 12; T.57, R.8,
10	S.27, 35, 36): 1B, 2A, 3B;
11	(163) to (194) [Renumber as (161) to (192)]
12	(193) Sawmill Creek, (T.57, R.6, S.18; T.57, R.7, S.12, 13, 22, 23, 24, 26, 27, 34): 1B,
13	2A, 3B;
14	(196) to (198) [Renumber as (194) to (196)]
15	(197) Section 16 Creek, (T.58, R.5W, S.16): 1B, 2A, 3B;
16	(202) to (211) [Renumber as (198) to (207)]
17	(208) Split Rock River, East Branch, (T.55, R.9, S.4, 5, 6, 9, 10, 14, 15, 22, 23, 24, 25,
18	26; T.56, R.9, S.30, 31, 32; T.56, R.10, S.1, 11, 12, 13, 14, 24, 25): 1B, 2A, 3B;
19	(213) to (229) [Renumber as (209) to (225)]
20	(226) Stump River, (T.64, R.4E, S.18; T.64, R.3E, S.8, 9, 13, 14, 15, 16, 17, 21, 22, 23,
21	24): 1B, 2A, 3B;
22	(230) to (245) [Renumber as (227) to (242)]
23	(243) Thirty-nine Creek, Big, (T.56, R.8, S.19, 30, 31; T.56, R.9, S.1, 2, 3, 11, 12, 13,
24	14, 15, 22, 23, 24, 25; T.57, R.9, S.22, 26, 27, 35, 36): 1B, 2A, 3B;

7050.0470

	11/08,	/99	[REVISOR]	CMR/KJ	AR3044
1		(247) to (259) [Renumber as (244) to	(256)]		
2		(257) Unnamed (Deer) Creek, (T.47, R	.16, S.19, 29, 30; S	Г.47, R.17, S.13,	, 14, 24): 1B,
3	2A, 3B	;			
4		(261) to (264) [Renumber as (258) to	(261)]		
5		(262) Unnamed Creek, (S-17-6), (T.53,	R.11, S.30, 31, 32	2; T.53, R.12, S.	25): 1B, 2A,
6	3B;			.*	
7		(263) Unnamed Creek, (S-17-9), (T.53	, R.11, S.5; T.54,	R.11, S.20, 29,	30, 32): 1B,
8	2A, 3B	;			
9		(265) to (271) [Renumber as (264) to	(270)]		
10	В	. Lakes:			
11		[For text of subit	ems (1) to (36), s	see M.R.]	
12		(38) to (41) [Renumber as (37) to (40))]		
13		(41) East Lake, (T.59, R.6W, S.1, 2): 1	B, 2A, 3B;		
14		(43) to (48) [Renumber as (42) to (47))]		
15		(48) Feather Lake, (T.61, R.5W, S.35):	1B, 2A, 3B;		
16		[For text of subit	ems (49) to (61),	see M.R.]	
17		(63) to (75) [Renumber as (62) to (74))]		
18		(77) to (80) [Renumber as (75) to (78])]		
19	x	(79) Mirror Lake, (T.52, R.14W, S.19,	30): 1B, 2A, 3B;		
20		(81) to (85) [Renumber as (80) to (84)]		
21		(87) to (120) [Renumber as (85) to (1	18)]		
22		(119) Sonju Lake, (T.58, R.7W, S.27, 2	28): 1B, 2A, 3B;		
23		(121) to (137) [Renumber as (120) to	(136)]		
24		(137) Trip Lake, (T.65, R.3W, S.32): 1	B, 2A, 3B;	•	
	7050.04	170 78			

	11/08/99	[REVISOR]	CMR/KJ	AR3044	
1	[For text of	subitems (138) to (153	3), see M.R.]		
2	[For text of items C and D, see M.R.]				
3	Subp. 2. Lake of the Woods Basin. Th	he water use classifica	tions for the lis	sted waters	
4	in Lake of the Woods Basin are as iden	tified in items A, B, a	ind D.		
5	A. Streams:				
6	[For text of	subitems (1) to (16), s	ee M.R.]		
7	(17) Hill Creek, (T.60, R.8, S.19,	30; T.60, R.9, S.24, 25): 1B, 2A, 3B;		
8	(18) Indian Sioux River, Little, (T.65, R.15): 1B, 2Bd, 3	B;		
9	(19) Inga Creek, (T.60, R.9, S.2, 3	3; T.61, R.9, S.14, 22, 2	23, 27, 34, 35):	1B, 2A, 3B;	
10	(20) *Inga Creek [11/5/84P] (T.61, R.9, S.11, 12): 1B, 2A, 3B;				
11	(21) Isabella River, Little, (T.59, R.8, S.3, 4, 5, 6, 9, 10, 15, 16, 22; T.60, R.8, S.31, 32;				
12	T.60, R.9, S.5, 6, 8, 9, 10, 15, 16, 22, 25, 26, 27, 36; T.61, R.9, S.9, 16, 17, 20, 21, 22, 29, 32):				
13	1B, 2A, 3B;				
14	(22) *Isabella River, Little, [11/5/84P] (T.61, R.9, S.3, 4, 9, 10; T.62, R.9, S.34);				
15	(23) Island River, (T.61, R.7, 8): 1B, 2Bd, 3B;				
16	(25) to (31) [Renumber as (24) to (30)]				
17	(33) to (51) [Renumber as (31) to	o (49)]			
18	(50) Snake Creek, (T.60, R.10, S.1	; T.61, R.9, S.19, 30, 3	1; T.61, R.10, S	.24, 25, 36):	
19	1B, 2A, 3B;				
20	(51) Snake River, (T.60, R.10, S.3	; T.61, R.9, S.18, 19; T	.61, R.10, S.23,	24, 26, 27,	
21	34): 1B, 2A, 3B;				
22	(54) to (70) [Renumber as (52) to	o (68)]			
23	B. Lakes:				
24	[For text of s	subitems (1) to (13), s	ee M.R.]		
	7050.0470	79			

11	/08	/99
11	100	1))

1	(14) Beaver Hut Lake, (T.61, R.10W, S.30, 31; T.61, R.11, S.25, 36): 1B, 2A, 3B;
2	(14) to (45) [Renumber as (15) to (46)]
3	(47) Extortion Lake, (T.65, R.3W, S.31, 32): 1B, 2A, 3B;
4	(46) to (76) [Renumber as (48) to (78)]
5	(79) Indian Lake, (T.60, R.8W, S.35): 1B, 2A, 3B;
6	(77) to (161) [Renumber as (80) to (164)]
7	(165) Trip Lake, (T.65, R.3W, S.32): 1B, 2A, 3B;
8	(162) to (171) [Renumber as (166) to (175)]
9	(176) Unnamed (Pear) Lake, (T.60, R.11W, S.4): 1B, 2A, 3B;
10	(172) to (177) [Renumber as (177) to (182)]
11	[For text of items C and D, see M.R.]
12	Subp. 3. Red River of the North Basin. The water use classifications for the listed
13	waters in the Red River of the North Basin are as identified in items A, B, C, and D.
14	A. Streams:
15	[For text of subitems (1) to (10), see M.R.]
16	(11) County Ditch No. 6A-2, Rothsay, (T.135, R.45, S.21, 28, 33): 7 (see subitem
17	(68));
18	[For text of subitems (12) to (18), see M.R.]
19	(19) Felton Creek, (T.141, R.44, S.7, 8, 17; T.141, R.45, S.7, 8, 12, 13, 14, 15, 16, 17,
20	18, 22; T.141, R.46, S.12, 13, 14): 1B, 2A, 3B;
21	[For text of subitems (20) to (59), see M.R.]
22	(60) Toad River, (T.138, R.38, S.6, 7, 18, 19, 30; T.139, R.38, S.30, 31; T.139, R.39,
23	S.25, 36; T.138, R.39, S.25, 36): 1B, 2A, 3B;
24	[For text of subitems (61) to (67), see M.R.]
	7050.0470 80

	11/08/99	[REVISOR]	CMR/KJ	AR3044
1	(68) Unnamed Creek, Rothsay, (T		23, 25, 26): 7 (s	ee subitem
2	(11));			
3	[For text of s	ubitems (69) to (82),	see M.R.]	
4	[For text of it	ems B to D, see M.I	R.]	
5	Subp. 4. Upper Mississippi River Bas	in. The water use cl	assifications fo	r the listed
6	waters in the Upper Mississippi River H	Basin are as identifi	ed in items A,	B, and D.
7	A. Streams:			
8	[For text of st	ubitems (1) to (22), s	see M.R.]	
9	(23) Branch No. 3, Lateral 2, East	Bethel, (T.33, R.23,	S.29, 32): 7;	
10	(23) to (29) [Renumber as (24) to	(30)]		
11	(31) Camp Ripley Brook, (T.132, I	R.29, S.18, 19; T.132,	R.30, S.13, 24):	1B, 2A, 3B;
12	(31) to (40) [Renumber as (32) to	(41)]		
13	(42) County Ditch No. 17, St. Clo	oud, (T.124, R.29, S.1	3, 24, 25): 7;	
14	(41) and (42) [Renumber as (43) a	and (44)]		
15	(45) County Ditch No. 28, Ham La	ake, (T.32, R.23, S.4, S	5, 6; T.33, R.23,	S.29, 32): 7;
16	(43) to (125) [Renumber as (46) to	o (128)]		
17	(127) to (134) [Renumber as (129)	to (136)]		
18	(137) Pokety (Pickedee Creek), (1		T.144, R.33, S.	24, 25): 1B,
19	2A, 3B;			
20	(135) to (152) [Renumber as (138)	to (155)]		
21	(154) to (180) [Renumber as (156)	to (182)]		
22	(183) Straight Creek, Upper, (T.14	40, R.36, S.6; T.141,	R.36, S.30, 31; 7	Г.141, R.37,
23	S.24, 25): 1B, 2A, 3B;			
24	(182) to (196) [Renumber as (184)	to (198)]		

	11/08/99	REVISOR]	CMR/KJ	AR3044
1	(199) Trout Brook, St. Paul, (T.29, R.22,	S.18, 19): 7;		
2	2 (197) to (228) [Renumber as (200) to (23	[1)]		
3	3 (230) to (240) [Renumber as (232) to (24	2)]		
4	B. Lakes:			
5	5 [For text of subitem	s (1) to (21), s	see M.R.]	
6	(23) to (62) [Renumber as (22) to (61)]			
7	7 [For text of items C	and D, see N	1.R.]	
8	Subp. 5. Minnesota River Basin. The water u	se classificatio	ons for the liste	d waters in
9	the Minnesota River Basin are as identified in i	tems A, B, C,	and D.	
10	A. Streams:			
11	[For text of subitem	s (1) to (32), s	see M.R.]	
12	(33) County Ditch No. 9 (see Hazel Cre	ek);		
13	(33) to (72) [Renumber as (34) to (73)]			
14	4 (74) Hazel Creek (County Ditch No. 9),	(T.115, R.39,	40, 41, 42): 2C;	
15	(75) High Island Ditch, Arlington, (T.11	3, R.27, S.16,	17, 21, 22, 27):	7;
16	6 (74) to (89) [Renumber as (76) to (91)]			
17	(92) Lateral 5 of Judicial Ditch No. 3, (s	ee Unnamed	Ditch, Green I	sle);
18	3 (90) to (139) [Renumber as (93) to (142)]	<u>(74) to (139) [</u>	Renumber as (2	⁷ 6) to (141)]
19) (143) (142) Unnamed Creek, Lake Tow	n Township,	(T.115, R.24,	S.3, 10, 11;
20	T.116, R.24, S.27, 34): 7;		· .	
21	(140) to (158) [Renumber as (144) <u>(143)</u>	to (162) <u>(161)</u>]	
22	(163) (162) Unnamed Ditch, Arlington,	(T.113, R.27, S	5.21): 7;	
23	(164) <u>(163)</u> Unnamed Ditch, Near Ferna	ando, Round	Grove Coop C	Cry., (T.113,
24		5.25, 26, 27, 28	3, 29, 32): 7;	
	7050.0470 82			

11/08/99 [REVISOR] CMR/KI AR3044 1 (165) (164) Unnamed Ditch, (Lateral 5 of Judicial Ditch No. 3), Green Isle, (T.114, 2 R.26, S.18, 19; T.114, R.27, S.11, 12, 13, 14, 24): 7; 3 (161) to (187) [Renumber as (166) (165) to (192) (191)] 4 B. Lakes: 5 [For text of subitems (1) to (14), see M.R.] 6 (15) Unnamed Swamp (Skauby Lake), Storden, (T.107, R.37, S.30): 7; 7 [For text of subitems (16) to (18), see M.R.] 8 [For text of items C and D, see M.R.] 9 Subp. 6. Saint Croix River Basin. The water use for the listed waters in the Saint 10 Croix River Basin are as identified in items A, B, and D. 11 A. Streams: 12 [For text of subitems (1) to (16), see M.R.] 13 (17) *Kettle River, [11/5/84R] (From the north Pine County line to the site of the 14 former dam at Sandstone, at quarter section line between the NW 1/4 and SW 1/4, S.22, 15 T.42, R.20): 2B, 3B; 16 (18) *Kettle River, [11/5/84P] (From the site of the former dam at Sandstone, at 17 quarter section line between the NW 1/4 and SW 1/4, S.22, T.42, R.20 to its confluence 18 with the Saint Croix River): 2B, 3B; 19 [For text of subitems (19) to (48), see M.R.] 20 [For text of items B to D, see M.R.] 21 Subp. 7. Lower Mississippi River Basin. The water use classifications for the listed 22 waters in the Lower Mississippi River Basin are as identified in items A, B, and C. 23 A. Streams: 24 [For text of subitems (1) to (3), see M.R.]

	11/08/99	[REVISOR]	CMR/KJ	AR3044
1	(4) Ballpark Creek, (T.102, R.4, S.19, 30); T.102, R.5, S	.24): 1B, 2A, 3B	;
2	(4) to (17) [Renumber as (5) to (18)]			
3	(19) Burns Valley Creek, West Branch,	(T.106, R.7, S.3	8, 4, 9, 16; T.107	, R.7, S.34):
4	1B, 2A, 3B;			
5	(19) to (27) [Renumber as (20) to (28)]			
6	(29) Cedar Valley Creek, (T.105, R.6, S.6	6; T.106, R.6, S.	1, 11, 12, 14, 15	, 21, 22, 28,
7	29, 31, 32): 1B, 2A, 3B;			
8	(30) Chub Creek, North Branch, (T.112	2, 113, R.19): 20	<u>;</u>	
9	(31) Clear Creek, (T.111, R.14, S.3, 10, 1	15): 1B, 2A, 3B	;	
10	(30) to (45) [Renumber as (32) to (47)]		,	
11	(47) to (55) [Renumber as (48) to (56)]			
12	(57) Garvin Brook, (T.106, R.8, S.4, 5, 8,	17; T.107, R.8,	S.10, 11, 14, 15	, 23, 26, 27,
13	33, 34, 35): 1B, 2A, 3B;			
14	(58) Gilbert Creek, (T.111, R.12, S.6; T.11	11, R.13, S.1, 2,	3, 4, 10, 11, 12; 7	Г.112, R.12,
15	S.31): 1B, 2A, 3B;			
16	(58) to (61) [Renumber as (59) to (62)]			
17	(63) Hamilton Creek, (T.103, R.13, NW	1/4 S.6; T.103,	R.14, NE 1/4 S	.1): 1B, 2A,
18	3B;			
19	(63) to (65) [Renumber as (64) to (66)]			
20	(67) Hay Creek, (T.111, R.15, S.4; T.112,	R.14, S.19; T.1	12, R.15, S.1, 12	, 13, 23, 24,
21	26, 27, 33, 34; T.113, R.15, S.24, 25, 36): 1B, 2A	, 3B;		
22	(67) to (140) [Renumber as (68) to (141)]		
23	(142) Straight Creek, (T.107, R.9, S.2, 1	1, 12): 1B, 2A,	3B;	
24	(141) to (166) [Renumber as (143) to (1	68)]		

	11/08/99	[REVISOR]	CMR/KJ	AR3044	
1	(168) to (175) [Renumber as (169) to	0 (176)]			
2	(177) Unnamed Creek (Wells Creek Trib. #9), (T.111, R.14, S.8, 17): 1B, 2A, 3B;				
3	(178) Unnamed Ditch, Claremont, (T.107, R.18, S.27, 34): 7;				
4	(179) Unnamed Ditch, Owatonna, (T.108, R.20, S.33): 7;				
5	(177) to (187) [Renumber as (180) to (190)]				
6	(191) Wells Creek, (T.111, R.14, S.3, 4, 5, 6, 7, 8, 18; T.112, R.13, S.12, 13, 14, 15, 16,				
7	17, 19, 20, 21, 22, 23; T.112, R.14, S.24, 25, 33, 34, 35, 36): 1B, 2A, 3B;				
8	(188) to (198) [Renumber as (192) <u>(191)</u> to (202) <u>(201)</u>]				
9	[For text of items B to D, see M.R.]				
10	Subp. 8. Cedar-Des Moines Rivers Basin. The water use classifications for the listed				
11	waters in the Cedar-Des Moines Rivers Basin are as identified in items A, C, and D.				
12	A. Streams:				
13	[For text of sub	items (1) to (7), se	e M.R.]		
14	(8) County Ditch No. 53 (see Soldie	r Creek);			
15	(8) to (20) [Renumber as (9) to (21)]				
16	(22) Soldier Creek (Unnamed Strea	m and County D	itch No. 53), (T	.101, R.32,	
17	33): 2C, 3B;				
18	(23) Turtle Creek, (T.103, R.18, 19, 2	20): 2C;			
19	(24) Unnamed Creek, Emmons, (T.1	01, R.22, S.31): 7;			
20	(25) Unnamed Creek, Brownsdale, ((T.103, R.17, S.4, 9): 7;		
21	(26) Unnamed Creek, Blooming Pra	airie, (T.104, R.18,	S.5, 8, 9, 16; T	.105, R.18,	
22	S.31): 7;				
23	(27) Unnamed Creek, Blooming Pra	irie, (T.105, R.19,	S.25): 7;		
24	(28) Unnamed Creek, Iona, (T.105, R.41, S.3, 4, 9; T.106, R.40, S.19, 29, 30, 32;				
25	T.106, R.41, S.24, 25, 26, 34, 35): 7;				
	7050.0470 8	5			

ς

1	(29) Unnamed Ditch, Blooming Prairie, (T.105, R.19, S.25): 7;
2	(30) Unnamed Stream (see Soldier Creek);
3	(31) Wolf Creek, (T.103, R.16, 17, 18): 2C;
4	(32) Woodbury Creek, (T.101, 102, R.18, 19): 2C; and
5	(33) Woodson Creek, (T.102, R.18, S.14, 15): 1B, 2A, 3B.
6	[For text of items B to D, see M.R.]
7	[For text of subp 9, see M.R.]

8 **REPEALER.** Minnesota Rules, part 7050.0220, subparts 3, 4, 5, and 6, are repealed.