7050.0222 SPECIFIC WATER QUALITY STANDARDS FOR CLASS 2 WATERS OF THE STATE; AQUATIC LIFE AND RECREATION.

Subpart 1. **General.**

- A. The numeric and narrative water quality standards in this part prescribe the qualities or properties of the waters of the state that are necessary for the aquatic life and recreation designated public uses and benefits. If the standards in this part are exceeded in waters of the state that have the class 2 designation, it is considered indicative of a polluted condition which is actually or potentially deleterious, harmful, detrimental, or injurious with respect to the designated uses.
- B. Standards for metals are expressed as total metal in this part, but must be converted to dissolved metal standards for application to surface waters. Conversion factors for converting total to dissolved metal standards are listed in subpart 9. The conversion factor for metals not listed in subpart 9 is one. The dissolved metal standard equals the total metal standard times the conversion factor. Water quality-based effluent limits for metals are expressed as total metal.
 - C. The tables of standards in this part include the following abbreviations and acronyms:
- * an asterisk following the FAV and MS values or double dashes (--) means subpart 7, item E, applies
- (c) means the chemical is assumed to be a human carcinogen
- °C means degrees Celsius
- CS means chronic standard, defined in part 7050.0218, subpart 3
- -- double dashes means there is no standard
- °F means degrees Fahrenheit
- FAV means final acute value, defined in part 7050.0218, subpart 3 HH in the "basis" column means the standard is human health-based MS means maximum standard, defined in part 7050.0218, subpart 3
- NA means not applicable
- su means standard unit. It is the reporting unit for pH
- TH means total hardness in milligrams per liter, which is the sum of the calcium and
 - magnesium concentrations expressed as CaCO₃
- Tox in the "basis" column means the standard is toxicity-based
- D. Important synonyms or acronyms for some chemicals are listed in parentheses below the primary name.
- Subp. 2. Class 2A waters; aquatic life and recreation. The quality of class 2A surface waters shall be such as to permit the propagation and maintenance of a healthy community of cold water aquatic biota, and their habitats according to the definitions in subpart 2c. These waters shall be suitable for aquatic recreation of all kinds, including bathing, for which the waters may be usable. This class of surface waters is also protected as a source of drinking water. Abbreviations, acronyms, and symbols are explained in subpart 1.

Substance, Characteristic, or Pollutant			Basis			Basis for MS,
(Class 2A)	Units	CS	for CS	MS	FAV	FAV
Acenaphthene	μg/L	20	НН	56	112	Tox
Acetochlor	μ g/L	3.6	Tox	86	173	Tox
Acrylonitrile (c)	μ g/L	0.38	HH	1,140*	2,281*	Tox
Alachlor (c)	μ g/L	3.8	HH	800*	1,600*	Tox
Aluminum, total	μ g/L	87	Tox	748	1,496	Tox
Ammonia un-ionized as N	μ g/L	16	Tox			NA

The percent un-ionized ammonia can be calculated for any temperature and pH by using the following equation taken from Emerson, K., R.C. Russo, R.E. Lund, and R.V. Thurston, Aqueous ammonia equilibrium calculations; effect of pH and temperature. Journal of the Fisheries Research Board of Canada 32: 2379-2383 (1975):

$$f = \frac{1}{(pk_a - pH)} \times 100$$

$$10 + 1$$

where: f = the percent of total ammonia in the un-ionized state $pk_a = 0.09 + (2730/T)$ (dissociation constant for ammonia)

T = temperature in degrees Kelvin (273.16° Kelvin = 0° Celsius)

Substance, Characteristic, or Pollutant	T T •4	CC.	Basis	MC	EAN.	Basis for MS,
(Class 2A)	Units	CS	for CS	MS	FAV	FAV
Anthracene	μg/L	0.035	Tox	0.32	0.63	Tox
Antimony, total	μg/L	5.5	HH	90	180	Tox
Arsenic, total	μg/L	2.0	HH	360	720	Tox
Atrazine (c)	μg/L	3.4	HH	323	645	Tox
Benzene (c)	μg/L	5.1	HH	4,487*	8,974*	Tox
Bromoform	μg/L	33	HH	2,900	5,800	Tox
Cadmium, total	μ g/L	equation	Tox	equation	equation	Tox

The CS, MS, and FAV vary with total hardness and are calculated using the following equations:

The CS in μ g/L shall not exceed: exp.(0.7852[ln(total hardness mg/L)]-3.490)

The MS in μ g/L shall not exceed: exp.(1.128[ln(total hardness mg/L)]-3.828)

The FAV in μ g/L shall not exceed: exp.(1.128[ln(total hardness mg/L)]-3.1349)

Where: exp. is the natural antilogarithm (base e) of the expression in parenthesis.

For hardness values greater than 400 mg/L, 400 mg/L shall be used to calculate the standard.

Example of total cadmium standards for five hardness values:

TH in mg/L	50	100	200	300	400	
Cadmium, total						
CS μg/L	0.66	1.1	2.0	2.7	3.4	
MS μg/L	1.8	3.9	8.6	14	19	
FAV μg/L	3.6	7.8	17	27	37	

Substance, Characteristic, or Pollutant (Class 2A)	Units	CS	Basis for CS	MS	FAV	Basis for MS, FAV
Carbon tetrachloride (c) Chloride Chloride	μg/L ng/L mg/L	1.9 0.073 230	HH HH Tox	1750* 1200* 860	3500* 2400* 1720	Tox Tox Tox
Chlorine, total residual	μg/L	11	Tox	19	38	Tox

Chlorine standard applies to conditions of continuous exposure, where continuous exposure refers to chlorinated effluents that are discharged for more than a total of two hours in any 24-hour period.

Chlorobenzene	μ g/L	20	HH	423	846	Tox
(Monochlorobenzene)						
Chloroform (c)	$\mu g/L$	53	HH	1,392	2,784	Tox
Chlorpyrifos	$\mu g/L$	0.041	Tox	0.083	0.17	Tox
Chromium +3, total	$\mu g/L$	equation	Tox	equation	equation	Tox

The CS, MS, and FAV vary with total hardness and are calculated using the following equations:

The CS in μ g/L shall not exceed: exp.(0.819[ln(total hardness mg/L)]+1.561)

The MS in μ g/L shall not exceed: exp.(0.819[ln(total hardness mg/L)]+3.688)

The FAV in μ g/L shall not exceed: exp.(0.819[ln(total hardness mg/L)]+4.380)

Where: exp. is the natural antilogarithm (base e) of the expression in parenthesis.

For hardness values greater than 400 mg/L, 400 mg/L shall be used to calculate the standard.

Example of total chromium +3 standards for five total hardness values:

TH in mg/L	50	100	200	300	400
Chromium +3, total					
CS µg/L	117	207	365	509	644
MS μg/L	984	1,737	3,064	4,270	5,405
FAV μg/L	1,966	3,469	6,120	8,530	10,797

Substance, Characteristic, or Pollutant (Class 2A)	Units	CS	Basis for CS	MS	FAV	Basis for MS, FAV
Chromium +6, total	μg/L	11	Tox	16	32	Tox
Cobalt, total	μg/L	2.8	HH	436	872	Tox
Color value	Pt/Co	30	NA			NA
Copper, total	μg/L	equation	Tox	equation	equation	Tox

The CS, MS, and FAV vary with total hardness and are calculated using the following equations:

The CS in μ g/L shall not exceed: exp.(0.620[ln(total hardness mg/L)]-0.570)

The MS in μ g/L shall not exceed: exp.(0.9422[ln(total hardness mg/L)]-1.464)

The FAV in µg/L shall not exceed: exp.(0.9422[ln(total hardness mg/L)]-0.7703)

Where: exp. is the natural antilogarithm (base e) of the expression in parenthesis.

For hardness values greater than 400 mg/L, 400 mg/L shall be used to calculate the standard.

Example of total copper standards for five total hardness values:

TH in mg/L	50	100	200	300	400
Copper, total					
CS μg/L	6.4	9.8	15	19	23
$MS \mu g/L$	9.2	18	34	50	65
FAV μg/L	18	35	68	100	131

Substance,			Basis			Basis
Characteristic,	Units	CS	for CS	MS	FAV	for

or Pollutant (Class 2A)						MS, FAV
Cyanide, free	μg/L	5.2	Tox	22	45	Tox
DDT (c)	ng/L	0.11	HH	550*	1100*	Tox
1,2-Dichloroethane (c)	μg/L	3.5	HH	45,050*	90,100*	Tox
Dieldrin (c)	ng/L	0.0065	HH	1,300*	2,500*	Tox
Di-2-ethylhexyl phthalate (c)	μg/L	1.9	HH	*	*	NA
Di-n-octyl phthalate	μg/L	30	Tox	825	1,650	Tox
Endosulfan	μg/L	0.0076	HH	0.084	0.17	Tox
Endrin	μg/L	0.0039	HH	0.090	0.18	Tox
Escherichia (E.) coli	See below	See below	НН	See below	See below	NA

Not to exceed 126 organisms per 100 milliliters as a geometric mean of not less than five samples representative of conditions within any calendar month, nor shall more than ten percent of all samples taken during any calendar month individually exceed 1,260 organisms per 100 milliliters. The standard applies only between April 1 and October 31.

Ethylbenzene	$\mu g/L$	68	Tox	1,859	3,717	Tox
Substance, Characteristic, or Pollutant (Class 2A)	Units	CS	Basis for CS	MS	FAV	Basis for MS, FAV

Eutrophication standards for class 2A lakes and reservoirs.

Designated lake trout lakes in all ecoregions (lake trout lakes support natural populations of lake trout, *Salvelinus namaycush*):

Phosphorus, total	μg/L	12	NA	 	NA
Chlorophyll-a	μ g/L	3	NA	 	NA
Secchi disk transparency	meters	No less	NA	 	NA
		than 4.8			

Designated trout lakes in all ecoregions, except lake trout lakes:

Phosphorus, total	μg/L	20	NA	 	NA
Chlorophyll-a	μg/L	6	NA	 	NA
Secchi disk transparency	meters	No less	NA	 	NA
		than 2.5			

Additional narrative eutrophication standards for class 2A lakes and reservoirs are found under subpart 2a.

Eutrophication standards for class 2A rivers and streams.

North River Nutrient Region:		
Phosphorus, total	μg/L	less than or equal to 50
Chlorophyll-a (seston)	μ g/L	less than or equal to 7
Diel dissolved oxygen flux	mg/L	less than or equal to 3.0
Biochemical oxygen demand (BOD ₅)	mg/L	less than or equal to 1.5
Central River Nutrient Region:		
Phosphorus, total	μ g/L	less than or equal to 100
Chlorophyll-a (seston)	μg/L	less than or equal to 18
Diel dissolved oxygen flux	mg/L	less than or equal to 3.5
Biochemical oxygen demand (BOD ₅)	mg/L	less than or equal to 2.0
South River Nutrient Region:		
Phosphorus, total	μg/L	less than or equal to 150
Chlorophyll-a (seston)	μ g/L	less than or equal to 35
Diel dissolved oxygen flux	mg/L	less than or equal to 4.5
Biochemical oxygen demand (BOD ₅)	mg/L	less than or equal to 3.0

Additional narrative eutrophication standards for class 2A rivers and streams are found under subpart 2b.

Substance, Characteristic, or Pollutant (Class 2A)	Units	CS	Basis for CS	MS	FAV	Basis for MS, FAV
Fluoranthene	μg/L	1.9	Tox	3.5	6.9	Tox
Heptachlor (c)	ng/L	0.10	HH	260*	520*	Tox
Heptachlor epoxide (c)	ng/L	0.12	HH	270*	530*	Tox
Hexachlorobenzene (c)	ng/L	0.061	HH	*	*	Tox
Lead, total	$\mu g/L$	equation	Tox	equation	equation	Tox

The CS, MS, and FAV vary with total hardness and are calculated using the following equations:

The CS in μ g/L shall not exceed: exp.(1.273[ln(total hardness mg/L)]-4.705)

The MS in μ g/L shall not exceed: exp.(1.273[ln(total hardness mg/L)]-1.460)

The FAV in μ g/L shall not exceed: exp.(1.273[ln(total hardness mg/L)]-0.7643)

Where: exp. is the natural antilogarithm (base e) of the expression in parenthesis.

For hardness values greater than 400 mg/L, 400 mg/L shall be used to calculate the standard. Example of total lead standards for five total hardness values:

TH in mg/L	50	100	200	300	400	
Lead, total						
CS μg/L	1.3	3.2	7.7	13	19	
MS μg/L	34	82	197	331	477	
FAV μg/L	68	164	396	663	956	

Substance, Characteristic, or Pollutant (Class 2A)	Units	CS	Basis for CS	MS	FAV	Basis for MS, FAV
Lindane (c)	μg/L	0.0087	НН	1.0*	2.0*	Tox
(Hexachlorocyclohexane,						
gamma-)						
Mercury, total in water	ng/L	6.9	HH	2,400*	4,900*	Tox
Mercury, total	mg/kg	0.2	HH	NA	NA	NA
in edible fish	ppm					
Methylene chloride (c)	μg/L	45	HH	13,875*	27,749*	Tox
Dichloromethane)						
Metolachlor	μg/L	23	Tox	271	543	Tox
Naphthalene	μg/L	65	HH	409	818	Tox
Nickel, total	μg/L	equation	Tox/HH	equation	equation	Tox

The CS, MS, and FAV vary with total hardness and are calculated using the following equations:

The CS shall not exceed the human health-based standard of 297 $\mu g/L$. For waters with total hardness values less than 212 mg/L, the CS in $\mu g/L$ is toxicity-based and shall not exceed: exp.(0.846[ln(total hardness mg/L)]+1.1645)

The MS in μ g/L shall not exceed: exp.(0.846[ln(total hardness mg/L)]+3.3612)

The FAV in μ g/L shall not exceed: exp.(0.846[ln(total hardness mg/L)]+4.0543)

Where: exp. is the natural antilogarithm (base e) of the expression in parenthesis.

For hardness values greater than 400 mg/L, 400 mg/L shall be used to calculate the standard.

Example of total nickel standards for five total hardness values:

TH in mg/L	50	100	200	300	400

Nickel, total					
CS μg/L	88	158	283	297	297
MS μg/L	789	1,418	2,549	3,592	4,582
FAV μg/L	1,578	2,836	5,098	7,185	9,164

Substance, Characteristic, or Pollutant (Class 2A)	Units	CS	Basis for CS	MS	FAV	Basis for MS, FAV
Oil	μg/L	500	NA	5,000	10,000	NA
Oxygen, dissolved	mg/L	See below	NA			NA

7.0 mg/L as a daily minimum. This dissolved oxygen standard requires compliance with the standard 50 percent of the days at which the flow of the receiving water is equal to the $7Q_{10}$.

Parathion	μ g/L	0.013	Tox	0.07	0.13	Tox
Pentachlorophenol	μg/L	0.93	HH	equation	equation	Tox

The MS and FAV vary with pH and are calculated using the following equations:

The MS in μ g/L shall not exceed: exp.(1.005[pH]-4.830)

The FAV in μ g/L shall not exceed: exp.(1.005[pH]-4.1373)

Where: exp. is the natural antilogarithm (base e) of the expression in parenthesis.

For pH values less than 6.0, 6.0 shall be used to calculate the standard and for pH values greater than 9.0, 9.0 shall be used to calculate the standard.

Example of pentachlorophenol standards for five pH values:

pH su	6.5	7.0	7.5	8.0	8.5
Pentachlorophenol					
CS μg/L	0.93	0.93	0.93	0.93	0.93
$MS \mu g/L$	5.5	9.1	15	25	41
FAV μg/L	11	18	30	50	82

Substance,						Basis
Characteristic,						for
or Pollutant			Basis			MS,
(Class 2A)	Units	CS	for CS	MS	FAV	FAV

pH, minimum	su	6.5	NA			NA
pH, maximum	su	8.5	NA			NA
Phenanthrene	μg/L	3.6	Tox	32	64	Tox
Phenol	μg/L	123	Tox	2,214	4,428	Tox
Polychlorinated biphenyls, total	ng/L	0.014	HH	1,000*	2,000*	Tox
(c)						
Radioactive materials	NA	See	NA	See	See	NA
		below		below	below	

Not to exceed the lowest concentrations permitted to be discharged to an uncontrolled environment as permitted by the appropriate authority having control over their use.

Selenium, total	μg/L	5.0	Tox	20	40	Tox
Silver, total	μg/L	0.12	Tox	equation	equation	Tox

The MS and FAV vary with total hardness and are calculated using the following equations:

The MS in μ g/L shall not exceed: exp.(1.720[ln(total hardness mg/L)]-7.2156)

The FAV in μ g/L shall not exceed: exp.(1.720[ln(total hardness mg/L)]-6.520)

Where: exp. is the natural antilogarithm (base e) of the expression in parenthesis.

For hardness values greater than 400 mg/L, 400 mg/L shall be used to calculate the standard.

Example of silver standards for five total hardness values:

TH in mg/L	50	100	200	300	400	
Silver, total						
CS µg/L	0.12	0.12	0.12	0.12	0.12	
MS µg/L	1.0	2.0	6.7	13	22	
FAV μg/L	1.2	4.1	13	27	44	

Substance, Characteristic, or Pollutant (Class 2A)	Units	CS	Basis for CS	MS	FAV	Basis for MS, FAV
Temperature	°C or °F	No material increase	NA			NA
1,1,2,2-Tetrachloroethane (c)	μg/L	1.1	HH	1,127*	2,253*	Tox
Tetrachloroethylene (c)	μg/L	3.8	HH	428*	857*	Tox
Thallium, total	μ g/L	0.28	HH	64	128	Tox

Toluene Toxaphene (c) 1,1,1-Trichloroethane 1,1,2-Trichloroethylene (c) 2,4,6-Trichlorophenol Total suspended solids (TSS) TSS standards for class 2A may be exceeded for no more than tempercent of the time. This standard applies April 1 through September 30		253 0.31 329 25 2.0 10	Tox HH Tox HH HH NA	1,352 730* 2,957 6,988* 102	2,703 1,500* 5,913 13,976* 203	Tox Tox Tox Tox NA
Vinyl chloride (c) Xylene, total m,p,o Zinc, total	μg/L	0.17	HH	*	*	NA
	μg/L	166	Tox	1,407	2,814	Tox
	μg/L	equation	Tox	equation	equation	Tox

The CS, MS, and FAV vary with total hardness and are calculated using the following equations:

The CS in μ g/L shall not exceed: exp.(0.8473[ln(total hardness mg/L)]+0.7615)

The MS in μ g/L shall not exceed: exp.(0.8473[ln(total hardness mg/L)]+0.8604)

The FAV in μg/L shall not exceed: exp.(0.8473[ln(total hardness mg/L)]+1.5536

Where: exp. is the natural antilogarithm (base e) of the expression in parenthesis.

For hardness values greater than 400 mg/L, 400 mg/L shall be used to calculate the standard.

Example of zinc standards for five total hardness values:

TH in mg/L	50	100	200	300	400	
Zinc, total						
CS μg/L	59	106	191	269	343	
MS µg/L	65	117	211	297	379	
FAV μg/L	130	234	421	594	758	

Subp. 2a. Narrative eutrophication standards for lakes and reservoirs.

A. Eutrophication standards for lakes and reservoirs are compared to summer-average data. Exceedance of the total phosphorus and either the chlorophyll-a or Secchi disk transparency standard is required to indicate a polluted condition.

B. It is the policy of the agency to protect all lakes and reservoirs from the undesirable effects of cultural eutrophication. Lakes and reservoirs with a baseline quality better than the numeric eutrophication standards in subpart 2 must be maintained in that condition through the strict application of all relevant federal, state, and local requirements governing antidegradation, the

discharge of nutrients from point and nonpoint sources, and the protection of lake or reservoir resources, including, but not limited to:

- (1) the antidegradation requirements in parts 7050.0250 to 7050.0335;
- (2) the phosphorus effluent limits for point sources, where applicable in chapter 7053;
- (3) the requirements for feedlots in chapter 7020;
- (4) the requirements for individual sewage treatment systems in chapter 7080;
- (5) the requirements for control of storm water in chapter 7090;
- (6) county shoreland ordinances; and
- (7) implementation of mandatory and voluntary best management practices to minimize point and nonpoint sources of nutrients.
- C. Lakes and reservoirs with a baseline quality that is poorer than the numeric eutrophication standards in subpart 2 must be considered to be in compliance with the standards if the baseline quality is the result of natural causes. The commissioner shall determine baseline quality and compliance with these standards using data and the procedures in part 7050.0150, subpart 5.
- D. When applied to reservoirs, the eutrophication standards in this subpart and subpart 2 may be modified on a site-specific basis to account for characteristics unique to reservoirs that can affect trophic status, such as water temperature, variations in hydraulic residence time, watershed size, and the fact that reservoirs may receive drainage from more than one ecoregion. Information supporting a site-specific standard can be provided by the commissioner or by any person outside the agency. The commissioner shall evaluate all data in support of a modified standard and determine whether a change in the standard for a specific reservoir is justified. Any total phosphorus effluent limit determined to be necessary based on a modified standard shall only be required after the discharger has been given notice of the specific proposed effluent limits and an opportunity to request a hearing as provided in part 7000.1800.
- E. Eutrophication standards applicable to lakes and reservoirs that lie on the border between two ecoregions or that are in the Red River Valley (also referred to as Lake Agassiz Plains), Northern Minnesota Wetlands, or Driftless Area Ecoregion must be applied on a case-by-case basis. The commissioner shall use the standards applicable to adjacent ecoregions as a guide.

Subp. 2b. Narrative eutrophication standards for rivers and streams.

- A. Eutrophication standards for rivers and streams are compared to summer-average data or as specified in subpart 2. Exceedance of the total phosphorus levels and chlorophyll-a (seston), five-day biochemical oxygen demand (BOD₅), diel dissolved oxygen flux, or pH levels is required to indicate a polluted condition.
- B. Rivers and streams that exceed the phosphorus levels but do not exceed the chlorophyll-a (seston), five-day biochemical oxygen demand (BOD_5), diel dissolved oxygen flux, or pH levels meet the eutrophication standard.

- C. For chlorophyll-a (periphyton), the standard is exceeded if concentrations exceed 150 mg/m^2 more than one year in ten.
- D. It is the policy of the agency to protect all rivers and streams from the undesirable effects of cultural eutrophication. Rivers and streams with a baseline quality better than the numeric eutrophication standards in subpart 3 must be maintained in that condition through the strict application of all relevant federal, state, and local requirements governing antidegradation, the discharge of nutrients from point and nonpoint sources, including:
 - (1) the antidegradation requirements in parts 7050.0250 to 7050.0335;
 - (2) the phosphorus effluent limits for point sources, where applicable, in chapter 7053;
 - (3) the requirements for feedlots in chapter 7020;
 - (4) the requirements for individual sewage treatment systems in chapter 7080;
 - (5) the requirements for control of storm water in chapter 7090;
 - (6) county shoreland ordinances; and
- (7) implementation of mandatory and voluntary best management practices to minimize point and nonpoint sources of nutrients.
- E. Rivers and streams with a baseline quality that does not meet the numeric eutrophication standards in part 7050.0150, subpart 5b, are in compliance with the standards if the baseline quality is the result of natural causes. The commissioner must determine baseline quality and compliance with these standards using data and the procedures in part 7050.0150, subpart 5.

Subp. 2c. Beneficial use definitions for lotic cold water aquatic life and habitats (class 2A).

- A. Subitems (1) to (5) apply to the beneficial uses in items B and C:
- (1) The designation and attainment of beneficial uses are based on the biological criteria in subpart 2d.
- (2) The attributes of species composition, diversity, and functional organization are measured using:
- (a) the fish IBI as defined in Fish Data Collection Protocols for Lotic Waters in Minnesota (2017); or
- (b) the macroinvertebrate IBI as defined in Macroinvertebrate Data Collection Protocols for Lotic Waters in Minnesota (2017).
- (3) Water body types for streams and rivers are defined in the documents referenced in subitem (2).
- (4) The following documents are incorporated by reference and are not subject to frequent change:

- (a) Calibration of the Biological Condition Gradient for Streams of Minnesota, Gerritsen et al. (2012). The document is available on the agency's website at www.pca.state.mn.us/regulations/minnesota-rulemaking;
- (b) Fish Data Collection Protocols for Lotic Waters in Minnesota, Minnesota Pollution Control Agency (2017). The document is available on the agency's website at www.pca.state.mn.us/regulations/minnesota-rulemaking;
- (c) Macroinvertebrate Data Collection Protocols for Lotic Waters in Minnesota, Minnesota Pollution Control Agency (2017). The document is available on the agency's website at www.pca.state.mn.us/regulations/minnesota-rulemaking; and
- (d) Development of Biological Criteria for Tiered Aquatic Life Uses, Minnesota Pollution Control Agency (2016). The document is available on the agency's website at www.pca.state.mn.us/regulations/minnesota-rulemaking.
- (5) The beneficial use subclass designators "e" and "g" are added to the class 2A designator as specific additional designators. The additional subclass designators do not replace the class 2A designator. All requirements for class 2A cold water stream and river habitats in parts 7050.0222 and 7052.0100 continue to apply in addition to requirements for class 2Ae or class 2Ag cold water stream and river habitats in part 7050.0222. These subclass designators are applied to lotic waters only.
- B. "Exceptional cold water aquatic life and habitat" or "class 2Ae" is a beneficial use that means waters capable of supporting and maintaining an exceptional and balanced, integrated, adaptive community of cold water aquatic organisms having a species composition, diversity, and functional organization comparable to the 75th percentile of biological condition gradient level 3 as established in Calibration of the Biological Condition Gradient for Streams of Minnesota, Gerritsen et al. (2012).
- C. "General cold water aquatic life and habitat" or "class 2Ag" is a beneficial use that means waters capable of supporting and maintaining a balanced, integrated, adaptive community of cold water aquatic organisms having a species composition, diversity, and functional organization comparable to the median of biological condition gradient level 4 as established in Calibration of the Biological Condition Gradient for Streams of Minnesota, Gerritsen et al. (2012).

Subp. 2d. Biological criteria for lotic cold water aquatic life and habitats (class 2A).

Water Body Type	Tier	Class	Assemblage	Biocriterion
Southern cold water streams	Exceptional	2Ae	Fish	82
	General	2Ag	Fish	50
Northern cold water streams	Exceptional	2Ae	Fish	60
	General	2Ag	Fish	35
Northern cold water streams	Exceptional	2Ae	Macroinvertebrates	52
	General	2Ag	Macroinvertebrates	32

Southern cold water streams	Exceptional	2Ae	Macroinvertebrates	72
	General	2Ag	Macroinvertebrates	43

The biological criteria for lotic cold water aquatic life and habitats (class 2A) are applicable to perennial and intermittent waters that allow for colonization of fish or macroinvertebrates.

Subp. 3. Class 2Bd waters. The quality of class 2Bd surface waters shall be such as to permit the propagation and maintenance of a healthy community of cool or warm water aquatic biota and their habitats according to the definitions in subpart 3c. These waters shall be suitable for aquatic recreation of all kinds, including bathing, for which the waters may be usable. This class of surface waters is also protected as a source of drinking water. The applicable standards are given below. Abbreviations, acronyms, and symbols are explained in subpart 1.

Substance, Characteristic, or Pollutant			Basis for			Basis for MS,
(Class 2Bd)	Units	CS	CS	MS	FAV	FAV
Acenaphthene	μg/L	20	НН	56	112	Tox
Acetochlor	μ g/L	3.6	Tox	86	173	Tox
Acrylonitrile (c)	μ g/L	0.38	HH	1,140*	2,281*	Tox
Alachlor (c)	μ g/L	4.2	HH	800*	1,600*	Tox
Aluminum, total	μ g/L	125	Tox	1,072	2,145	Tox
Ammonia un-ionized as N	$\mu g/L$	40	Tox			NA

The percent un-ionized ammonia can be calculated for any temperature and pH by using the following equation taken from Emerson, K., R.C. Russo, R.E. Lund, and R.V. Thurston, Aqueous ammonia equilibrium calculations; effect of pH and temperature. Journal of the Fisheries Research Board of Canada 32: 2379-2383 (1975):

$$f = 1/(10^{(pka-pH)} + 1) \times 100$$

where: f =the percent of total ammonia in the un-ionized state

 $pk_a = 0.09 + (2730/T)$ (dissociation constant for ammonia)

T = temperature in degrees Kelvin (273.16° Kelvin = 0° Celsius)

Substance, Characteristic, or Pollutant (Class 2Bd)	Units	CS	Basis for CS	MS	FAV	Basis for MS, FAV
Anthracene	μg/L	0.035	Tox	0.32	0.63	Tox
Antimony, total	μg/L	5.5	HH	90	180	Tox

Arsenic, total	$\mu g/L$	2.0	HH	360	720	Tox
Atrazine (c)	μg/L	3.4	HH	323	645	Tox
Benzene (c)	μg/L	6.0	HH	4,487*	8,974*	Tox
Bromoform	μg/L	41	HH	2,900	5,800	Tox
Cadmium, total	μg/L	equation	Tox	equation	equation	Tox

The CS, MS, and FAV vary with total hardness and are calculated using the following equations:

The CS in µg/L shall not exceed: exp.(0.7852[ln(total hardness mg/L)]-3.490)

The MS in μ g/L shall not exceed: exp.(1.128[ln(total hardness mg/L)]-1.685)

The FAV in μ g/L shall not exceed: exp.(1.128[ln(total hardness mg/L)]-0.9919)

Where: exp. is the natural antilogarithm (base e) of the expression in parenthesis.

For hardness values greater than 400 mg/L, 400 mg/L shall be used to calculate the standard.

Example of total cadmium standards for five hardness values:

TH in mg/L	50	100	200	300	400	
Cadmium, total						
CS μg/L	0.66	1.1	2.0	2.7	3.4	
MS µg/L	15	33	73	116	160	
FAV μg/L	31	67	146	231	319	

Substance, Characteristic, or Pollutant (Class 2Bd)	Units	CS	Basis for CS	MS	FAV	Basis for MS, FAV
Carbon tetrachloride (c)	μg/L	1.9	НН	1,750*	3,500*	Tox
Chlordane (c)	ng/L	0.29	HH	1,200*	2,400*	Tox
Chloride	mg/L	230	Tox	860	1,720	Tox
Chlorine, total residual	μg/L	11	Tox	19	38	Tox

Chlorine standard applies to conditions of continuous exposure, where continuous exposure refers to chlorinated effluents that are discharged for more than a total of two hours in any 24-hour period.

Chlorobenzene	μg/L	20	HH	423	846	Tox
(Monochlorobenzene)						
Chloroform (c)	μg/L	53	HH	1,392	2,784	Tox

Chlorpyrifos	μ g/L	0.041	Tox	0.083	0.17	Tox
Chromium +3, total	μg/L	equation	Tox	equation	equation	Tox

The CS, MS, and FAV vary with total hardness and are calculated using the following equations:

16

The CS in μ g/L shall not exceed: exp.(0.819[ln(total hardness mg/L)]+1.561)

The MS in μ g/L shall not exceed: exp.(0.819[ln(total hardness mg/L)]+3.688)

The FAV in µg/L shall not exceed: exp.(0.819[ln(total hardness mg/L)]+4.380)

Where: exp. is the natural antilogarithm (base e) of the expression in parenthesis.

For hardness values greater than 400 mg/L, 400 mg/L shall be used to calculate the standard.

Example of total chromium +3 standards for five total hardness values:

TH in mg/L	50	100	200	300	400
Chromium +3, tota	 ıl				
CS μg/L	117	207	365	509	644
MS μg/L	984	1,737	3,064	4,270	5,405
FAV μg/L	1,966	3,469	6,120	8,530	10,797

Substance, Characteristic, or Pollutant (Class 2Bd)	Units	CS	Basis for CS	MS	FAV	Basis for MS, FAV
Chromium +6, total	μg/L	11	Tox	16	32	Tox
Cobalt, total	μg/L	2.8	HH	436	872	Tox
Copper, total	μg/L	equation	Tox	equation	equation	Tox

The CS, MS, and FAV vary with total hardness and are calculated using the following equations:

The CS in ug/L shall not exceed: exp.(0.620[ln(total hardness mg/L)]-0.570)

The MS in µg/L shall not exceed: exp.(0.9422[ln(total hardness mg/L)]-1.464)

The FAV in µg/L shall not exceed: exp.(0.9422[ln(total hardness mg/L)]-0.7703)

Where: exp. is the natural antilogarithm (base e) of the expression in parenthesis.

For hardness values greater than 400 mg/L, 400 mg/L shall be used to calculate the standard.

Example of total copper standards for five total hardness values:

TH in mg/L	50	100	200	300	400

Copper, total					
CS μg/L	6.4	9.8	15	19	23
MS μg/L	9.2	18	34	50	65
FAV µg/L	18	35	68	100	131

Substance, Characteristic, or Pollutant (Class 2Bd)	Units	CS	Basis for CS	MS	FAV	Basis for MS, FAV
Cyanide, free	μg/L	5.2	Tox	22	45	Tox
DDT (c)	ng/L	1.7	HH	550*	1,100*	Tox
1,2-Dichloroethane (c)	μg/L	3.8	HH	45,050*	90,100*	Tox
Dieldrin (c)	ng/L	0.026	HH	1,300*	2,500*	Tox
Di-2-ethylhexyl phthalate (c)	μ g/L	1.9	HH	*	*	NA
Di-n-octyl phthalate	μg/L	30	Tox	825	1,650	Tox
Endosulfan	μg/L	0.029	HH	0.28	0.56	Tox
Endrin	μg/L	0.016	HH	0.090	0.18	Tox
Escherichia (E.) coli	See below	See below	НН	See below	See below	NA

Not to exceed 126 organisms per 100 milliliters as a geometric mean of not less than five samples representative of conditions within any calendar month, nor shall more than ten percent of all samples taken during any calendar month individually exceed 1,260 organisms per 100 milliliters. The standard applies only between April 1 and October 31.

Ethylbenzene	$\mu g \! / \! L$	68	Tox	1,859	3,717	Tox
Substance, Characteristic, or Pollutant (Class 2Bd)	Units	CS	Basis for CS	MS	FAV	Basis for MS, FAV

Eutrophication standards for class 2Bd lakes, shallow lakes, and reservoirs.

Lakes, Shallow Lakes, and Reservoirs in Northern Lakes and Forest Ecoregion

Phosphorus, total	μg/L	30	NA	 	NA
Chlorophyll-a	μ g/L	9	NA	 	NA
Secchi disk transparency	meters	Not less	NA	 	NA
		than 2.0			

Lakes and Reservoirs in North Central Hardwood Forest Ecoregion

Phosphorus, total Chlorophyll-a Secchi disk transparency	μg/L μg/L meters	40 14 Not less than 1.4	NA NA NA	 	 	NA NA NA
Lakes and Reservoirs in Western	Corn Be	lt Plains and	d Northern (Glaciated Pla	ins Ecoreg	ions
Phosphorus, total	μg/L	65	NA			NA
Chlorophyll-a	μg/L	22	NA			NA
Secchi disk transparency	meters	Not less	NA			
		than 0.9				NA
Shallow Lakes in North Central I	Hardwoo	d Forest Ec	oregion			
Phosphorus, total	μg/L	60	NA			NA
Chlorophyll-a	μg/L	20	NA			NA
Secchi disk transparency	meters	Not less	NA			NA
		than 1.0				
Shallow Lakes in Western Corn I	Belt Plain	s and North	nern Glaciat	ed Plains Eco	oregions	
Phosphorus, total	μg/L	90	NA			NA
Chlorophyll-a	μg/L	30	NA			NA

Additional narrative eutrophication standards for class 2Bd lakes, shallow lakes, and reservoirs are found under subpart 3a.

than 0.7

NA

NA

Eutrophication standards for class 2Bd rivers and streams.

Secchi disk transparency meters Not less

North River Nutrient Region		
Phosphorus, total	μg/L	less than or equal to 50
Chlorophyll-a (seston)	μg/L	less than or equal to 7
Diel dissolved oxygen flux	mg/L	less than or equal to 3.0
Biochemical oxygen demand (BOD ₅)	mg/L	less than or equal to 1.5
Central River Nutrient Region		
Phosphorus, total	μg/L	less than or equal to 100
Chlorophyll-a (seston)	μg/L	less than or equal to 18
Diel dissolved oxygen flux	mg/L	less than or equal to 3.5
Biochemical oxygen demand (BOD ₅)	mg/L	less than or equal to 2.0
South River Nutrient Region		
Phosphorus, total	μg/L	less than or equal to 150
Chlorophyll-a (seston)	μg/L	less than or equal to 35

Diel dissolved oxygen flux	mg/L	less than or equal to 4.5
Biochemical oxygen demand (BOD ₅)	mg/L	less than or equal to 3.0

Additional narrative eutrophication standards for class 2Bd rivers and streams are found under subpart 3b.

Substance, Characteristic, or Pollutant (Class 2Bd)	Units	CS	Basis for CS	MS	FAV	Basis for MS, FAV
Fluoranthene	 μg/L	1.9	Tox	3.5	6.9	Tox
Heptachlor (c)	ng/L	0.39	НН	260*	520*	Tox
Heptachlor epoxide (c)	ng/L	0.48	HH	270*	530*	Tox
Hexachlorobenzene (c)	ng/L	0.24	HH	*	*	Tox
Lead, total	$\mu g/L$	equation	Tox	equation	equation	Tox

The CS, MS, and FAV vary with total hardness and are calculated using the following equations:

The CS in μ g/L shall not exceed: exp.(1.273[ln(total hardness mg/L)]-4.705)

The MS in μ g/L shall not exceed: exp.(1.273[ln(total hardness mg/L)]-1.460)

The FAV in μ g/L shall not exceed: exp.(1.273[ln(total hardness mg/L)]-0.7643)

Where: exp. is the natural antilogarithm (base e) of the expression in parenthesis.

For hardness values greater than 400 mg/L, 400 mg/L shall be used to calculate the standard.

Example of total lead standards for five total hardness values:

TH in mg/L	50	10	00	200	300	400		
Lead, total								
CS μg/L	1.3	3	2	7.7	13	19		
MS μg/L	34	82	2	197	331	477		
FAV µg/L	68	16	54	396	663	956		
Substance,								Basis
Characteristic,				В	asis			for
or Pollutant				fo	r			MS,
(Class 2Bd)	Ţ	Jnits	CS	C	S	MS	FAV	FAV

Lindane (c) (Hexachlorocyclohexane, gamma-)	μg/L	0.032	НН	4.4*	8.8*	Tox
Mercury, total in water	ng/L	6.9	НН	2,400*	4,900*	Tox
Mercury, total	mg/kg	0.2	HH	NA	NA	NA
in edible fish tissue	ppm					
Methylene chloride (c)	μg/L	46	HH	13,875*	27,749*	Tox
(Dichloromethane)						
Metolachlor	μg/L	23	Tox	271	543	Tox
Naphthalene	μg/L	81	Tox	409	818	Tox
Nickel, total	$\mu g/L$	equation	Tox/HH	equation	equation	Tox

20

The CS, MS, and FAV vary with total hardness and are calculated using the following equations:

The CS shall not exceed the human health-based standard of 297 $\mu g/L$. For waters with total hardness values less than 212 mg/L, the CS in $\mu g/L$ is toxicity-based and shall not exceed: exp.(0.846[ln(total hardness mg/L)]+1.1645)

The MS in μ g/L shall not exceed: exp.(0.846[ln(total hardness mg/L)]+3.3612)

The FAV in μ g/L shall not exceed: exp.(0.846[ln(total hardness mg/L)]+4.0543)

Where: exp. is the natural antilogarithm (base e) of the expression in parenthesis.

For hardness values greater than 400 mg/L, 400 mg/L shall be used to calculate the standard.

Example of total nickel standards for five total hardness values:

TH in mg/L	50	100	200	300	400
Nickel, total					
CS μg/L	88	158	283	297	297
MS μg/L	789	1,418	2,549	3,592	4,582
FAV μg/L	1,578	2,836	5,098	7,185	9,164

Substance, Characteristic, or Pollutant			Basis for			Basis for MS,
(Class 2Bd)	Units	CS	CS	MS	FAV	FAV
Oil	μg/L	500	NA	5,000	10,000	NA
Oxygen, dissolved	mg/L	See below	NA			NA

5.0 mg/L as a daily minimum. This dissolved oxygen standard may be modified on a site-specific basis according to part 7050.0220, subpart 7, except that no site-specific standard shall be less than 5 mg/L as a daily average and 4 mg/L as a daily minimum. Compliance with this standard is required 50 percent of the days at which the flow of the receiving water is equal to the $7Q_{10}$.

Parathion	μg/L	0.013	Tox	0.07	0.13	Tox
Pentachlorophenol	μg/L	1.9	HH	equation	equation	Tox

The MS and FAV vary with pH and are calculated using the following equations:

The MS in μ g/L shall not exceed: exp.(1.005[pH]-4.830)

The FAV in μ g/L shall not exceed: exp.(1.005[pH]-4.1373)

Where: exp. is the natural antilogarithm (base e) of the expression in parenthesis.

For pH values less than 6.0, 6.0 shall be used to calculate the standard and for pH values greater than 9.0, 9.0 shall be used to calculate the standard.

Example of pentachlorophenol standards for five pH values:

pH su	6.5	7.0	7.5	8.0	8.5	
Pentachlorophenol						
CS μg/L	1.9	1.9	1.9	1.9	1.9	
$MS \mu g/L$	5.5	9.1	15	25	41	
FAV μg/L	11	18	30	50	82	

Substance, Characteristic, or Pollutant			Basis for			Basis for MS,
(Class 2Bd)	Units	CS	CS	MS	FAV	FAV
pH, minimum	su	6.5	NA			NA
pH, maximum	su	9.0	NA			NA
Phenanthrene	μ g/L	3.6	Tox	32	64	Tox
Phenol	μg/L	123	Tox	2,214	4,428	Tox
Polychlorinated biphenyls, total (c)	ng/L	0.029	НН	1,000*	2,000*	Tox
Radioactive materials	NA	See below	NA	See below	See below	NA

Not to exceed the lowest concentrations permitted to be discharged to an uncontrolled environment as permitted by the appropriate authority having control over their use.

Selenium, total	μ g/L	5.0	Tox	20	40	Tox
Silver, total	μg/L	1.0	Tox	equation	equation	Tox

The MS and FAV vary with total hardness and are calculated using the following equations:

The MS in μ g/L shall not exceed: exp.(1.720[ln(total hardness mg/L)]-7.2156)

The FAV in μ g/L shall not exceed: exp.(1.720[ln(total hardness mg/L)]-6.520)

Where: exp. is the natural antilogarithm (base e) of the expression in parenthesis.

For hardness values greater than 400 mg/L, 400 mg/L shall be used to calculate the standard.

Example of total silver standards for five total hardness values:

TH in mg/L	50	100	200	300	400	
Silver, total						
CS μg/L	1.0	1.0	1.0	1.0	1.0	
MS μg/L	1.0	2.0	6.7	13	22	
FAV μg/L	1.2	4.1	13	27	44	

Substance, Characteristic, or Pollutant (Class 2Bd)	Units	CS	Basis for CS	MS	FAV	Basis for MS, FAV
Temperature	°F	See below	NA			NA

5°F above natural in streams and 3°F above natural in lakes, based on monthly average of the maximum daily temperatures, except in no case shall it exceed the daily average temperature of 86°F.

1,1,2,2-Tetrachloroethane (c)	μ g/L	1.5	HH	1,127*	2,253*	Tox
Tetrachloroethylene (c)	μ g/L	3.8	HH	428*	857*	Tox
Thallium, total	μ g/L	0.28	HH	64	128	Tox
Toluene	$\mu g/L$	253	Tox	1,352	2,703	Tox
Toxaphene (c)	ng/L	1.3	HH	730*	1,500*	Tox
1,1,1-Trichloroethane	$\mu g/L$	329	Tox	2,957	5,913	Tox
1,1,2-Trichloroethylene (c)	$\mu g/L$	25	HH	6,988*	13,976*	Tox
2,4,6-Trichlorophenol	$\mu g/L$	2.0	HH	102	203	Tox
Total suspended solids (TSS)						
North River Nutrient Region	mg/L	15	NA	-	-	NA
Central River Nutrient Region	mg/L	30	NA	-	-	NA

23	MI	NNESOTA	RULES			7050.0222
South River Nutrient Region Red River mainstem -	mg/L	65	NA	-	-	NA
headwaters to border TSS standards for the class 2Bd North, Central, and South River Nutrient Regions and the Red River mainstem may be exceeded for no more than ten percent of the time. This standard applies April 1 through September 30 Total suspended solids (TSS), summer average Lower Mississippi River		100	NA		-	NA
mainstem - Pools 2 through 4	mg/L	32	NA	-	-	NA
Lower Mississippi River mainstem below Lake Pepin TSS standards for the class 2Bd Lower Mississippi River may be exceeded for no more than 50 percent of the time. This standard applies June 1 through September 30		30	NA	-	-	NA
Substance, Characteristic, or Pollutant (Class 2Bd)	Units	CS	Basis for CS	MS	FAV	Basis for MS, FAV
Vinyl chloride (c) Xylene, total m,p,o	μg/L μg/L	0.18 166	HH Tox	* 1,407	* 2,814	NA Tox
Zinc, total	μg/L μg/L	equation	Tox	equation	equation	Tox

The CS, MS, and FAV vary with total hardness and are calculated using the following equations:

The CS in µg/L shall not exceed: exp.(0.8473[ln(total hardness mg/L)]+0.7615)

The MS in μ g/L shall not exceed: exp.(0.8473[ln(total hardness mg/L)]+0.8604)

The FAV in μ g/L shall not exceed: exp.(0.8473[ln(total hardness mg/L)]+1.5536)

Where: exp. is the natural antilogarithm (base e) of the expression in parenthesis.

For hardness values greater than 400 mg/L, 400 mg/L shall be used to calculate the standard.

Example of total	zinc standards	for five total	hardness values:

TH in mg/L	50	100	200	300	400
Zinc, total					
CS μg/L	59	106	191	269	343
MS μg/L	65	117	211	297	379
FAV μg/L	130	234	421	594	758

Subp. 3a. Narrative eutrophication standards for class 2Bd lakes, shallow lakes, and reservoirs.

A. Eutrophication standards applicable to lakes, shallow lakes, and reservoirs that lie on the border between two ecoregions or that are in the Red River Valley (also referred to as Lake Agassiz Plains), Northern Minnesota Wetlands, or Driftless Area Ecoregion must be applied on a case-by-case basis. The commissioner shall use the standards applicable to adjacent ecoregions as a guide.

B. Eutrophication standards are compared to summer-average data. Exceedance of the total phosphorus and either the chlorophyll-a or Secchi disk transparency standard is required to indicate a polluted condition.

C. It is the policy of the agency to protect all lakes, shallow lakes, and reservoirs from the undesirable effects of cultural eutrophication. Lakes, shallow lakes, and reservoirs with a baseline quality better than the numeric eutrophication standards in subpart 3 must be maintained in that condition through the strict application of all relevant federal, state, and local requirements governing antidegradation, the discharge of nutrients from point and nonpoint sources, and the protection of lake, shallow lake, and reservoir resources, including, but not limited to:

- (1) the antidegradation requirements in parts 7050.0250 to 7050.0335;
- (2) the phosphorus effluent limits for point sources, where applicable in chapter 7053;
- (3) the requirements for feedlots in chapter 7020;
- (4) the requirements for individual sewage treatment systems in chapter 7080;
- (5) the requirements for control of storm water in chapter 7090;
- (6) county shoreland ordinances; and
- (7) implementation of mandatory and voluntary best management practices to minimize point and nonpoint sources of nutrients.
- D. Lakes, shallow lakes, and reservoirs with a baseline quality that is poorer than the numeric eutrophication standards in subpart 3 must be considered to be in compliance with the standards if the baseline quality is the result of natural causes. The commissioner shall determine baseline quality and compliance with these standards using data and the procedures in part 7050.0150, subpart 5.

E. When applied to reservoirs, the eutrophication standards in this subpart and subpart 3 may be modified on a site-specific basis to account for characteristics of reservoirs that can affect trophic status, such as water temperature, variations in hydraulic residence time, watershed size, and the fact that reservoirs may receive drainage from more than one ecoregion. Information supporting a site-specific standard can be provided by the commissioner or by any person outside the agency. The commissioner shall evaluate all data in support of a modified standard and determine whether a change in the standard for a specific reservoir is justified. Any total phosphorus effluent limit determined to be necessary based on a modified standard shall only be required after the discharger has been given notice of the specific proposed effluent limits and an opportunity to request a hearing as provided in part 7000.1800.

Subp. 3b. Narrative eutrophication standards for rivers, streams, and navigational pools.

- A. Eutrophication standards for rivers, streams, and navigational pools are compared to summer-average data or as specified in subpart 3. Exceedance of the total phosphorus levels and chlorophyll-a (seston), five-day biochemical oxygen demand (BOD₅), diel dissolved oxygen flux, or pH levels is required to indicate a polluted condition.
- B. Rivers, streams, and navigational pools that exceed the phosphorus levels but do not exceed the chlorophyll-a (seston), five-day biochemical oxygen demand (BOD₅), diel dissolved oxygen flux, or pH levels meet the eutrophication standard.
- C. A polluted condition also exists when the chlorophyll-a (periphyton) concentration exceeds 150 mg/m^2 more than one year in ten.
- D. It is the policy of the agency to protect all rivers, streams, and navigational pools from the undesirable effects of cultural eutrophication. Rivers, streams, and navigational pools with a baseline quality better than the numeric eutrophication standards in subpart 3 must be maintained in that condition through the strict application of all relevant federal, state, and local requirements governing antidegradation, the discharge of nutrients from point and nonpoint sources including:
 - (1) the antidegradation requirements in parts 7050.0250 to 7050.0335;
 - (2) the phosphorus effluent limits for point sources, where applicable, in chapter 7053;
 - (3) the requirements for feedlots in chapter 7020;
 - (4) the requirements for individual sewage treatment systems in chapter 7080;
 - (5) the requirements for control of storm water in chapter 7090;
 - (6) county shoreland ordinances; and
- (7) implementation of mandatory and voluntary best management practices to minimize point and nonpoint sources of nutrients.
- E. Rivers, streams, and navigational pools with a baseline quality that does not meet the numeric eutrophication standards in part 7050.0150, subpart 5b, are in compliance with the standards if the baseline quality is the result of natural causes. The commissioner must determine baseline

quality and compliance with these standards using data and the procedures in part 7050.0150, subpart 5.

Subp. 3c. Beneficial use definitions for lotic warm or cool water aquatic life and habitats (class 2Bd).

- A. Subitems (1) to (5) apply to the beneficial uses in items B to D:
- (1) The designation and attainment of beneficial uses are based on the biological criteria in subpart 3d.
- (2) The attributes of species composition, diversity, and functional organization are measured using:
- (a) the fish IBI as defined in Fish Data Collection Protocols for Lotic Waters in Minnesota (2017); or
- (b) the macroinvertebrate IBI as defined in Macroinvertebrate Data Collection Protocols for Lotic Waters in Minnesota (2017).
- (3) Water body types for streams and rivers are defined in the documents referenced in subitem (2).
- (4) The following documents are incorporated by reference and are not subject to frequent change:
- (a) Calibration of the Biological Condition Gradient for Streams of Minnesota, Gerritsen et al. (2012). The document is available on the agency's website at www.pca.state.mn.us/regulations/minnesota-rulemaking;
- (b) Fish Data Collection Protocols for Lotic Waters in Minnesota, Minnesota Pollution Control Agency (2017). The document is available on the agency's website at www.pca.state.mn.us/regulations/minnesota-rulemaking;
- (c) Macroinvertebrate Data Collection Protocols for Lotic Waters in Minnesota, Minnesota Pollution Control Agency (2017). The document is available on the agency's website at www.pca.state.mn.us/regulations/minnesota-rulemaking; and
- (d) Development of Biological Criteria for Tiered Aquatic Life Uses, Minnesota Pollution Control Agency (2016). The document is available on the agency's website at www.pca.state.mn.us/regulations/minnesota-rulemaking.
- (5) The beneficial use subclass designators "e," "g," and "m" are added to the class 2Bd designator as specific additional designators. The additional subclass designators do not replace the class 2Bd designator. All requirements for class 2Bd warm or cool water stream and river habitats in parts 7050.0222 and 7052.0100 continue to apply in addition to requirements for class 2Bde, class 2Bdg, or class 2Bdm warm or cool water stream and river habitats in part 7050.0222. These subclass designators are applied to lotic waters only.

- B. "Exceptional cool and warm water aquatic life and habitat, also protected as a source for drinking water" or "class 2Bde" is a beneficial use that means waters capable of supporting and maintaining an exceptional and balanced, integrated, adaptive community of warm or cool water aquatic organisms having a species composition, diversity, and functional organization comparable to the 75th percentile of biological condition gradient level 3 as established in Calibration of the Biological Condition Gradient for Streams of Minnesota, Gerritsen et al. (2012).
- C. "General cool and warm water aquatic life and habitat, also protected as a source for drinking water" or "class 2Bdg" is a beneficial use that means waters capable of supporting and maintaining a balanced, integrated, adaptive community of warm or cool water aquatic organisms having a species composition, diversity, and functional organization comparable to the median of biological condition gradient level 4 as established in Calibration of the Biological Condition Gradient for Streams of Minnesota, Gerritsen et al. (2012).
- D. "Modified cool and warm water aquatic life and habitat, also protected as a source for drinking water" or "class 2Bdm" is a beneficial use that means waters capable of supporting and maintaining a balanced, integrated, adaptive community of warm or cool water aquatic organisms having a species composition, diversity, and functional organization comparable to the median of biological condition gradient level 5 as established in Calibration of the Biological Condition Gradient for Streams of Minnesota, Gerritsen et al. (2012).
- (1) To meet the definition in this item, waters must have been the subject of a use attainability analysis where it is determined that attainment of the class 2Bdg beneficial use is not feasible because of human-induced modifications of the physical habitat. These modifications must be the result of direct alteration to the channel, such as drainageway maintenance, bank stabilization, and impoundments.
- (2) Examples of class 2Bdm waters are the stream channel modification activities regulated under:
 - (a) sections 401 and 404 of the Clean Water Act; or
 - (b) Minnesota Statutes, chapter 103E.

Subp. 3d. Biological criteria for lotic warm or cool water aquatic life and habitats (class 2Bd).

Water Body Type	Tier	Class	Assemblage	Biocriterion
Southern rivers	Exceptional	2Bde	Fish	71
	General	2Bdg	Fish	49
Southern streams	Exceptional	2Bde	Fish	66
	General	2Bdg	Fish	50
	Modified	2Bdm	Fish	35
Southern headwaters	Exceptional	2Bde	Fish	74
	General	2Bdg	Fish	55

28

	Modified	2Bdm	Fish	33
Northern rivers	Exceptional	2Bde	Fish	67
	General	2Bdg	Fish	38
Northern streams	Exceptional	2Bde	Fish	61
	General	2Bdg	Fish	47
	Modified	2Bdm	Fish	35
Northern headwaters	Exceptional	2Bde	Fish	68
	General	2Bdg	Fish	42
	Modified	2Bdm	Fish	23
Low gradient	Exceptional	2Bde	Fish	70
	General	2Bdg	Fish	42
	Modified	2Bdm	Fish	15
Northern forest rivers	Exceptional	2Bde	Macroinvertebrates	77
	General	2Bdg	Macroinvertebrates	49
Prairie and southern forest				
rivers	Exceptional	2Bde	Macroinvertebrates	63
	General	2Bdg	Macroinvertebrates	31
High-gradient northern forest				
streams	Exceptional	2Bde	Macroinvertebrates	82
	General	2Bdg	Macroinvertebrates	53
Low-gradient northern forest				
streams	Exceptional	2Bde	Macroinvertebrates	76
	General	2Bdg	Macroinvertebrates	51
	Modified	2Bdm	Macroinvertebrates	37
High-gradient southern				
streams	Exceptional	2Bde	Macroinvertebrates	62
	General	2Bdg	Macroinvertebrates	37
	Modified	2Bdm	Macroinvertebrates	24
Low-gradient southern forest				
streams	Exceptional	2Bde	Macroinvertebrates	66
	General	2Bdg	Macroinvertebrates	43
	Modified	2Bdm	Macroinvertebrates	30
Low-gradient prairie streams	Exceptional	2Bde	Macroinvertebrates	69
	General	2Bdg	Macroinvertebrates	41
	Modified	2Bdm	Macroinvertebrates	22

The biological criteria for lotic warm or cool water aquatic life and habitats (class 2Bd) are applicable to perennial and intermittent waters that allow for colonization of fish or macroinvertebrates.

Subp. 4. Class 2B waters. The quality of class 2B surface waters shall be such as to permit the propagation and maintenance of a healthy community of cool or warm water aquatic biota, and their habitats according to the definitions in subpart 4c. These waters shall be suitable for aquatic

recreation of all kinds, including bathing, for which the waters may be usable. This class of surface water is not protected as a source of drinking water. The applicable standards are given below. Abbreviations, acronyms, and symbols are explained in subpart 1.

Substance, Characteristic, or Pollutant (Class 2B) Units		CS	Basis for CS	MS	MS FAV	
Acenaphthene	μg/l	20	НН	56	112	Tox
Acetochlor	μg/L	3.6	Tox	86	173	Tox
Acrylonitrile (c)	μg/l	0.89	HH	1,140*	2,281*	Tox
Alachlor (c)	μg/L	59	Tox	800	1,600	Tox
Aluminum, total	μg/L	125	Tox	1,072	2,145	Tox
Ammonia un-ionized as N	μg/L	40	Tox			NA

The percent un-ionized ammonia can be calculated for any temperature and pH by using the following equation taken from Emerson, K., R.C. Russo, R.E. Lund, and R.V. Thurston, Aqueous ammonia equilibrium calculations; effect of pH and temperature. Journal of the Fisheries Research Board of Canada 32: 2379-2383 (1975):

$$f = 1/(10^{(pka-pH)} + 1) \times 100$$

where: f = the percent of total ammonia in the un-ionized state $pk_a = 0.09 + (2730/T)$ (dissociation constant for ammonia) T = temperature in degrees Kelvin (273.16° Kelvin = 0° Celsius)

Substance, Characteristic, or Pollutant (Class 2B)	Units	CS	Basis for CS	MS	FAV	Basis for MS, FAV
Anthracene	μg/L	0.035	Tox	0.32	0.63	Tox
Antimony, total	μg/L	31	Tox	90	180	Tox
Arsenic, total	μg/L	53	HH	360	720	Tox
Atrazine (c)	μg/L	10	Tox	323	645	Tox
Benzene (c)	μg/L	98	HH	4,487	8,974	Tox
Bromoform	μ g/L	466	HH	2,900	5,800	Tox
Cadmium, total	μ g/L	equation	Tox	equation	equation	Tox
,	F-8-	1		1	1	

The CS, MS, and FAV vary with total hardness and are calculated using the following equations:

The CS in µg/L shall not exceed: exp.(0.7852[ln(total hardness mg/L)]-3.490)

The MS in μ g/L shall not exceed: exp.(1.128[ln(total hardness mg/L)]-1.685)

The FAV in μ g/L shall not exceed: exp.(1.128[ln(total hardness mg/L)]-0.9919)

Where: exp. is the natural antilogarithm (base e) of the expression in parenthesis.

For hardness values greater than 400 mg/L, 400 mg/L shall be used to calculate the standard.

Example of total cadmium standards for five hardness values:

TH in mg/L	50	100	200	300	400	
Cadmium, total						
CS μg/L	0.66	1.1	2.0	2.7	3.4	
MS μg/L	15	33	73	116	160	
FAV μg/L	31	67	146	231	319	

Characteristic, or Pollutant (Class 2B) Un		Units CS		MS	FAV	Basis for MS, FAV	
Carbon tetrachloride (c)	μg/L	5.9	НН	1,750*	3,500*	Tox	
Chlordane (c)	ng/L	0.29	HH	1,200*	2,400*	Tox	
Chloride	mg/L	230	Tox	860	1,720	Tox	
Chlorine, total residual	μg/L	11	Tox	19	38	Tox	

Chlorine standard applies to conditions of continuous exposure, where continuous exposure refers to chlorinated effluents that are discharged for more than a total of two hours in any 24-hour period.

Chlorobenzene	$\mu g/L$	20	HH	423	846	Tox
(Monochlorobenzene)						
Chloroform (c)	μg/L	155	Tox	1,392	2,784	Tox
Chlorpyrifos	μ g/L	0.041	Tox	0.083	0.17	Tox
Chromium +3, total	$\mu g/L$	equation	Tox	equation	equation	Tox

The CS, MS, and FAV vary with total hardness and are calculated using the following equations

The CS in μ g/L shall not exceed: exp.(0.819[ln(total hardness mg/L)]+1.561)

The MS in μ g/L shall not exceed: exp.(0.819[ln(total hardness mg/L)]+3.688)

The FAV in μ g/L shall not exceed: exp.(0.819[ln(total hardness mg/L)]+4.380)

Where: exp. is the natural antilogarithm (base e) of the expression in parenthesis.

For hardness values greater than 400 mg/L, 400 mg/L shall be used to calculate the standard. Example of total chromium +3 standards for five total hardness values:

TH in mg/L	50	100	200	300	400
Chromium +3, total					
CS μg/L	117	207	365	509	644
$MS \mu g/L$	984	1,737	3,064	4,270	5,405
FAV μg/L	1,966	3,469	6,120	8,530	10,797

Substance,

Characteristic, or Pollutant			Basis for			Basis for MS,
(Class 2B)	Units	CS	CS	MS	FAV	FAV
Chromium +6, total	μg/L	11	Tox	16	32	Tox
Cobalt, total Copper, total	μg/L μg/L	5.0 equation	Tox Tox	436 equation	872 equation	Tox Tox

The CS, MS, and FAV vary with total hardness and are calculated using the following equations:

The CS in µg/L shall not exceed: exp.(0.6200[ln(total hardness mg/L)]-0.570)

The MS in μ g/L shall not exceed: exp.(0.9422[ln(total hardness mg/L)]-1.464)

The FAV in μ g/L shall not exceed: exp.(0.9422[ln(total hardness mg/L)]-0.7703)

Where: exp. is the natural antilogarithm (base e) of the expression in parenthesis.

For hardness values greater than 400 mg/L, 400 mg/L shall be used to calculate the standard.

Example of total copper standards for five total hardness values:

TH in mg/L	50	100	200	300	400	
Copper, total						
CS μg/L	6.4	9.8	15	19	23	
MS µg/L	9.2	18	34	50	65	
FAV µg/L	18	35	68	100	131	
Substance,						
Characteristic,			Basis	S		Basis
or Pollutant			for			for MS,
(Class 2B)	Units	CS	CS	MS	FAV	FAV

NA

Cyanide, free	μg/L	5.2	Tox	22	45	Tox
DDT (c)	ng/L	1.7	HH	550*	1,100*	Tox
1,2-Dichloroethane (c)	μg/L	190	HH	45,050*	90,100*	Tox
Dieldrin (c)	ng/L	0.026	HH	1,300*	2,500*	Tox
Di-2-ethylhexyl phthalate (c)	μg/L	2.1	HH	*	*	NA
Di-n-octyl phthalate	μg/L	30	Tox	825	1,650	Tox
Endosulfan	μg/L	0.031	HH	0.28	0.56	Tox
Endrin	μg/L	0.016	HH	0.090	0.18	Tox
Escherichia (E.) coli	See	See	HH	See	See	NA
	below	below		below	below	

Not to exceed 126 organisms per 100 milliliters as a geometric mean of not less than five samples representative of conditions within any calendar month, nor shall more than ten percent of all samples taken during any calendar month individually exceed 1,260 organisms per 100 milliliters. The standard applies only between April 1 and October 31.

Ethylbenzene	μ g/L	68	Tox	1,859	3,717	Tox
Substance, Characteristic, or Pollutant (Class 2B)	Units	CS	Basis for CS	MS	FAV	Basis for MS, FAV
Eutrophication standards fo	r class 2B la	akes, shallow	lakes, ar	nd reservoir	S.	
Lakes, Shallow Lakes, and	Reservoirs i	n Northern I	akes and	Forest Eco	oregions	
Phosphorus, total	μg/L	30	NA			NA
Chlorophyll-a	μg/L	9	NA			NA
Secchi disk transparency	meters	Not less than 2.0	NA			NA
Lakes and Reservoirs in No	orth Central	Hardwood F	orest Eco	region		
Phosphorus, total	μg/L	40	NA			NA
Chlorophyll-a	μg/L	14	NA			NA

than 1.4

Lakes and Reservoirs in Western Corn Belt Plains and Northern Glaciated Plains Ecoregions

Not less

meters

NA

Secchi disk transparency

Phosphorus, total	μ g/L	65	NA	 	NA
Chlorophyll-a	μ g/L	22	NA	 	NA
Secchi disk transparency	meters	Not less	NA	 	NA
		than 0.9			

Phosphorus, total	μg/L	60	NA	 	NA
Chlorophyll-a	μg/L	20	NA	 	NA
Secchi disk transparency	meters	Not less	NA	 	NA
		than 1 0			

Shallow Lakes in Western Corn Belt Plains and Northern Glaciated Plains Ecoregions

Phosphorus, total	μg/L	90	NA	 	NA
Chlorophyll-a	μg/L	30	NA	 	NA
Secchi disk transparency	meters	Not less	NA	 	NA
		than 0.7			

Additional narrative eutrophication standards for class 2B lakes, shallow lakes, and reservoirs are found in subpart 4a.

Substance,

Characteristic,			Basis			Basis
or Pollutant			for			for MS,
(Class 2B)	Units	CS	CS	MS	FAV	FAV

Eutrophication standards for class 2B rivers and streams.

North River Nutrient Region		
Phosphorus, total	μ g/L	less than or equal to 50
Chlorophyll-a (seston)	μg/L	less than or equal to 7
Diel dissolved oxygen flux	mg/L	less than or equal to 3.0
Biochemical oxygen demand (BOD ₅)	mg/L	less than or equal to 1.5
Central River Nutrient Region		
Phosphorus, total	μ g/L	less than or equal to 100
Chlorophyll-a (seston)	μ g/L	less than or equal to 18
Diel dissolved oxygen flux	mg/L	less than or equal to 3.5
Biochemical oxygen demand (BOD ₅)	mg/L	less than or equal to 2.0
South River Nutrient Region		
Phosphorus, total	μg/L	less than or equal to 150
Chlorophyll-a (seston)	μg/L	less than or equal to 40
Diel dissolved oxygen flux	mg/L	less than or equal to 5.0
Biochemical oxygen demand (BOD ₅)	mg/L	less than or equal to 3.5

Site-specific standards for specified river reaches or other waters are:

Mississippi River Navigational Pool 1 (river miles 854.1 to 847.7 reach from Fridley to Ford Dam in St. Paul)

Phognhamus total	ua/I	loss than or aqual to 100
Phosphorus, total Chlorophyll-a (seston)	μg/L μg/L	less than or equal to 100 less than or equal to 35
1 2 \		-
Mississippi River Navigational Pool 2 (river miles 8	847.7 10 813.2 16	each from Ford Dam to Hastings
Dam)	/T	1 4114- 125
Phosphorus, total	μg/L	less than or equal to 125
Chlorophyll-a (seston)	μg/L	less than or equal to 35
Mississippi River Navigational Pool 3 (river miles	815.2 to 796.9	reach from Hastings Dam to
Red Wing Dam)	/ **	1 1 100
Phosphorus, total	μg/L	less than or equal to 100
Chlorophyll-a (seston)	μg/L	less than or equal to 35
Mississippi River Navigational Pool 4 (river miles		•
Alma Dam). Lake Pepin occupies majority of Poo	l 4 and Lake Pe	pin site-specific standards are
used for this pool.		
Mississippi River Navigational Pools 5 to 8 (river r		
Phosphorus, total	μg/L	less than or equal to 100
Chlorophyll-a (seston)	μg/L	less than or equal to 35
Lake Pepin		
Phosphorus, total	μ g/L	less than or equal to 100
Chlorophyll-a (seston)	μg/L	less than or equal to 28
Crow Wing River from confluence of Long Prairie	River to the m	outh of the Crow Wing River
at the Mississippi River		
Phosphorus, total	μg/L	less than or equal to 75
Chlorophyll-a (seston)	μg/L	less than or equal to 13
Diel dissolved oxygen flux	mg/L	less than or equal to 3.5
Biochemical oxygen demand (BOD ₅)	mg/L	less than or equal to 1.7
Crow River from the confluence of the North Fork	of the Crow Riv	ver and South Fork of the Crow
River to the mouth of the Crow River at the Missis		
Phosphorus, total	μg/L	less than or equal to 125
Chlorophyll-a (seston)	μg/L	less than or equal to 27
Diel dissolved oxygen flux	mg/L	less than or equal to 4.0
Biochemical oxygen demand (BOD ₅)	mg/L	less than or equal to 2.5
(= 0 = 3)	- <i>6</i> , —	

Additional narrative eutrophication standards for class 2B rivers and streams are found in subpart 4b.

Substance,

Characteristic,			Basis			Basis
or Pollutant			for			for MS,
(Class 2B)	Units	CS	CS	MS	FAV	FAV

Fluoranthene	μg/L	1.9	Tox	3.5	6.9	Tox
Heptachlor (c)	ng/L	0.39	HH	260*	520*	Tox
Heptachlor epoxide (c)	ng/L	0.48	HH	270*	530*	Tox
Hexachlorobenzene (c)	ng/L	0.24	HH	*	*	Tox
Lead, total	μg/L	equation	Tox	equation	equation	Tox

The CS, MS, and FAV vary with total hardness and are calculated using the following equations:

The CS in μ g/L shall not exceed: exp.(1.273[ln(total hardness mg/L)]-4.705)

The MS in μ g/L shall not exceed: exp.(1.273[ln(total hardness mg/L)]-1.460)

The FAV in μ g/L shall not exceed: exp.(1.273[ln(total hardness mg/L)]-0.7643)

Where: exp. is the natural antilogarithm (base e) of the expression in parenthesis.

For hardness values greater than 400 mg/L, 400 mg/L shall be used to calculate the standard.

Example of total lead standards for five total hardness values:

TH in mg/L	50	100	200	300	400	
Lead, total						
CS μg/L	1.3	3.2	7.7	13	19	
MS µg/L	34	82	197	331	477	
FAV μg/L	68	164	396	663	956	

Substance,

Characteristic, or Pollutant	T T •4	CC	Basis for	MG	T 1447	Basis for MS, FAV	
(Class 2B)	Units	CS	CS	MS	FAV		
Lindane (c)	μg/L	0.036	НН	4.4*	8.8*	Tox	
(Hexachlorocyclobenzene, gamma-)							
Mercury, total in water	ng/L	6.9	HH	2,400*	4,900*	Tox	
Mercury, total	mg/kg	0.2	HH	NA	NA	NA	
in edible fish tissue	ppm						
Methylene chloride (c)	μg/L	1,940	HH	13,875	27,749	Tox	
(Dichloromethane)							
Metolachlor	μg/L	23	Tox	271	543	Tox	
Naphthalene	μg/L	81	Tox	409	818	Tox	
Nickel, total	μg/L	equation	Tox	equation	equation	Tox	

The CS, MS, and FAV vary with total hardness and are calculated using the following equations:

The CS in μ g/L shall not exceed: exp.(0.846[ln(total hardness mg/L)]+1.1645)

The MS in μ g/L shall not exceed: exp.(0.846[ln(total hardness mg/L)]+3.3612)

The FAV in µg/L shall not exceed: exp.(0.846[ln(total hardness mg/l)]+4.0543)

100

Where: exp. is the natural antilogarithm (base e) of the expression in parenthesis.

For hardness values greater than 400 mg/L, 400 mg/L shall be used to calculate the standard.

200

300

400

Example of total nickel standards for five total hardness values:

50

TH in mg/L

r Pollutant Class 2B)	Units	CS	for CS	MS	FAV	for MS, FAV
ubstance, haracteristic,			Basi	s		Basis
FAV μg/L	1,578	2,836	5,098	7,185	9,164	
MS μg/L	789	1,418	2,549	3,592	4,582	
CS µg/L	88	158	283	399	509	
Nickel, total						

(Class 2B)	Units	CS	CS	MS	FAV	FAV
Oil Oxygen, dissolved	μg/l mg/L	500 See below	NA NA	5,000 	10,000	NA NA

- 5.0~mg/L as a daily minimum. This dissolved oxygen standard may be modified on a site-specific basis according to part 7050.0220, subpart 7, except that no site-specific standard shall be less than 5 mg/L as a daily average and 4 mg/L as a daily minimum. Compliance with this standard is required 50 percent of the days at which the flow of the receiving water is equal to the $7Q_{10}$. This standard applies to all class 2B waters except for:
 - (1) those portions of the Mississippi River from the outlet of the Metro Wastewater Treatment Works in Saint Paul (River Mile 835) to Lock and Dam No. 2 at Hastings (River Mile 815). For this reach of the Mississippi River, the standard is not less than 5 mg/L as a daily average from April 1 through November 30, and not less than 4 mg/L at other times; and
 - (2) the portion of the Minnesota River from the outlet of the Blue Lake wastewater treatment works (River Mile 21) to the mouth at Fort Snelling. For the specified reach of the Minnesota River, the standard is not less than 5 mg/L as a daily average year round.

Parathion	μg/L	0.013	Tox	0.07	0.13	Tox
Pentachlorophenol	μg/L	equation	Tox/HH	equation	equation	Tox

The CS, MS, and FAV vary with pH and are calculated using the following equations:

For waters with pH values greater than 6.95, the CS shall not exceed the human health-based standard of $5.5 \mu g/L$.

For waters with pH values less than 6.96, the CS in μ g/L shall not exceed the toxicity-based standard of exp.(1.005[pH]-5.290)

The MS in μ g/L shall not exceed: exp.(1.005[pH]-4.830)

The FAV in μ g/L shall not exceed: exp.(1.005[pH]-4.1373)

Where: exp. is the natural antilogarithm (base e) of the expression in parenthesis.

For pH values less than 6.0, 6.0 shall be used to calculate the standard and for pH values greater than 9.0, 9.0 shall be used to calculate the standard.

Example of pentachlorophenol standards for five pH values:

pH su	6.5	7.0	7.5	8.0	8.5	
Pentachlorophenol						
CS μg/L	3.5	5.5	5.5	5.5	5.5	
MS μg/L	5.5	9.1	15	25	41	
FAV μg/L	11	18	30	50	82	

Substance,

Characteristic, or Pollutant			Basis for			Basis for MS,
(Class 2B)	Units	CS	CS	MS	FAV	FAV
pH, minimum	su	6.5	NA			NA
pH, maximum	su	9.0	NA			NA
Phenanthrene	μg/L	3.6	Tox	32	64	Tox
Phenol	μg/L	123	Tox	2,214	4,428	Tox
Polychlorinated	ng/L	0.029	HH	1,000*	2,000*	Tox
biphenyls, total (c)						
Radioactive materials	NA	See below	NA	See below	See below	NA

Not to exceed the lowest concentrations permitted to be discharged to an uncontrolled environment as permitted by the appropriate authority having control over their use.

Selenium, total	μg/L	5.0	Tox	20	40	Tox
Silver, total	μg/L	1.0	Tox	equation	equation	Tox

The MS and FAV vary with total hardness and are calculated using the following equations:

The MS in μ g/L shall not exceed: exp.(1.720[ln(total hardness mg/L)]-7.2156)

The FAV in μ g/L shall not exceed: exp.(1.720[ln(total hardness mg/L)]-6.520

Where: exp. is the natural antilogarithm (base e) of the expression in parenthesis.

For hardness values greater than 400 mg/L, 400 mg/L shall be used to calculate the standard.

Example of total silver standards for five total hardness values:

TH in mg/L	50	100	200	300	400	
Silver, total						
CS μg/L	1.0	1.0	1.0	1.0	1.0	
MS μg/L	1.0	2.0	6.7	13	22	
FAV μg/L	1.2	4.1	13	27	44	

Characteristic, or Pollutant (Class 2B)	Units	CS	Basis for CS	MS	FAV	Basis for MS, FAV
Temperature	°F	See	NA			NA

below

^{5°}F above natural in streams and 3°F above natural in lakes, based on monthly average of the maximum daily temperatures, except in no case shall it exceed the daily average temperature of 86°F.

1,1,2,2-Tetrachloroethane (c)	μg/L	13	HH	1,127	2,253	Tox
Tetrachloroethylene (c)	μg/L	8.9	HH	428	857	Tox
Thallium, total	μ g/L	0.56	HH	64	128	Tox
Toluene	μ g/L	253	Tox	1,352	2,703	Tox
Toxaphene (c)	ng/L	1.3	HH	730*	1,500*	Tox
1,1,1-Trichloroethane	μ g/L	329	Tox	2,957	5,913	Tox
1,1,2-Trichloroethylene (c)	μ g/L	120	HH	6,988	13,976	Tox
2,4,6-Trichlorophenol	μ g/L	2.0	HH	102	203	Tox
Total suspended solids (TSS)						
North River Nutrient Region	mg/L	15	NA			NA
Central River Nutrient Region	mg/L	30	NA			NA
South River Nutrient Region	mg/L	65	NA			NA
Red River mainstem -						
headwaters to border	mg/L	100	NA			NA

TSS standards for the class 2B North, Central, and South River Nutrient Regions and the Red River mainstem may be exceeded for no more than ten percent of the time. This standard applies April 1 through September 30 Total suspended solids (TSS), summer average Lower Mississippi River mainstem - Pools 2 through 4 mg/L 32 NA NA Lower Mississippi River mainstem below Lake Pepin NA NA mg/L 30 TSS standards for the class 2B Lower Mississippi River may be exceeded for no more than 50 percent of the time. This standard applies June 1 through September 30

Substance,

Characteristic, or Pollutant			Basis for			Basis for MS,
(Class 2B)	Units	CS	CS	MS	FAV	FAV
Vinyl chloride (c)	μg/L	9.2	НН	*	*	NA
Xylene, total m,p,o	μg/L	166	Tox	1,407	2,814	Tox
Zinc, total	μg/L	equation	Tox	equation	equation	Tox

The CS, MS, and FAV vary with total hardness and are calculated using the following equations:

The CS in μ g/L shall not exceed: exp.(0.8473[ln(total hardness mg/L)]+0.7615)

The MS in $\mu g/L$ shall not exceed: exp.(0.8473[ln(total hardness mg/L)]+0.8604)

The FAV in $\mu g/L$ shall not exceed: exp.(0.8473[ln(total hardness mg/L)]+1.5536)

Where: exp. is the natural antilogarithm (base e) of the expression in parenthesis.

For hardness values greater than 400 mg/L, 400 mg/L shall be used to calculate the standard.

Example of total zinc standards for five total hardness values:

TH in mg/L	50	100	200	300	400
Zinc, total					
CS μg/L	59	106	191	269	343
$MS \mu g/L$	65	117	211	297	379
FAV μg/L	130	234	421	594	758

Subp. 4a. Narrative eutrophication standards for class 2B lakes, shallow lakes, and reservoirs.

- A. Eutrophication standards applicable to lakes, shallow lakes, and reservoirs that lie on the border between two ecoregions or that are in the Red River Valley (also referred to as Lake Agassiz Plains), Northern Minnesota Wetlands, or Driftless Area Ecoregion must be applied on a case-by-case basis. The commissioner shall use the standards applicable to adjacent ecoregions as a guide.
- B. Eutrophication standards are compared to summer-average data. Exceedance of the total phosphorus and either the chlorophyll-a or Secchi disk transparency standard is required to indicate a polluted condition.
- C. It is the policy of the agency to protect all lakes, shallow lakes, and reservoirs from the undesirable effects of cultural eutrophication. Lakes, shallow lakes, and reservoirs with a baseline quality better than the numeric eutrophication standards in subpart 4 must be maintained in that condition through the strict application of all relevant federal, state, and local requirements governing antidegradation, the discharge of nutrients from point and nonpoint sources, and the protection of lake, shallow lake, and reservoir resources, including, but not limited to:
 - (1) the antidegradation requirements in parts 7050.0250 to 7050.0335;
 - (2) the phosphorus effluent limits for point sources, where applicable in chapter 7053;
 - (3) the requirements for feedlots in chapter 7020;
 - (4) the requirements for individual sewage treatment systems in chapter 7080;
 - (5) the requirements for control of storm water in chapter 7090;
 - (6) county shoreland ordinances; and
- (7) implementation of mandatory and voluntary best management practices to minimize point and nonpoint sources of nutrients.
- D. Lakes, shallow lakes, and reservoirs with a baseline quality that is poorer than the numeric eutrophication standards in subpart 4 must be considered to be in compliance with the standards if the baseline quality is the result of natural causes. The commissioner shall determine baseline quality and compliance with these standards using data and the procedures in part 7050.0150, subpart 5.

E. When applied to reservoirs, the eutrophication standards in this subpart and subpart 4 may be modified on a site-specific basis to account for characteristics of reservoirs that can affect trophic status, such as water temperature, variations in hydraulic residence time, watershed size, and the fact that reservoirs may receive drainage from more than one ecoregion. Information supporting a site-specific standard can be provided by the commissioner or by any person outside the agency. The commissioner shall evaluate all data in support of a modified standard and determine whether a change in the standard for a specific reservoir is justified. Any total phosphorus effluent limit determined to be necessary based on a modified standard shall only be required after the discharger has been given notice of the specific proposed effluent limits and an opportunity to request a hearing as provided in part 7000.1800.

Subp. 4b. Narrative eutrophication standards for class 2B rivers and streams.

- A. Eutrophication standards for rivers and streams are compared to summer-average data or as specified in subpart 4. Exceedance of the total phosphorus levels and chlorophyll-a (seston), five-day biochemical oxygen demand (BOD₅), diel dissolved oxygen flux, or pH levels is required to indicate a polluted condition.
- B. Rivers and streams that exceed the phosphorus levels but do not exceed the chlorophyll-a (seston), five-day biochemical oxygen demand (BOD₅), diel dissolved oxygen flux, or pH levels meet the eutrophication standard.
- C. A polluted condition also exists when the chlorophyll-a (periphyton) concentration exceeds 150 mg/m^2 more than one year in ten
- D. It is the policy of the agency to protect all rivers, streams, and navigational pools from the undesirable effects of cultural eutrophication. Rivers, streams, and navigational pools with a baseline quality better than the numeric eutrophication standards in subpart 4 must be maintained in that condition through the strict application of all relevant federal, state, and local requirements governing antidegradation, the discharge of nutrients from point and nonpoint sources, including:
 - (1) the antidegradation requirements in parts 7050.0250 to 7050.0335;
 - (2) the phosphorus effluent limits for point sources, where applicable in chapter 7053;
 - (3) the requirements for feedlots in chapter 7020;
 - (4) the requirements for individual sewage treatment systems in chapter 7080;
 - (5) the requirements for control of storm water in chapter 7090;
 - (6) county shoreland ordinances; and
- (7) implementation of mandatory and voluntary best management practices to minimize point and nonpoint sources of nutrients.
- E. Rivers, streams, and navigational pools with a baseline quality that does not meet the numeric eutrophication standards in subpart 4 are in compliance with the standards if the baseline

quality is the result of natural causes. The commissioner must determine baseline quality and compliance with these standards using data and the procedures in part 7050.0150, subpart 5.

Subp. 4c. Beneficial use definitions for lotic warm or cool water aquatic life and habitats (class 2B).

- A. Subitems (1) to (5) apply to the beneficial uses in items B to D:
- (1) The designation and attainment of beneficial uses are based on the criteria in subpart 4d.
- (2) The attributes of species composition, diversity, and functional organization are measured using:
- (a) the fish IBI as defined in Fish Data Collection Protocols for Lotic Waters in Minnesota (2017); or
- (b) the macroinvertebrate IBI as defined in Macroinvertebrate Data Collection Protocols for Lotic Waters in Minnesota (2017).
- (3) Water body types for streams and rivers are defined in the documents referenced in subitem (2).
- (4) The following documents are incorporated by reference and are not subject to frequent change:
- (a) Calibration of the Biological Condition Gradient for Streams of Minnesota, Gerritsen et al. (2012). The document is available on the agency's website at www.pca.state.mn.us/regulations/minnesota-rulemaking;
- (b) Fish Data Collection Protocols for Lotic Waters in Minnesota, Minnesota Pollution Control Agency (2017). The document is available on the agency's website at www.pca.state.mn.us/regulations/minnesota-rulemaking;
- (c) Macroinvertebrate Data Collection Protocols for Lotic Waters in Minnesota, Minnesota Pollution Control Agency (2017). The document is available on the agency's website at www.pca.state.mn.us/regulations/minnesota-rulemaking; and
- (d) Development of Biological Criteria for Tiered Aquatic Life Uses, Minnesota Pollution Control Agency (2016). The document is available on the agency's website at www.pca.state.mn.us/regulations/minnesota-rulemaking.
- (5) The beneficial use subclass designators "e," "g," and "m" are added to the class 2B designator as specific additional designators. The additional subclass designators do not replace the class 2B designator. All requirements for class 2B warm or cool water stream and river habitats in parts 7050.0222 and 7052.0100 continue to apply in addition to requirements for class 2Be, class 2Bg, or class 2Bm warm or cool water stream and river habitats in part 7050.0222. These subclass designators are applied to lotic waters only.

- B. "Exceptional cool and warm water aquatic life and habitat" or "class 2Be" is a beneficial use that means waters capable of supporting and maintaining an exceptional and balanced, integrated, adaptive community of warm or cool water aquatic organisms having a species composition, diversity, and functional organization comparable to the 75th percentile of biological condition gradient level 3 as established in Calibration of the Biological Condition Gradient for Streams of Minnesota, Gerritsen et al. (2012).
- C. "General cool and warm water aquatic life and habitat" or "class 2Bg" is a beneficial use that means waters capable of supporting and maintaining a balanced, integrated, adaptive community of warm or cool water aquatic organisms having a species composition, diversity, and functional organization comparable to the median of biological condition gradient level 4 as established in Calibration of the Biological Condition Gradient for Streams of Minnesota, Gerritsen et al. (2012).
- D. "Modified cool and warm water aquatic life and habitat" or "class 2Bm" is a beneficial use that means waters capable of supporting and maintaining a balanced, integrated, adaptive community of warm or cool water aquatic organisms having a species composition, diversity, and functional organization comparable to the median of biological condition gradient level 5 as established in Calibration of the Biological Condition Gradient for Streams of Minnesota, Gerritsen et al. (2012).
- (1) To meet the definition in this item, waters must have been the subject of a use attainability analysis where it is determined that attainment of the class 2Bg beneficial use is not feasible because of human-induced modifications of the physical habitat. These modifications must be the result of direct alteration to the channel, such as drainageway maintenance, bank stabilization, and impoundments.
- (2) Examples of class 2Bm waters are the stream channel modification activities regulated under:
 - (a) sections 401 and 404 of the Clean Water Act; or
 - (b) Minnesota Statutes, chapter 103E.

Subp. 4d. Biological criteria for lotic warm or cool water aquatic life and habitats (class 2B).

Water Body Type	Tier	Class	Assemblage	Biocriterion
Southern rivers	Exceptional	2Be	Fish	71
	General	2Bg	Fish	49
Southern streams	Exceptional	2Be	Fish	66
	General	2Bg	Fish	50
	Modified	2Bm	Fish	35
Southern headwaters	Exceptional	2Be	Fish	74
	General	2Bg	Fish	55

	Modified	2Bm	Fish	33
Northern rivers	Exceptional	2Be	Fish	67
	General	2Bg	Fish	38
Northern streams	Exceptional	2Be	Fish	61
	General	2Bg	Fish	47
	Modified	2Bm	Fish	35
Northern headwaters	Exceptional	2Be	Fish	68
	General	2Bg	Fish	42
	Modified	2Bm	Fish	23
Low gradient	Exceptional	2Be	Fish	70
	General	2Bg	Fish	42
	Modified	2Bm	Fish	15
Northern forest rivers	Exceptional	2Be	Macroinvertebrates	77
	General	2Bg	Macroinvertebrates	49
Prairie and southern forest				
rivers	Exceptional	2Be	Macroinvertebrates	63
	General	2Bg	Macroinvertebrates	31
High-gradient northern forest				
streams	Exceptional	2Be	Macroinvertebrates	82
	General	2Bg	Macroinvertebrates	53
Low-gradient northern forest				
streams	Exceptional	2Be	Macroinvertebrates	76
	General	2Bg	Macroinvertebrates	51
	Modified	2Bm	Macroinvertebrates	37
High-gradient southern				
streams	Exceptional	2Be	Macroinvertebrates	62
	General	2Bg	Macroinvertebrates	37
	Modified	2Bm	Macroinvertebrates	24
Low-gradient southern forest				
streams	Exceptional	2Be	Macroinvertebrates	66
	General	2Bg	Macroinvertebrates	43
	Modified	2Bm	Macroinvertebrates	30
Low-gradient prairie streams	Exceptional	2Be	Macroinvertebrates	69
	General	2Bg	Macroinvertebrates	41
	Modified	2Bm	Macroinvertebrates	22

The biological criteria for lotic warm or cool water aquatic life and habitats (class 2B) are applicable to perennial and intermittent waters that allow for colonization of fish or macroinvertebrates.

Subp. 5. [Repealed, 42 SR 441]

Subp. 6. Class 2D waters; wetlands.

A. The quality of class 2D wetlands shall be such as to permit the propagation and maintenance of a healthy community of aquatic and terrestrial species indigenous to wetlands, and their habitats. Wetlands also add to the biological diversity of the landscape. These waters shall be suitable for boating and other forms of aquatic recreation for which the wetland may be usable. The standards for class 2B waters listed under subpart 4 shall apply to these waters except as listed below:

Substance, Characteristic, or Pollutant Class 2D Standard

Oxygen, dissolved If background is less than 5.0 mg/L as a daily

minimum, maintain background

pH Maintain background
Temperature Maintain background

B. "Maintain background," as used in this subpart, means the concentration of the water quality substances, characteristics, or pollutants shall not deviate from the range of natural background concentrations or conditions such that there is a potential significant adverse impact to the designated uses.

- C. Activities in wetlands which involve the normal farm practices of planting with annually seeded crops or the utilization of a crop rotation seeding of pasture grasses or legumes, including the recommended applications of fertilizer and pesticides, are excluded from the standards in this subpart and the wetland standards in parts 7050.0224, subpart 4; 7050.0225, subpart 2; and 7050.0227. All other activities in these wetlands must meet water quality standards.
- Subp. 7. Additional standards; class 2 waters. The following additional standards and requirements apply to all class 2 waters.
- A. No sewage, industrial waste, or other wastes from point or nonpoint sources shall be discharged into any of the waters of this category so as to cause any material change in any other substances, characteristics, or pollutants which may impair the quality of the waters of the state or the aquatic biota of any of the classes in subparts 2 to 6 or in any manner render them unsuitable or objectionable for fishing, fish culture, or recreational uses. Additional selective limits or changes in the discharge bases may be imposed on the basis of local needs.
- B. To prevent acutely toxic conditions, concentrations of toxic pollutants from point or nonpoint sources must not exceed the FAV as a one-day average at the point of discharge or in the surface water consistent with parts 7050.0210, subpart 5, item D; 7053.0215, subpart 1; 7053.0225, subpart 6; and 7053.0245, subpart 1.

If a discharge is composed of a mixture of more than one chemical, and the chemicals have the same mode of toxic action, the commissioner has the option to apply an additive model to determine the toxicity of the mixture using the following equation:

where: $C_1 ext{ } C_n$ is the concentration of the first to the n^{th} toxicant. FAV₁ FAV_n is the FAV for the first to the n^{th} toxicant.

- C. To prevent chronically toxic conditions, concentrations of toxic pollutants must not exceed the applicable CS or CC and MS or MC in surface waters outside allowable mixing zones as described in part 7050.0210, subpart 5. The CS or CC and MS or MC will be averaged over the following durations: the MS or MC will be a one-day average; the CS or CC, based on toxicity to aquatic life, will be a four-day average; and the CS or CC, based on human health and applied in water or wildlife toxicity, will be a 30-day average.
- D. Concentrations of noncarcinogenic or nonlinear carcinogenic (NLC) chemicals in water or fish tissue from point or nonpoint sources, singly or in mixtures, must be below levels expected to produce known adverse effects. This is accomplished through the application of an additive noncancer health risk index using common health risk index endpoints or health endpoints. Mixtures of chemicals with listed CS or site-specific CC are evaluated using the following approach:

Chemicals must be grouped according to medium (water or fish) and each health endpoint. Chemicals for which no health endpoint is specified are not grouped. Chemicals that are also linear carcinogens must be grouped as described under item E. Using the following equation, a noncancer health risk index must be determined for each group of two or more chemicals that have a common health endpoint listed in this part. To meet the protection objectives in part 7050.0217, the noncancer health risk index must not exceed a value of one.

where: C_n is the concentration of the first to the n^{th} chemical by common health endpoint and medium

 $CS_1 \dots CS_n$ is the drinking water plus fish consumption and recreation chronic standard (CS_{dfr} or CS_{dev}), fish consumption and recreation chronic standard (CS_{fr}), or fish tissue chronic standard (CS_{fr}) for the first to n^{th} chemical by common health endpoint

 $CC_1 \dots CC_n$ is the drinking water plus fish consumption and recreation chronic criterion (CC_{dfr} or CC_{dev}), fish consumption and recreation chronic criterion (CC_{fr}), or fish tissue chronic criterion (CC_{fr}) for the first to n^{th} chemical by common health endpoint

E. Concentrations of carcinogenic chemicals from point or nonpoint sources, singly or in mixtures, must not exceed an incremental or additional excess risk level of one in 100,000 (10⁻⁵) in surface waters or fish tissue. Carcinogenic chemicals will be considered additive in their effect

according to the following equation unless an alternative model is supported by available scientific evidence. The additive equation applies to chemicals that have a human health-based chronic standard (CS) or site-specific chronic criterion (CC) calculated with a cancer potency slope factor. To meet the protection objectives in part 7050.0217, the cancer health risk index must not exceed a value of one.

Cancer health risk index
$$= \begin{array}{cccc} C_{-1} & C_{-2} & C_{-n} \\ \hline CS_1 \text{ or } & + & CS_2 \text{ or } \\ \hline CC_1 & CC_2 & CC_n \end{array} \leq 1$$

where: $C_1 \dots C_n$ is the concentration of the first to the n^{th} carcinogen in water or fish tissue $CS_1 \dots CS_n$ is the drinking water plus fish consumption and recreation chronic standard (CS_{dfr}) , fish consumption and recreation chronic standard (CS_{fr}) , or fish tissue chronic standard (CS_{fr}) for the first to n^{th} carcinogenic chemical

 CC_1 CC_n is the drinking water plus fish consumption and recreation chronic criterion (CC_{dfr}) fish consumption and recreation chronic criterion (CC_{fr}), or fish tissue chronic criterion (CC_{fr}) for the first to n^{th} carcinogenic chemical

- F. When monitoring indicates that chemical breakdown products or environmental degradates are present in surface water or fish tissue, those products must be considered when meeting the objectives for toxic pollutants in part 7050.0217. When no human health-based CS or other MDH health-based guidance is available for the chemical breakdown product, the CS or CC for the parent chemical must be applied for that product. The parent CS or CC must also be applied to evaluate mixtures of chemicals.
- G. This item applies to maximum standards (MS), final acute values (FAV), and double dashes (--) in this part and part 7050.0220 marked with an asterisk (*). For carcinogenic or highly bioaccumulative chemicals with BCFs greater than 5,000 or log K_{ow} values greater than 5.19, the human health-based chronic standard (CS) may be two or more orders of magnitude smaller than the acute toxicity-based MS.

If the ratio of the MS to the CS is greater than 100, the CS times 100 must be substituted for the applicable MS, and the CS times 200 must be substituted for the applicable FAV. Any effluent limit derived using the procedures of this item must only be required after the discharger has been given notice of the specific proposed effluent limits and an opportunity to request a hearing as provided in part 7000.1800.

Subp. 8. [Repealed, 32 SR 1699]

Subp. 9. Conversion factors for dissolved metal standards.

 Metal
 Conversion Factor for CS
 Conversion Factor for MS and FAV

 Cadmium
 0.909 1.1017-[(ln TH, mg/L) (0.0418)] 0.946 1.1367-[(ln TH, mg/L) (0.0418)]

 Chromium +3
 0.860
 0.316

Chromium +6	0.962	0.982
Copper	0.960	0.960
Lead	0.791 1.4620-[(ln TH, mg/L) (0.1457)]	0.791 1.4620-[(ln TH, mg/L) (0.1457)]
Mercury	1.0	0.850
Nickel	0.997	0.998
Silver	0.850	0.850
Zinc	0.986	0.978

Conversion factors for cadmium and lead are hardness (TH) dependent. The factors shown in the table above are for a total hardness of 100 mg/L only. Conversion factors for cadmium and lead for other hardness values shall be calculated using the equations included in the table. The dissolved standard is the total standard times the conversion factor.

Statutory Authority: MS s 14.06; 115.03; 115.44; 116.07

History: 18 SR 2195; 19 SR 1310; 24 SR 1105; 27 SR 1217; 32 SR 1699; 39 SR 154; 39 SR 1344; 18 SR 2195; 19 SR 1310; 24 SR 1105; 27 SR 1217; 32 SR 1699; 39 SR 154; 39 SR 1344; 41 SR 545; 18 SR 2195; 19 SR 1310; 24 SR 1105; 27 SR 1217; 32 SR 1699; 39 SR 154; 39 SR 1344; 41 SR 545; 42 SR 441

Published Electronically: September 10, 2018