7050.0220 SPECIFIC WATER QUALITY STANDARDS BY ASSOCIATED USE CLASSES.

Subpart 1. **Purpose and scope.** The numeric and narrative water quality standards in this chapter prescribe the qualities or properties of the waters of the state that are necessary for the designated public uses and benefits. If the standards in this chapter are exceeded, it is considered indicative of a polluted condition which is actually or potentially deleterious, harmful, detrimental, or injurious with respect to designated uses or established classes of the waters of the state.

All surface waters are protected for multiple beneficial uses. Numeric water quality standards are tabulated in this part for all uses applicable to four common categories of surface waters, so that all applicable standards for each category are listed together in subparts 3a to 6a. The four categories are:

- A. cold water sport fish (trout waters), also protected for drinking water: Classes 1B, 2A, 3A or 3B, 4A and 4B, and 5 (subpart 3a);
- B. cool and warm water sport fish, also protected for drinking water: Classes 1B or 1C, 2Bd, 3A or 3B, 4A and 4B, and 5 (subpart 4a);
- C. cool and warm water sport fish, indigenous aquatic life, and wetlands: Classes 2B, 2C, or 2D; 3A, 3B, 3C, or 3D; 4A and 4B or 4C; and 5 (subpart 5a); and
 - D. limited resource value waters: Classes 3C, 4A and 4B, 5, and 7 (subpart 6a).

Subp. 2. Explanation of tables.

- A. Class 1 domestic consumption (DC) standards are the United States Environmental Protection Agency primary (maximum contaminant levels) and secondary drinking water standards, as contained in Code of Federal Regulations, title 40, parts 141 and 143, as amended through July 1, 2006. The DC standards are listed in subparts 3a and 4a, except that individual pollutants, substances, or organisms in the treatment technological, disinfectants, microbiological, and radiological categories are not listed unless they are listed because a secondary drinking water standard or a standard for another use class exists.
- B. Certain drinking water standards are not applicable to Class 1 waters. The following are not applicable to Class 1 surface waters: the primary drinking water standards for acrylamide, epichlorohydrin, copper, lead, and turbidity (treatment technique standards) and the standards in the disinfectants and microbiological organisms categories. The drinking water standards not applicable to Class 1 ground waters are listed in part 7050.0221.
- C. Class 2 standards for metals are expressed as total metal in subparts 3a to 5a, but must be converted to dissolved metal standards for application to surface waters.

Conversion factors for converting total metal standards to dissolved metal standards are listed in part 7050.0222, subpart 9. The conversion factor for metals not listed in part 7050.0222, subpart 9, is one. The dissolved metal standard equals the total metal standard times the conversion factor. Water quality-based effluent limits for metals are expressed as total metal.

D. The tables of standards in subparts 3a to 6a include the following abbreviations and acronyms:

AN means aesthetic enjoyment and navigation, Class 5 waters an asterisk following the FAV and MS values or double dashes (–) means part 7050.0222, subpart 7, item E, applies (c) means the chemical is assumed to be a human carcinoge CS means chronic standard, defined in part 7050.0218, subpart 3 DC means domestic consumption (drinking water), Class 1 waters double dashes means there is no standard means the natural antilogarithm (base e) of the expression in parenthesis exp. () **FAV** means final acute value, defined in part 7050.0218, subpart 3 IC means industrial consumption, Class 3 waters IR means agriculture irrigation use, Class 4A waters LS means agriculture livestock and wildlife use, Class 4B waters MS means maximum standard, defined in part 7050.0218, subpart 3 means not applicable NA **(S)** means the associated value is a secondary drinking water standard means standard unit. It is the reporting unit for pH SII TH means total hardness in mg/L, which is the sum of the calcium and magnesium concentrations expressed as CaCO₂ TON means threshold odor number

- E. Important synonyms or acronyms for some chemicals are listed in parentheses below the primary name.
- F. When two or more use classes have standards for the same pollutant, the most stringent standard applies pursuant to part 7050.0450. All surface waters are protected for Class 6, but this class has no numeric standards so it is not included in the tables.

Subp. 3. [Repealed, 24 SR 1105]

Subp. 3a. Cold water sport fish, drinking water, and associated use classes. Water quality standards applicable to use Classes 1B, 2A, 3A or 3B, 4A and 4B, and 5 surface waters.

A. MISCELLANEOUS SUBSTANCE, CHARACTERISTIC, OR POLLUTANT

	2A CS	2A MS	2A FAV	1B DC	3A/3B IC	4A IR	4B IR	5 AN
(1)	Ammonia	, un-ionize	d as N, μg/	Ĺ				
	16	_	_	_	_	_	_	_
(2)	Asbestos,	>10 μm (c), fibers/L					
	_	_	_	7.0e+06	_	_	_	_
(3) 1	Bicarbona	tes (HCO ₃), meq/L					
	_	_	_	_	_	5	_	_
(4)	Bromate,	μg/L						
	_	_	_	10	_	_	_	_
(5)	Chloride,	mg/L						
	230	860	1,720	250(S)	50/100	_	_	_
	2A CS	2A MS	2A FAV	1B DC	3A/3B IC	4A IR	4B IR	5 AN
(6)	Chlorine,	total residu	ıal, μg/L					
	11	19	38	_	_	_	_	_
(7)	Chlorite, p	ug/L						
	_	_	_	1,000	_	_	_	_
(8)	Color, Pt-	Co						
	30	_	_	15(S)	_	_	_	_
(9)	Cyanide, 1	free, μg/L						

(17) Nitrate as N, mg/L

0.02

	_	_	_	10	_	_	_	_			
(18	3) Nitrite a	s N, mg/L									
	_	_	_	1	_	_	_	_			
(19) Nitrate +	- Nitrite as	N, mg/L								
	_	_	_	10	_	_	_	_			
(20	Odor, To	ON									
	_	_	_	3(S)	_	_	_	_			
	2A CS	2A MS	2A FAV	1B DC	3A/3B IC	4A IR	4B IR	5 AN			
(21) Oil, µg/L											
	500	5,000	10,000	_	_	_	_	_			
(22	2) Oxygen,	dissolved,	mg/L								
	7, as a daily minimum	_ I	_	_	_	_	_	-			
(23) pH mini	mum, su									
	6.5	_	_	6.5(S)	6.5/6.0	6.0	6.0	6.0			
(24) pH maxi	mum, su									
	8.5	_	_	8.5(S)	8.5/9.0	8.5	9.0	9.0			
(25	(i) Radioact	tive materi	als								
	See item E	_	-	See item E	-	See item E	See item E	-			
	2A CS	2A MS	2A FAV	1B DC	3A/3B IC	4A IR	4B IR	5 AN			

(26) Salinity,	total, mg/	L					
_	_	_	_	_	_	1,000	_
(27) Sodium,	, meq/L						
-	_	_	_	_	60% of total cations	_	-
(28) Specific	conductan	ce at 25°C	, μmhos/cn	n			
_	_	_	_	_	1,000	_	_
(29) Sulfate,	mg/L						
_	_	_	250(S)	_	_	_	_
(30) Sulfates	, wild rice	present, m	g/L				
_	_	_	_	_	10	_	_
2A CS	2A MS	2A FAV	1B DC	3A/3B IC	4A IR	4B IR	5 AN
(31) Tempera	ature, °F						
No material increase	ature, °F	_	_	_	_	_	_
No material	_	- ts, mg/L	_	_	_	_	_
No material increase	_	– ts, mg/L –	_	_	700	_	_
No material increase	– ssolved sal	-	_	_	700	_	_
No material increase (32) Total dis	– ssolved sal	-	- 500(S)	_	700	_	_
No material increase (32) Total dis	ssolved sal	-	- 500(S)	_	700	_	_
No material increase (32) Total dis (33) Total dis	ssolved sal	-	- 500(S)	_	700	_	_

	2A CS	2A MS	2A FAV	1B DC	3A/3B IC	4A IR	4B LS	5 AN
(1)	Alumin	num, total,	μg/L					
	87	748	1,496	50- 200(S)	-	_	-	_
(2)	Antimo	ony, total, μ	ıg/L					
	5.5	90	180	6	_	_	_	_
(3)	Arsenio	e, total, μg/	L					
	2.0	360	720	10	_	_	_	_
(4)	Barium	ı, total, μg/	L					
	_	_	_	2,000	_	_	_	_
(5)	Berylli	um, total, µ	ıg/L					
	_	_	_	4.0	_	_	_	_
	2A CS	2A MS	2A FAV	1B DC	3A/3B IC	4A IR	4B LS	5 AN
(6)	Boron,	total, μg/L						
	_	_	_	_	_	500	_	_
(7)	Cadmi	ım, total, μ	g/L					
	1.1	3.9	7.8	5	_	_	_	_

Class 2A cadmium standards are hardness dependent. Cadmium values shown are for a total hardness of 100 mg/L only. See part 7050.0222, subpart 2, for examples at other hardness values and equations to calculate cadmium standards for any hardness value not to exceed 400 mg/L.

(8)	Chromium	+3,	total,	μg/L
-----	----------	-----	--------	------

207 1,737 3,469 - - - - -

Class 2A trivalent chromium standards are hardness dependent. Chromium +3 values
shown are for a total hardness of 100 mg/L only. See part 7050.0222, subpart 2, for
examples at other hardness values and equations to calculate trivalent chromium standards
for any hardness value not to exceed 400 mg/L.

(9)	Chromium	+6, total,	μg/L					
	11	16	32	_	_	_	_	_
(10)) Chromiu	m, total, με	g/L					
	_	_	_	100	_	_	_	_
	2A CS	2A MS	2A FAV	1B DC	3A/3B IC	4A IR	4B LS	5 AN
(11)	Cobalt, to	otal, μg/L						
	2.8	436	872	_	_	_	_	_
			0 / _					
(12)) Copper, t		3, <u>2</u>					

Class 2A copper standards are hardness dependent. Copper values shown are for a total hardness of 100 mg/L only. See part 7050.0222, subpart 2, for examples at other hardness values and equations to calculate copper standards for any hardness value not to exceed 400 mg/L.

(13) Iron, t	otal, μg/L						
_	_	_	300(S)	_	_	_	_
(14) Lead,	total, μg/L						
3.2	82	164	NA	_	_	_	_

Class 2A lead standards are hardness dependent. Lead values shown are for a total hardness of 100 mg/L only. See part 7050.0222, subpart 2, for examples at other hardness values and equations to calculate lead standards for any hardness value not to exceed 400 mg/L.

(15) Mang	ganese, tot	tal, µg/L					
_	_	_	50(S)	_	_	_	_

2A CS	2A MS	2A FAV	1B DC	3A/3B IC	4A IR	4B LS	5 AN
(16) Mercu	ıry, total, in	water, ng/I					
6.9	2,400*	4,900*	2,000	_	_	_	_
(17) Mercu	ry, total in e	edible fish t	issue, mg/	kg or parts	per millio	n	
0.2	_	_	_	_	_	_	_
(18) Nicke	l, total, μg/I	٠					
158	1,418	2,836	_	_	_	_	_
Class 2A r	vickel stands	arde are ha	rdness der	nendent N	ickel valu	iec chown	are for a tot

Class 2A nickel standards are hardness dependent. Nickel values shown are for a total hardness of 100 mg/L only. See part 7050.0222, subpart 2, for examples at other hardness values and equations to calculate nickel standards for any hardness value not to exceed 400 mg/L.

(19) Selenium, total, µg/L

5.0 20 40 50 - - - - - - (20) Silver, total, $\mu g/L$ 0.12 2.0 4.1 100(S) - - - - -

Class 2A silver MS and FAV are hardness dependent. Silver values shown are for a total hardness of 100 mg/L only. See part 7050.0222, subpart 2, for examples at other hardness values and equations to calculate silver standards for any hardness value not to exceed 400 mg/L.

2A	2A	2A	DC	3A/3B	4A	4B	5	
CS	MS	FAV	DC	IC	IR	LS	AN	
(21) Thalliu	um, total, µ	ıg/L						

(22) Zinc, total, µg/L

64

128

2

0.28

106	117	234	5,000	_	_	_	_
			(S)				

Class 2A zinc standards are hardness dependent. Zinc values shown are for a total hardness of 100 mg/L only. See part 7050.0222, subpart 2, for examples at other hardness values and equations to calculate zinc standards for any hardness value not to exceed 400 mg/L.

C. ORGANIC POLLUTANTS OR CHARACTERISTICS

	2A CS	2A MS	2A FAV	1B DC	3A/3B IC	4A IR	4B LS	5 AN
(1)	Acenap	hthene, μg/I						
	20	56	112	_	_	_	_	_
(2)	Acetoch	nlor, μg/L						
	3.6	86	173	_	_	_	_	_
(3)	Acrylor	nitrile (c), με	g/L					
	0.38	1,140*	2,281*	_	_	_	_	_
(4)	Alachlo	or (c), μg/L						
	3.8	800*	1,600*	2	_	_	_	_
(5)	Aldicar	b, μg/L						
	_	_	_	3	_	_	_	_
	2A CS	2A MS	2A FAV	1B DC	3A/3B IC	4A IR	4B LS	5 AN
(6)	Aldicar	b sulfone, μ	g/L					
	_	_	_	2	_	_	_	_
(7)	Aldicar	b sulfoxide,	$\mu g/L$					
	_	_	_	4	_	_	_	_

0.035	0.32	0.63	_	_	_	_	_
(9) Atrazir	ne (c), µg/L						
3.4	323	645	3	_	_	_	_
(10) Benze	ene (c), μg/L						
5.1	4,487*	8,974*	5	_	_	_	_
2A CS	2A MS	2A FAV	1B DC	3A/3B IC	4A IR	4B LS	5 AN
(11) Benzo	o(a)pyrene, μ	.g/L					
_	_	_	0.2	_	_	_	_
(12) Brom	oform, μg/L						
33	2,900	5,800	See subitem (73)		-	-	_
(13) Carbo	ofuran, μg/L						
_	_	_	40	_	_	_	_
(14) Carbo	on tetrachlori	de (c), μg/	L				
1.9	1,750*	3,500*	5	_	_	_	_
(15) Chlor	dane (c), ng/	L					
0.073	1,200*	2,400*	2,000	_	_	_	_
2A CS	2A MS	2A FAV	1B DC	3A/3B IC	4A IR	4B LS	5 AN
(16) Chlor	obenzene, με	g/L (Mono	chlorobenze	ne)			
20	423	846	100	_	_	_	_
(17) Chlor	roform (c), με	g/L					

1,392 2,784 See subitem (73) -												
0.041 0.083 0.17 (19) Dalapon, μg/L 200 (20) DDT (c), ng/L 0.11 550* 1,100*		53	1,392	2,784			-	_	_			
(19) Dalapon, μg/L 200 (20) DDT (c), ng/L 0.11 550* 1,100* 2A 2A 2A 1B 3A/3B 4A 4B 5 CS MS FAV DC IC IR LS AN (21) 1,2-Dibromo-3-chloropropane (c), μg/L 0.2 (22) Dichlorobenzene (ortho), μg/L 600 (23) 1,4-Dichlorobenzene (para) (c), μg/L 75 (24) 1,2-Dichloroethane (c), μg/L 3.5 45,050* 90,100* 5 (25) 1,1-Dichloroethylene, μg/L 7 2A 2A 2A 1B 3A/3B 4A 4B 5	(18	8) Chlorpyr	rifos, µg/L									
200 (20) DDT (c), ng/L 0.11 550* 1,100*		0.041	0.083	0.17	_	_	_	_	_			
(20) DDT (c), ng/L 0.11 550* 1,100*	(19	9) Dalapon,	, μg/L									
0.11 550* 1,100*		_	_	_	200	_	_	_	_			
2A 2A 2A 1B 3A/3B 4A 4B 5 CS MS FAV DC IC IR LS AN (21) 1,2-Dibromo-3-chloropropane (c), μg/L 0.2 (22) Dichlorobenzene (ortho), μg/L 600 (23) 1,4-Dichlorobenzene (para) (c), μg/L 75 (24) 1,2-Dichloroethane (c), μg/L 3.5 45,050* 90,100* 5 (25) 1,1-Dichloroethylene, μg/L 7 2A 2A 2A 1B 3A/3B 4A 4B 5	(20	0) DDT (c)	, ng/L									
CS MS FAV DC IC IR LS AN (21) 1,2-Dibromo-3-chloropropane (c), μg/L 0.2 (22) Dichlorobenzene (ortho), μg/L 600 (23) 1,4-Dichlorobenzene (para) (c), μg/L 75 (24) 1,2-Dichloroethane (c), μg/L 3.5 45,050* 90,100* 5 (25) 1,1-Dichloroethylene, μg/L 77 2A 2A 2A 1B 3A/3B 4A 4B 5		0.11	550*	1,100*	_	_	_	_	_			
0.2 (22) Dichlorobenzene (ortho), μg/L 600 (23) 1,4-Dichlorobenzene (para) (c), μg/L 75 (24) 1,2-Dichloroethane (c), μg/L 3.5 45,050* 90,100* 5 (25) 1,1-Dichloroethylene, μg/L 7 - 7 2 2A 2A 2A 1B 3A/3B 4A 4B 5												
(22) Dichlorobenzene (ortho), μg/L 600 (23) 1,4-Dichlorobenzene (para) (c), μg/L 75 (24) 1,2-Dichloroethane (c), μg/L 3.5 45,050* 90,100* 5 (25) 1,1-Dichloroethylene, μg/L 7 - 7 2A 2A 2A 1B 3A/3B 4A 4B 5	(21) 1,2-Dibromo-3-chloropropane (c), μg/L											
600 (23) 1,4-Dichlorobenzene (para) (c), μg/L 75 (24) 1,2-Dichloroethane (c), μg/L 3.5 45,050* 90,100* 5 (25) 1,1-Dichloroethylene, μg/L 7 - 7 2 2A 2A 2A 1B 3A/3B 4A 4B 5		_	_	_	0.2	_	_	_	_			
(23) 1,4-Dichlorobenzene (para) (c), μg/L 75 (24) 1,2-Dichloroethane (c), μg/L 3.5 45,050* 90,100* 5 (25) 1,1-Dichloroethylene, μg/L 7 - 7 2A 2A 2A 1B 3A/3B 4A 4B 5	(22	2) Dichloro	benzene (c	ortho), μg/L	J							
75 (24) 1,2-Dichloroethane (c), μg/L 3.5 45,050* 90,100* 5 (25) 1,1-Dichloroethylene, μg/L 7 2A 2A 2A 2A 1B 3A/3B 4A 4B 5		_	_	_	600	_	_	_	_			
(24) 1,2-Dichloroethane (c), μg/L 3.5	(23	3) 1,4-Dich	lorobenzen	ne (para) (c), μg/L							
3.5 45,050* 90,100* 5 (25) 1,1-Dichloroethylene, μg/L 7		_	_	_	75	_	_	_	_			
(25) 1,1-Dichloroethylene, μg/L 7 2A 2A 2A 1B 3A/3B 4A 4B 5	(24	4) 1,2-Dich	loroethane	(c), μg/L								
7 2A 2A 2A 1B 3A/3B 4A 4B 5		3.5	45,050*	90,100*	5	_	_	_	_			
2A 2A 2A 1B 3A/3B 4A 4B 5	(2:	5) 1,1-Dich	loroethyler	ne, μg/L								
		_	_	_	7	_	_	_	_			

(26) 1,2-Dichloroethylene (cis), $\mu g/L$

_	_	_	70	_	_	_	_	
(27) 1,2	-Dichloroethy	elene (trans),	μg/L					
_	_	_	100	_	_	_	_	
(28) 2,4	-Dichloropher	noxyacetic a	cid (2,4-)	D), μg/L				
_	_	_	70	_	_	_	_	
(29) 1,2	-Dichloroprop	oane (c), μg/	L					
_	_	_	5	_	_	_	_	
(30) Die	eldrin (c), ng/l	L						
0.00	065 1,300*	2,500*	_	_	_	_	_	
2A CS	2A MS	2A FAV	1B DC	3A/3B IC	4A IR	4B LS	5 AN	
(31) Di-	-2-ethylhexyl	adipate, μg/l	L					
_	_	_	400	_	_	_	_	
(32) Di-	2-ethylhexyl	phthalate (c)), μg/L					
1.9	_*	_*	6	_	_	_	_	
(33) Di-	n-Octyl phtha	ılate, μg/L						
30	825	1,650	_	_	_	_	_	
(34) Dia	noseb, µg/L							
_	_	_	7	_	_	_	_	
(35) Dio	quat, μg/L							
_			• •					
	_	_	20	_	_	_	_	

`	_	ic acids (c), cetic acid,	. •		-	noacetic ac	id, Dichloro	acet
	_	_	_	60	_	_	_	_
(44	4) Heptachl	lor (c), ng/l	L					
	0.10	260*	520*	400	_	_	_	_
(45	5) Heptachl	or epoxide	(c), ng/L					
	0.12	270*	530*	200	_	_	_	_

2A CS	2A MS	2A FAV	1B DC	3A/3B IC	4A IR	4B LS	5 AN					
(46) Hexach	lorobenzen	e (c), ng/L										
0.061	_*	_*	1,000	_	_	_	_					
(47) Hexach	lorocyclope	entadiene, p	ug/L									
_	_	_	50	_	_	_	_					
(48) Lindane	e (c), μg/L (Hexachlor	ocyclohex	ane, gamm	a-)							
0.0087	1.0*	2.0*	0.2	_	_	_	_					
(49) Methox	cychlor, μg/	L										
_	_	_	40	_	_	_	_					
(50) Methyle	(50) Methylene chloride (c), μg/L (Dichloromethane)											
45	13,875*	27,749*	5	-	_	_	_					
2A CS	2A MS	2A FAV	1B DC	3A/3B IC	4A IR	4B LS	5 AN					
(51) Metolae	chlor											
23	271	543	_	_	_	_	_					
(52) Naphth	alene, μg/L											
65	409	818	_	_	_	_	_					
(53) Oxamy	l, μg/L (Vyo	date)										
_	_	_	200	_	_	_	_					
(54) Parathio	on, μg/L											
0.013	0.07	0.13	_	_	-	_	_					
(55) Pentach	lorophenol	, μg/L										

0.93	15	30	1	_	_	_	_
0.75	10	50	1				

Class 2A MS and FAV are pH dependent. Pentachlorophenol values shown are for a pH of 7.5 only. See part 7050.0222, subpart 2, for examples at other pH values and equations to calculate pentachlorophenol standards for any pH value.

2A CS	2A MS	2A FAV	1B DC	3A/3B IC	4A IR	4B LS	5 AN
(56) Phena	nthrene, μg/	L					
3.6	32	64	_	_	_	_	_
(57) Pheno	l, μg/L						
123	2,214	4,428	_	_	_	_	_
(58) Piclor	am, μg/L						
_	_	_	500	_	_	_	_
(59) Polycl	nlorinated bi	phenyls (c)	, ng/L (P	CBs, total)			
0.014	1,000*	2,000*	500	_	_	_	_
(60) Simaz	ine, μg/L						
_	_	_	4	_	_	_	_
2A CS	2A MS	2A FAV	1B DC	3A/3B IC	4A IR	4B LS	5 AN
(61) Styren	ne (c), μg/L						
_	_	_	100	_	_	_	_
(62) 2,3,7,8	3-Tetrachloro	odibenzo-p	-dioxin, n	g/L (TCDD	-dioxin)		
_	_	_	0.03	_	_	_	_
(63) 1,1,2,2	2-Tetrachloro	oethane (c)	, μg/L				
1.1	1,127*	2,253*	_	_	_	_	_

(64) Tetr	achloroethylen	e (c), μg/L					
3.8	428*	857*	5	_	_	_	_
(65) Tol	uene, μg/L						
253	1,352	2,703	1,000	_	_	_	_
2A CS	2A MS	2A FAV	1B DC	3A/3B IC	4A IR	4B LS	5 AN
(66) Tox	aphene (c), ng	'L					
0.31	730*	1,500*	3,000	_	_	_	_
(67) 2,4,	5-TP, μg/L (Si	lvex)					
_	_	_	50	_	_	_	_
(68) 1,2,	4-Trichloroben	zene, μg/L					
_	_	_	70	_	_	_	_
(69) 1,1,	1-Trichloroetha	ane, μg/L					
329	2,957	5,913	200	_	_	_	_
(70) 1,1,	2-Trichloroetha	ane, μg/L					
_	_	_	5	_	-	_	_
2A CS	2A MS	2A FAV	1B DC	3A/3B IC	4A IR	4B LS	5 AN
(71) 1,1,	2-Trichloroethy	ylene (c), μ	g/L				
25	6,988	13,976*	5	_	_	_	_
(72) 2,4,	6-Trichlorophe	nol, μg/L					
2.0	102	203	_	_	_	_	_
(73) T	rihalomethanes	, total	(c), μg	/L (Brom	odichloro	methane,	Bromoform,

Chlorodibromomethane, and Chloroform)

D. *Escherichia (E.) coli* bacteria shall not exceed 126 organisms per 100 milliliters as a geometric mean of not less than five samples representative of conditions within any calendar month, nor shall more than ten percent of all samples taken during any calendar month individually exceed 1,260 organisms per 100 milliliters. The standard applies only between April 1 and October 31.

E. For radioactive materials, see parts 7050.0221, subpart 2; 7050.0222, subpart 2; and 7050.0224, subparts 2 and 3.

Subp. 4. [Repealed, 24 SR 1105]

Subp. 4a. Cool and warm water sport fish, drinking water, and associated use classes. Water quality standards applicable to use Classes 1B or 1C, 2Bd, 3A or 3B, 4A and 4B, and 5 surface waters.

A. MISCELLANEOUS SUBSTANCE, CHARACTERISTIC, OR POLLUTANT

2Bd CS	2Bd MS	2Bd FAV	1B/1C DC	3A/3B IC	4A IR	4B LS	5 AN	
(1) Ammon	ia, un-ioni	zed as N, μ	ıg/L					_
40	_	_	_	_	_	_	_	
(2) Asbesto	s, >10 μm	(c), fibers/	L					
_	_	_	7.0e+06	_	_	_	_	
(3) Bicarbon	nates (HC	O ₃), meq/L						
_	_	_	_	_	5	_	_	
(4) Bromate	e, μg/L							
_	_	_	10	_	_	_	_	

(5)	Chloride,	mg/L						
	230	860	1,720	250(S)	50/100	_	_	_
	2Bd CS	2Bd MS	2Bd FAV	1B/1C DC	3A/3B IC	4A IR	4B LS	5 AN
(6)	Chlorine,	total residu	ıal, μg/L					
	11	19	38	_	_	_	_	_
(7)	Chlorite, µ	ug/L						
	_	_	_	1,000	_	_	_	_
(8)	Color, Pt-	Co						
	_	_	_	15(S)	_	_	_	_
(9)	Cyanide, 1	free, μg/L						
	5.2	22	45	200	_	_	_	_
(10) Escheric	hia (E.) co	<i>li</i> bacteria,	organisms	/100 mL			
	See item D	-	-	-	-	-	-	_
	2Bd CS	2Bd MS	2Bd FAV	1B/1C DC	3A/3B IC	4A IR	4B LS	5 AN
) Eutrophic/L; chlorop						oirs (phosp	horus, total
	See part 7050.0222 subparts 3 and 3a	_,	_	_	_	_	_	_
(12	2) Fluoride,	mg/L						
	_	_	_	Δ	_	_	_	_

(13) Fluor	ide, mg/L						
_	_	_	2(S)	_	_	_	_
(14) Foam	ing agents,	μg/L					
_	_	-	500(S)	_	_	_	_
(15) Hardr	ness, Ca+Mg	g as CaCO ₃	, mg/L				
_	_	_	_	50/250	_	_	_
2Bd CS	2Bd MS	2Bd FAV	1B/1C DC	3A/3B IC	4A IR	4B LS	5 AN
(16) Hydro	ogen sulfide	, mg/L					
_	_	_	_	_	_	_	0.02
(17) Nitrat	e as N, mg/	L					
_	-	_	10	_	_	_	_
(18) Nitrit	e as N, mg/l	L					
_	_	_	1	_	_	_	_
(19) Nitrat	e + Nitrite a	as N, mg/L					
_	_	-	10	_	_	_	_
(20) Odor,	TON						
_	_	_	3(S)	_	_	_	_
2Bd CS	2Bd MS	2Bd FAV	1B/1C DC	3A/3B IC	4A IR	4B LS	5 AN
(21) Oil, μ	ug/L						
500	5,000	10,000	_	_	_	_	_
(22) Oxyg	en, dissolve	d, mg/L					

	See part 7050.0222 subpart 3		-	-	-	-	-	_
(23) pH minir	num, su						
	6.5	_	_	6.5(S)	6.5/6.0	6.0	6.0	6.0
(24) pH maxi	mum, su						
	9.0	_	_	8.5(S)	8.5/9.0	8.5	9.0	9.0
(25) Radioact	ive materia	als					
	See item E	_	_	See item E	_	See item E	See item E	_
	2Bd CS	2Bd MS	2Bd FAV	1B/1C DC	3A/3B IC	4A IR	4B LS	5 AN
(26) Salinity,	total, mg/I						
	_	_	_	_	_	_	1,000	_
(27) Sodium,	meq/L						
	_	-	-	-	-	60% of total cations	-	-
(28) Specific (conductan	ce at 25°C,	μmhos/cm				
	_	_	_	_	_	1,000	_	_
(29) Sulfate, 1	mg/L						
	_	_	_	250(S)	_	_	_	_
(30) Sulfates,	wild rice j	present, mg	z/L				
	_	_	_	_	_	10	_	_

2Bd CS	2Bd MS	2Bd FAV	1B/1C DC	3A/3B IC	4A IR	4B LS	5 AN
(31) Temper	ature, °F						
See item F	-	_	_	-	-	-	_
(32) Total di	ssolved sa	lts, mg/L					
_	_	_	_	_	700	_	_
(33) Total di	ssolved so	lids, mg/L					
_	_	_	500(S)	_	_	_	_
(34) Turbidi	ty, NTU						
25	_	_	– NA	_	_	_	_
B. METALS	AND EL	EMENTS					
2Bd CS	2Bd MS	2Bd FAV	1B/1C DC	3A/3B IC	4A IR	4B LS	5 AN
(1) Aluminu	m, total, μ	g/L					
	m, total, μ		50- 200(S)	_	_	_	
	1,072	2,145		_	_	_	_
125	1,072	2,145		_	_	_	
125 (2) Antimon	1,072 y, total, µg 90	2,145 g/L 180	200(S)	-	_	_	
125 (2) Antimon 5.5	1,072 y, total, µg 90	2,145 g/L 180	200(S)	_	_	_	_
125 (2) Antimon 5.5 (3) Arsenic,	1,072 y, total, µg 90 total, µg/L 360	2,145 g/L 180 720	200(S)	_	_	_	_

_	_	_	4.0	_	_	_	_
2Bd CS	2Bd MS	2Bd FAV	1B/1C DC	3A/3B IC	4A IR	4B LS	5 AN
6) Boron, t	total, μg/L						
_	_	_	_	_	500	_	_
7) Cadmiu	m, total, με	g/L					
1.1	33	67	5	_	_	_	_
		THIO/I. AMI	v oce daff	7030.0222	, suopart	5, IUI EXA	mpies at our
exceed 4	lues and ed 00 mg/L.	quations to	-		_		lness value r
ardness va o exceed 4	lues and ed 00 mg/L. um +3, tota	quations to	-		_		_
ardness van exceed 4/8) Chromic 207 Class 2Bd thown are examples at or any hard	lues and ed 00 mg/L. um +3, tota 1,737 trivalent ch for a total	al, μg/L 3,469 aromium st hardness oness values anot to except	calculate car	hardness L only. Se	ndards for the dependent of the dependen	er any hard - at. Chroma 050.0222,	_
ardness van exceed 4/8) Chromic 207 Class 2Bd thown are examples at or any hard	lues and ed 00 mg/L. um +3, tota 1,737 trivalent ch for a total other hard dness value	al, μg/L 3,469 aromium st hardness oness values anot to except	calculate catandards are of 100 mg/ls and equation	hardness L only. Se	ndards for the dependent of the dependen	er any hard - at. Chroma 050.0222,	lness value r - ium +3 valu subpart 3, 1
ardness van exceed 4/8) Chromin 207 Class 2Bd thown are examples at or any hard 9) Chromin 11	lues and ed 00 mg/L. um +3, tota 1,737 trivalent ch for a total other hard dness value um +6, tota	al, μg/L 3,469 aromium st hardness oness values not to exceed, μg/L 32	calculate catandards are of 100 mg/ls and equation	hardness L only. Se	ndards for the dependent of the dependen	er any hard - at. Chroma 050.0222,	lness value r - ium +3 valu subpart 3, 1
ardness van exceed 4/8) Chromin 207 Class 2Bd thown are examples at or any hard 9) Chromin 11	lues and ed 00 mg/L. um +3, tota 1,737 trivalent ch for a total other hard lness value um +6, tota 16	al, μg/L 3,469 aromium st hardness oness values not to exceed, μg/L 32	calculate catandards are of 100 mg/ls and equation	hardness L only. Se	ndards for the dependent of the dependen	er any hard - at. Chroma 050.0222,	lness value r - ium +3 valu subpart 3, 1
ardness van exceed 4/8) Chromin 207 Class 2Bd thown are examples at or any hard 9) Chromin 11	lues and ed 00 mg/L. um +3, tota 1,737 trivalent ch for a total other hard lness value um +6, tota 16	al, μg/L 3,469 aromium st hardness oness values not to excell, μg/L 32	calculate calcul	hardness L only. Se	ndards for the dependent of the dependen	er any hard - at. Chroma 050.0222,	lness value r - ium +3 valu subpart 3, 1

2.8

436

872

(12) Coppe	r, total, με	g/L					
9.8	18	35	1,000 (S)	_	_	-	_

Class 2Bd copper standards are hardness dependent. Copper values shown are for a total hardness of 100 mg/L only. See part 7050.0222, subpart 3, for examples at other hardness values and equations to calculate copper standards for any hardness value not to exceed 400 mg/L.

(13) Iron, to	otal, μg/L						
_	_	_	300(S)	_	_	_	_
(14) Lead,	total, μg/L						
3.2	82	164	NA	_	_	_	_

50(O)

Class 2Bd lead standards are hardness dependent. Lead values shown are for a total hardness of 100 mg/L only. See part 7050.0222, subpart 3, for examples at other hardness values and equations to calculate lead standards for any hardness value not to exceed 400 mg/L.

(15) Manganese, total, µg/L

	_	_	_	50(S)	_	_	_	_
	2Bd CS	2Bd MS	2Bd FAV	1B/1C DC	3A/3B IC	4A IR	4B LS	5 AN
		1716	rav 	DC		IK	LS	AII
(16) Mercury,	, total in w	ater, ng/L					
	6.9	2,400*	4,900*	2,000	_	_	_	_
(17) Mercury,	, total in ed	lible fish tis	ssue, mg/kį	g or parts p	er million		
	0.2	_	_	_	_	_	_	_
(18) Nickel, t	otal, μg/L						
	158	1,418	2,836	_	_	_	_	_

Class 2Bd nickel standards are hardness dependent. Nickel values shown are for a total hardness of 100 mg/L only. See part 7050.0222, subpart 3, for examples at other hardness values and equations to calculate nickel standards for any hardness value not to exceed 400 mg/L.

(19) Seleni	um, total,	μg/L					
5.0	20	40	50	_	_	_	_
(20) Silver	, total, μg/	L					
1.0	2.0	4 1	100(S)	_	_	_	_

Class 2Bd silver MS and FAV are hardness dependent. Silver values shown are for a total hardness of 100 mg/L only. See part 7050.0222, subpart 3, for examples at other hardness values and equations to calculate silver standards for any hardness value not to exceed 400 mg/L.

2Bd CS	2Bd MS	2Bd FAV	1B/1C DC	3A/3B IC	4A IR	4B LS	5 AN	_
(21) Thalliu	m, total, μ	g/L						
0.28	64	128	2	_	_	_	_	
(22) Zinc, to	otal, μg/L							
106	117	234	5,000 (S)	_	_	_	_	

Class 2Bd zinc standards are hardness dependent. Zinc values shown are for a total hardness of 100 mg/L only. See part 7050.0222, subpart 3, for examples at other hardness values and equations to calculate zinc standards for any hardness value not to exceed 400 mg/L.

C. ORGANIC POLLUTANTS OR CHARACTERISTICS

2Bd CS	2Bd MS	2Bd FAV	1B/1C DC	3A/3B ICIC	4A IR	4B LS	5 AN	
(1) Acena	aphthene, μg/	/L						_
20	56	112	_	_	_	_	_	
(2) Aceto	chlor, μg/L							
3.6	86	173	_	_	_	_	_	

	0.38	1,140*	2,281*	_	_	_	_	_
(4)	Alachlor		, -					
(1)	4.2	800*	1,600*	2	_	_	_	_
(5)			1,000	<i>_</i>				
(3)	Aldicarb,	μg/L						
	_	_	_	3	_	_	_	_
	2Bd CS	2Bd MS	2Bd FAV	1B/1C DC	3A/3B ICIC	4A IR	4B LS	5 AN
(6)	Aldicarb	sulfone, μ	g/L					
	_	_	_	2	_	_	_	_
(7)	Aldicarb	sulfoxide,	μg/L					
	_	_	_	4	_	_	_	_
(8)	Anthrace	ne, μg/L						
	0.035	0.32	0.63	_	_	_	_	_
(9)	Atrazine	(c), μg/L						
	3.4	323	645	3	_	_	_	_
(10) Benzene	e (c), μg/L						
	6.0	4,487*	8,974*	5	_	_	_	_
	2Bd CS	2Bd MS	2Bd FAV	1B/1C DC	3A/3B ICIC	4A IR	4B LS	5 AN
(11) Benzo(a)pyrene, μ	g/L					
	_	_	_	0.2	_	_	_	-

41	2,900	5,800	See subitem (73)	_	_	_	_
(13) Carbofu	ran, μg/L						
_	_	_	40	_	_	_	_
(14) Carbon	tetrachloric	le (c), μg/L	,				
1.9	1,750*	3,500*	5	_	_	_	_
(15) Chlorda	ne (c), ng/I						
0.29	1,200*	2,400*	2,000	_	_	_	_
2Bd CS	2Bd MS	2Bd FAV	1B/1C DC	3A/3B ICIC	4A IR	4B LS	5 AN
(16) Chlorob	enzene, μg	/L (Monoc	hlorobenze	ene)			· · · · · · · · · · · · · · · · · · ·
20	423	846	100	_	_	_	_
(17) Chlorofe	orm (c), µg	/L					
53	1,392	2,784	See subitem (73)	_	-	_	-
(18) Chlorpy	rifos, μg/L						
0.041	0.083	0.17	_	_	_	_	_
(19) Dalapon	n, μg/L						
_	_	_	200	_	_	_	_
(20) DDT (c)), ng/L						
1.7	550*	1,100*	-	_	_	_	-
2Bd CS	2Bd MS	2Bd FAV	1B/1C DC	3A/3B ICIC	4A IR	4B LS	5 AN

(21	1,2-Dibr	romo-3-chlo	oropropane	e (c), μg/L				
	_	_	_	0.2	_	_	_	_
(22	2) Dichloro	obenzene (d	ortho), μg/I	- -				
	_	_	_	600	_	_	_	_
(23	3) 1,4-Dich	nlorobenzer	ne (para) (c	e), µg/L				
	_	_	_	75	_	_	_	_
(24	1) 1,2-Dich	nloroethane	e (c), μg/L					
	3.8	45,050*	90,100*	5	_	_	_	_
(25	5) 1,1-Dich	nloroethyle	ne, μg/L					
	_	_	_	7	_	_	_	_
	2Bd	2Bd	2Bd	1B/1C	3A/3B	4A	4B	5
	CS	MS	FAV	DC	ICIC	IR	LS	AN
(26		MS aloroethyle			ICIC	IR 	LS	AN
(26					ICIC	IR -	LS	AN
	——————————————————————————————————————		ne (cis), μ <u>ε</u>	z/L 70	ICIC -	IR _	LS -	AN
	——————————————————————————————————————	nloroethyle	ne (cis), μ <u>ε</u>	z/L 70	ICIC	- -	LS -	AN
(27		nloroethyle	ne (cis), µg - ne (trans), -	g/L 70 μg/L 100	_	- -		AN -
(27		nloroethylen - nloroethylen -	ne (cis), µg - ne (trans), -	g/L 70 μg/L 100	_	IR		AN
(28		nloroethylen - nloroethylen -	ne (cis), µg - ne (trans), - xyacetic ac	g/L 70 μg/L 100 sid (2,4-D),	_	IR		AN
(28		nloroethylen nloroethylen nloropheno	ne (cis), µg - ne (trans), - xyacetic ac	g/L 70 μg/L 100 sid (2,4-D),	_	IR		AN
(28)		aloroethyles - aloroethyles - alorophenos - aloropropar -	ne (cis), µg - ne (trans), - xyacetic ac	g/L 70 μg/L 100 sid (2,4-D), 70	_	IR		AN

2Bd CS	2Bd MS	2Bd FAV	1B/1C DC	3A/3B ICIC	4A IR	4B LS	5 AN				
(31) Di-2-et	(31) Di-2-ethylhexyl adipate, μg/L										
_	_	_	400	_	_	_	_				
(32) Di-2-et	(32) Di-2-ethylhexyl phthalate (c), μ g/L										
1.9	_*	_*	6	_	_	_	_				
(33) Di-n-O	octyl phthal	ate, μg/L									
30	825	1,650	_	_	_	_	_				
(34) Dinose	eb, μg/L										
_	-	_	7	_	_	_	_				
(35) Diquat	, μg/L										
_	_	_	20	_	_	_	_				
2Bd CS	2Bd MS	2Bd FAV	1B/1C DC	3A/3B ICIC	4A IR	4B LS	5 AN				
(36) Endosu	ılfan, μg/L							-			
0.029	0.28	0.56	_	_	_	_	_				
(37) Endoth	nall, μg/L										
_	-	_	100	_	_	_	_				
(38) Endrin	, μg/L										
0.016	0.090	0.18	2	_	_	_	_				
(39) Ethylb	enzene (c),	$\mu \text{g}/L$									
68	1,859	3,717	700	_	_	_	_				
(40) Ethyler	ne dibromi	de, μg/L									

_	_	_	0.05	_	_	_	_
2Bd CS	2Bd MS	2Bd FAV	1B/1C DC	3A/3B ICIC	4A IR	4B LS	5 AN
(41) Fluora	nthene, µg	/L					
1.9	3.5	6.9	_	_	_	_	_
(42) Glypho	osate, μg/L	ı					
_	_	_	700	_	_	_	_
(43) Haloac Monochlor	,				moacetic	acid, Dichl	oroacetic acid
_	_	_	60	_	_	_	_
(44) Heptac	chlor (c), n	g/L					
0.39	260*	520*	400	_	_	_	_
(45) Heptac	chlor epoxi	de (c), ng/l	- 				
0.48	270*	530*	200	_	_	_	_
2Bd CS	2Bd MS	2Bd FAV	1B/1C DC	3A/3B ICIC	4A IR	4B LS	5 AN
(46) Hexac	hlorobenze	ene (c), ng/l	L				
0.24	_*	_*	1,000	_	_	_	_
(47) Hexac	hlorocyclo	pentadiene,	μg/L				
_	_	_	50	_	_	_	_
(48) Lindar	ne (c), μg/L	(Hexachlo	orocyclohex	ane, gamm	a-)		
0.032	4.4*	8.8*	0.2	_	_	_	_
(49) Metho	xychlor, με	g/L					

	_	_	_	40	_	_	_	_			
(50	(50) Methylene chloride (c), μg/L (Dichloromethane)										
	46	13,875*	27,749*	5	_	_	_	_			
	2Bd CS	2Bd MS	2Bd FAV	1B/1C DC	3A/3B ICIC	4A IR	4B LS	5 AN			
(5]	l) Metolacl	hlor									
	23	271	543	_	_	_	_	_			
(52	2) Naphtha	lene, μg/L									
	81	409	818	_	_	_	_	_			
(53	3) Oxamyl,	μg/L (Vyd	late)								
	_	_	_	200	_	_	_	_			
(54	4) Parathion	n, μg/L									
	0.013	0.07	0.13	_	_	_	_	_			
(55	5) Pentachl	orophenol,	$\mu g/L$								
	1.9	15	30	1	_	_	_	_			

Class 2Bd MS and FAV are pH dependent. Pentachlorophenol values shown are for a pH of 7.5 only. See part 7050.0222, subpart 3, for examples at other pH values and equations to calculate pentachlorophenol standards for any pH value.

2Bd CS	2Bd MS	2Bd FAV	1B/1C DC	3A/3B ICIC	4A IR	4B LS	5 AN	
(56) Phenar	nthrene, µg	/L						
3.6	32	64	_	_	_	_	_	
(57) Phenol, μg/L								
123	2,214	4,428	_	_	_	_	_	

(58) Piclora	am, μg/L							
_	_	_	500	_	_	_	_	
(59) Polych	lorinated bi	phenyls (c)	, ng/L (PC	Bs, total)				
0.029	1,000*	2,000*	500	_	_	_	_	
(60) Simazi	ine, μg/L							
_	_	_	4	_	_	_	_	
2Bd CS	2Bd MS	2Bd FAV	1B/1C DC	3A/3B ICIC	4A IR	4B LS	5 AN	
(61) Styren	e (c), μg/L							
_	_	_	100	_	_	_	_	
(62) 2,3,7,8	-Tetrachloro	odibenzo-p	-dioxin, ng	/L (TCDD	-dioxin)			
_	_	_	0.03	_	_	_	_	
(63) 1,1,2,2	-Tetrachloro	bethane (c)	, μg/L					
1.5	1,127*	2,253*	_	_	_	_	_	
(64) Tetracl	hloroethyler	ne (c), μg/L	ı					
3.8	428*	857*	5	_	_	_	_	
(65) Toluen	ne, μg/L							
253	1,352	2,703	1,000	_	_	_	_	
2Bd CS	2Bd MS	2Bd FAV	1B/1C DC	3A/3B ICIC	4A IR	4B LS	5 AN	
(66) Toxapl	hene (c), ng	/L						
1.3	730*	1,500*	3,000	_	_	_	_	
(67) 2,4,5-7	ΓΡ, μg/L (Si	lvex)						

	_	_	_	50	_	_	_	_
(68) 1,2,4-Trio	chlorobenz	ene, μg/L					
	_	_	_	70	_	_	_	_
(69) 1,1,1 - Trio	chloroethar	ne, μg/L					
	329	2,957	5,913	200	_	_	_	_
(70) 1,1,2-Trio	chloroethar	ne, μg/L					
	_	_	_	5	_	_	_	_
	2Bd CS	2Bd MS	2Bd FAV	1B/1C DC	3A/3B ICIC	4A IR	4B LS	5 AN
(71	1,1,2-Trio	chloroethyl	ene (c), μg	/L			-	
	25	6,988*	13,976*	5	_	_	_	_
(72) 2,4,6-Trio	chlorophen	ol, μg/L					
	2.0	102	203	_	_	_	_	_
(73) Chl			total ((Bromoo	dichlorome	thane, F	Bromoform,
	_	_	_	80	_	_	_	_
(74) Vinyl chl	oride (c), µ	ug/L					
	0.18	_*	_*	2	_	_	_	_
(75) Xylenes,	total, μg/L	,					
	166	1,407	2,814	10,000	_	_	_	_

D. *Escherichia (E.) coli* bacteria shall not exceed 126 organisms per 100 milliliters as a geometric mean of not less than five samples representative of conditions within any calendar month, nor shall more than ten percent of all samples taken during any calendar month individually exceed 1,260 organisms per 100 milliliters. The standard applies only between April 1 and October 31.

- E. For radioactive materials, see parts 7050.0221, subpart 3; 7050.0222, subpart 3; and 7050.0224, subparts 2 and 3.
- F. Temperature must not exceed five degrees Fahrenheit above natural in streams and three degrees Fahrenheit above natural in lakes, based on monthly average of maximum daily temperature, except in no case shall it exceed the daily average temperature of 86 degrees Fahrenheit.

Subp. 5. [Repealed, 24 SR 1105]

Subp. 5a. Cool and warm water sport fish and associated use classes. Water quality standards applicable to use Classes 2B, 2C, or 2D; 3A, 3B, or 3C; 4A and 4B; and 5 surface waters. See parts 7050.0223, subpart 5; 7050.0224, subpart 4; and 7050.0225, subpart 2, for Class 3D, 4C, and 5 standards applicable to wetlands, respectively.

A. MISCELLANEOUS SUBSTANCE, CHARACTERISTIC, OR POLLUTANT

B,C&D CS	2B,C&D MS	2B,C&D FAV	3A/3B/3C IC	4A IR	4B LS	5 AN
mmonia,	un-ionized	as N, μg/L				
0	_	_	_	_	_	_
carbonate	es (HCO ₃),	meq/L				
	_	_	_	5	_	_
nloride, m	ng/L					
30	860	1,720	50/100/250	_	_	_
nlorine, to	otal residual	l, μg/L				
1	19	38	_	_	_	_
yanide, fr	ee, μg/L					
.2	22	45	_	_	_	_
B,C&D	2B,C&D MS	2B,C&D FAV	3A/3B/3C IC	4A IR	4B LS	5 AN
	mmonia, no carbonate no carbonate no no carbonate no no carbonate no no carbonate n	mmonia, un-ionized o – carbonates (HCO ₃), – nloride, mg/L 30 860 nlorine, total residual 1 19 vanide, free, µg/L .2 22 B,C&D 2B,C&D	mmonia, un-ionized as N, μg/L 0 – – carbonates (HCO ₃), meq/L – – hloride, mg/L 30 860 1,720 hlorine, total residual, μg/L 1 19 38 vanide, free, μg/L 2 22 45 B,C&D 2B,C&D 2B,C&D	MS FAV IC mmonia, un-ionized as N, μg/L 0 – – – carbonates (HCO ₃), meq/L – – nloride, mg/L 30 860 1,720 50/100/250 nlorine, total residual, μg/L 1 19 38 – vanide, free, μg/L 2 22 45 – B,C&D 2B,C&D 2B,C&D 3A/3B/3C	MS FAV IC IR mmonia, un-ionized as N, μg/L 0	mmonia, un-ionized as N, μg/L 0

⁽⁶⁾ Escherichia (E.) coli bacteria, organisms/100 mL

See item D	-	-	-	-	-	_
· ·			es, shallow lakes, oth transparency,		voirs (phosp	ohorus, total,
See part 7050.0222, subparts 4, 4a, and 5	-	-	_	_	_	_
(8) Hardness, (Ca+Mg as (CaCO ₃ , mg/	L			
_	_	_	50/250/500	_	_	_
(9) Hydrogen s	sulfide, mg/	L				
_	_	_	_	_	_	0.02
(10) Oil, μg/L						
500	5,000	10,000	_	_	_	-
2B,C&D CS	2B,C&D MS	2B,C&D FAV	3A/3B/3C IC	4A IR	4B LS	5 AN
(11) Oxygen, d	lissolved, m	ng/L				
See part 7050.0222, subparts 4 to 6	_	_	_	_	_	_
(12) pH minim	ium, su					
6.5 See item E	-	-	6.5/6.0/6.0	6.0	6.0	6.0
(13) pH maxin	num, su					

	9.0 See item E	_	_	8.5/9.0/9.0	8.5	9.0	9.0
(14)	Radioactiv	e materials					
	See item F	-	-	_	See item F	See item F	-
(15)	Salinity, to	otal, mg/L					
	_	_	_	_	_	1,000	_
	2B,C&D CS	2B,C&D MS	2B,C&D FAV	3A/3B/3C IC	4A IR	4B LS	5 AN
(16)	Sodium, n	neq/L					
	_	_	_	_	60% of total cations	_	_
(17)	Specific co	onductance	at 25°C, μ 1	mhos/cm			
	_	_	_	_	1,000	_	_
(18)	Sulfates, w	vild rice pre	esent, mg/L				
	_	_	_	_	10	_	_
(19)	Temperatu	ıre, °F					
	See item G	-	-	_	_	_	-
(20)	Total disso	olved salts,	mg/L				
	_	_	_	_	700	_	_
(21)	Turbidity,	NTU					
	25	_	_	_	_	_	_

	2B,C&D CS	2B,C&D MS	2B,C&D FAV	3A/3B/3C IC	4A IR	4B LS	5 AN
(1)	Aluminum,	total, μg/L					
	125	1,072	2,145	_	_	_	_
(2)	Antimony,	total, μg/L					
	31	90	180	_	_	_	_
(3)	Arsenic, tot	tal, µg/L					
	53	360	720	_	-	-	-
(4) I	Boron, tota	l, μg/L					
	_	_	_	_	500	_	_
(5)	Cadmium, 1	total, µg/L					
	1.1	33	67	_	_	_	_

Class 2B, 2C, and 2D cadmium standards are hardness dependent. Cadmium values shown are for a total hardness of 100 mg/L only. See part 7050.0222, subpart 4, for examples at other hardness values and equations to calculate cadmium standards for any hardness value not to exceed 400 mg/L.

2B,C&D CS	2B,C&D MS	2B,C&D FAV	3A/3B/3C IC	4A IR	4B LS	5 AN	
(6) Chromium	+3, total, μ	g/L					
207	1,737	3,469	_	_	_	_	

Class 2B, 2C, and 2D trivalent chromium standards are hardness dependent. Chromium ± 3 values shown are for a total hardness of ± 100 mg/L only. See part ± 7050.0222 , subpart 4, for examples at other hardness values and equations to calculate trivalent chromium standards for any hardness value not to exceed ± 400 mg/L.

(7) Chromi	um +6, tota	l, μg/L				
11	16	32	_	_	_	_

(9) Copper, total, μg/L 9.8 18 35 – – – –

Class 2B, 2C, and 2D copper standards are hardness dependent. Copper values shown are for a total hardness of 100 mg/L only. See part 7050.0222, subpart 4, for examples at other hardness values and equations to calculate copper standards for any hardness value not to exceed 400 mg/L.

(10) Lead, total, μg/L

3.2 82 164 - - - -

Class 2B, 2C, and 2D lead standards are hardness dependent. Lead values shown are for a total hardness of 100 mg/L only. See part 7050.0222, subpart 4, for examples at other hardness values and equations to calculate lead standards for any hardness value not to exceed 400 mg/L.

2B.C&D 2B,C&D 2B,C&D 3A/3B/3C **4A 4B** 5 MS **FAV** AN CS IC IR LS (11) Mercury, total in water, ng/L 2,400* 6.9 4,900* (12) Mercury, total in edible fish tissue, mg/kg or parts per million 0.2 (13) Nickel, total, μg/L

158 1,418 2,836 - - - -

Class 2B, 2C, and 2D nickel standards are hardness dependent. Nickel values shown are for a total hardness of 100 mg/L only. See part 7050.0222, subpart 4, for examples at other hardness values and equations to calculate nickel standards for any hardness value not to exceed 400 mg/L.

(14) Selenium, total, μg/L

5.0 20 40 - - - -

(15) Silver,	total, µg/L					
1.0	2.0	4.1	_	_	_	_

Class 2B, 2C, and 2D silver MS and FAV are hardness dependent. Silver values shown are for a total hardness of 100 mg/L only. See part 7050.0222, subpart 4, for examples at other hardness values and equations to calculate silver standards for any hardness value not to exceed 400 mg/L.

	2B,C&D CS	2B,C&D MS	2B,C&D FAV	3A/3B/3C IC	4A IR	4B LS	5 AN
(16)	Thallium,	total, μg/L					
	0.56	64	128	_	_	_	_
(17)	Zinc, total	l, μg/L					
	106	117	234	_	_	_	_

Class 2B, 2C, and 2D zinc standards are hardness dependent. Zinc values shown are for a total hardness of 100 mg/L only. See part 7050.0222, subpart 4, for examples at other hardness values and equations to calculate zinc standards for any hardness value not to exceed 400 mg/L.

C. ORGANIC POLLUTANTS OR CHARACTERISTICS

	2B,C&D CS	2B,C&D MS	2B,C&D FAV	3A/3B/3C IC	4A IR	4B LS	5 AN		
(1)	Acenaphthe	ene, μg/L							
	20	56	112	_	-	_	_		
(2)	Acetochlor,	, μg/L							
	3.6	86	173	_	_	_	_		
(3)	(3) Acrylonitrile (c), μg/L								
	0.89	1,140*	2,281*	_	-	_	_		
(4)	(4) Alachlor (c), μg/L								

	59	800	1,600	_	_	_	_
(5)	Anthracene	e, μg/L					
	0.035	0.32	0.63	_	_	_	_
	2B,C&D CS	2B,C&D MS	2B,C&D FAV	3A/3B/3C IC	4A IR	4B LS	5 AN
(6)	Atrazine (c), μg/L					
	10	323	645	_	_	_	_
(7)	Benzene (c), μg/L					
	98	4,487	8,974	_	_	_	_
(8)	Bromoform	n, μg/L					
	466	2,900	5,800	_	_	_	_
(9)	Carbon tetr	achloride (d	e), µg/L				
	5.9	1,750*	3,500*	_	_	_	_
(10)) Chlordane	e (c), ng/L					
	0.29	1,200*	2,400*	_	_	_	_
	2B,C&D CS	2B,C&D MS	2B,C&D FAV	3A/3B/3C IC	4A IR	4B LS	5 AN
(11)	Chlorober	zene, μg/L	(Monochlo	robenzene)			
	20	423	846	_	_	_	_
(12)) Chlorofor	m (c), μg/L					
	155	1,392	2,78	_	_	_	_
(13)) Chlorpyri	fos, μg/L					
	0.041	0.083	0.17	_	_	_	_

(14)	DDT (c),	ng/L					
	1.7	550*	1,100*	_	_	_	_
(15)	1,2-Dichlo	oroethane (e), µg/L				
	190	45,050*	90,100*	_	_	_	_
	2B,C&D CS	2B,C&D MS	2B,C&D FAV	3A/3B/3C IC	4A IR	4B LS	5 AN
(16)	Dieldrin (c), ng/L					
	0.026	1,300*	2,500*	_	_	_	_
(17)	Di-2-ethy	lhexyl phth	alate (c), με	g/L			
	2.1	_*	_*	_	_	_	_
(18)	Di-n-Octy	l phthalate,	μg/L				
	30	825	1,650	_	_	_	_
(19)	Endosulfa	ın, μg/L					
	0.031	0.28	0.56	_	_	_	_
(20)	Endrin, με	g/L					
	0.016	0.090	0.18	_	_	_	_
	2B,C&D CS	2B,C&D MS	2B,C&D FAV	3A/3B/3C IC	4A IR	4B LS	5 AN
(21)	Ethylbenz	zene (c), μg	/L				
	68	1,859	3,717	_	_	_	_
(22)	Fluoranth	ene, μg/L					
	1.9	3.5	6.9	_	_	_	_
(23)	Heptachlo	or (c), ng/L					

	0.39	260*	520*	_	_	_	_
(24)	Heptachlo	r epoxide (c), ng/L				
	0.48	270*	530*	_	_	_	_
(25)	Hexachlor	robenzene (c), ng/L				
	0.24	_*	_*	_	_	_	_
	2B,C&D CS	2B,C&D MS	2B,C&D FAV	3A/3B/3C IC	4A IR	4B LS	5 AN
(26)	Lindane (d	c), μg/L (He	exachlorocy	clohexane, gam	ma-)		
	0.036	4.4*	8.8*	_	_	_	_
(27)	Methylene	e chloride (d	c), µg/L (Di	chloromethane)			
	1,940	13,875	27,749	_	_	_	_
(28)	Metolachl	or					
	23	271	543	_	-	-	_
(29)	Naphthale	ne, μg/L					
	81	409	818	_	_	_	_
(30)	Parathion,	μg/L					
	0.013	0.07	0.13	_	_	_	_
	2B,C&D CS	2B,C&D MS	2B,C&D FAV	3A/3B/3C IC	4A IR	4B LS	5 AN
(31)	Pentachlor	rophenol, μ	g/L				
	5.5	15	30	_	_	_	_

Class 2B, 2C, and 2D standards are pH dependent, except that the CS will not exceed $5.5\,\mu g/L$. Pentachlorophenol values shown are for a pH of $7.5\,o$ nly. See part 7050.0222, subpart

4, for examples at other pH values and equations to calculate pentachlorophenol standards

120	6,988	13,976	_	_	_	_
	(000	12 076				
1,1,2-Tricl	hloroethylei	ne (c), μg/L	,			
329	2,957	5,913	_	_	-	_
1,1,1-Tricl	hloroethane	, μg/L				
1.3	730*	1,500*	_	-	-	_
Toxaphene	e (c), ng/L					
253	1,352	2,703	_	-	-	_
Toluene, μ	ıg/L					
8.9	428	857	_	-	-	_
Tetrachlor	oethylene (c), µg/L				
2B,C&D CS	2B,C&D MS	2B,C&D FAV	3A/3B/3C IC	4A IR	4B LS	5 AN
			_	_	_	_
			/L			
		•	— /т	_	_	_
-	_		g/L (PCBs, total)			
			- r/L (DCDa_tata1)	_	_	_
		4 429				
		64	_	_	_	_
• •						
	Phenanthr 3.6 Phenol, μg 123 Polychlori 0.029 1,1,2,2-Te 13 2B,C&D CS Tetrachlor 8.9 Toluene, μ 253 Toxaphene 1.3 1,1,1-Tricl 329	Phenol, μg/L 123 2,214 Polychlorinated bipher 0.029 1,000* 1,1,2,2-Tetrachloroeth 13 1,127 2B,C&D 2B,C&D CS MS Tetrachloroethylene (8.9 428 Toluene, μg/L 253 1,352 Toxaphene (c), ng/L 1.3 730* 1,1,1-Trichloroethane 329 2,957	Phenanthrene, μg/L 3.6 32 64 Phenol, μg/L 123 2,214 4,428 Polychlorinated biphenyls (c), ng 0.029 1,000* 2,000* 1,1,2,2-Tetrachloroethane (c), μg 13 1,127 2,253 2B,C&D 2B,C&D 2B,C&D CS MS FAV Tetrachloroethylene (c), μg/L 8.9 428 857 Toluene, μg/L 253 1,352 2,703 Toxaphene (c), ng/L 1.3 730* 1,500* 1,1,1-Trichloroethane, μg/L 329 2,957 5,913	Phenanthrene, μg/L 3.6 32 64 - Phenol, μg/L 123 2,214 4,428 - Polychlorinated biphenyls (c), ng/L (PCBs, total) 0.029 1,000* 2,000* - 1,1,2,2-Tetrachloroethane (c), μg/L 13 1,127 2,253 - 2B,C&D 2B,C&D 2B,C&D 3A/3B/3C CS MS FAV IC Tetrachloroethylene (c), μg/L 8.9 428 857 - Toluene, μg/L 253 1,352 2,703 - Toxaphene (c), ng/L 1.3 730* 1,500* - 1,1,1-Trichloroethane, μg/L	Phenanthrene, μg/L 3.6 32 64 Phenol, μg/L 123 2,214 4,428 Polychlorinated biphenyls (c), ng/L (PCBs, total) 0.029 1,000* 2,000* 1,1,2,2-Tetrachloroethane (c), μg/L 13 1,127 2,253 2B,C&D 2B,C&D 2B,C&D 3A/3B/3C 4A CS MS FAV IC IR Tetrachloroethylene (c), μg/L 8.9 428 857 Toluene, μg/L 253 1,352 2,703 Toxaphene (c), ng/L 1.3 730* 1,500* 1,1,1-Trichloroethane, μg/L 329 2,957 5,913	Phenanthrene, μg/L 3.6

(41) 2,	4,6-Trichl	lorophenol,	μg/L			
2.0	0	102	203	_	_	
(42) Vi	inyl chlor	ide (c), μg/	L			
9.2	2 -	_*	_*	_	_	
(43) X	ylenes, to	tal, μg/L				
16	56	1 407	2 814	_	_	

- D. *Escherichia (E.) coli* bacteria shall not exceed 126 organisms per 100 milliliters as a geometric mean of not less than five samples representative of conditions within any calendar month, nor shall more than ten percent of all samples taken during any calendar month individually exceed 1,260 organisms per 100 milliliters. The standard applies only between April 1 and October 31.
 - E. For pH, maintain background. See part 7050.0222, subpart 6.
- F. For radioactive materials, see parts 7050.0222, subpart 4; and 7050.0224, subparts 2 and 3.
 - G. Temperature must not exceed:
- (1) Class 2B standard: five degrees Fahrenheit above natural in streams and three degrees Fahrenheit above natural in lakes, based on monthly average of maximum daily temperature, except in no case shall it exceed the daily average temperature of 86 degrees Fahrenheit;
- (2) Class 2C standard: five degrees Fahrenheit above natural in streams and three degrees Fahrenheit above natural in lakes, based on monthly average of maximum daily temperature, except in no case shall it exceed the daily average temperature of 90 degrees Fahrenheit; and
- (3) Class 2D standard: maintain background as defined in part 7050.0222, subpart 6.
 - Subp. 6. [Repealed, 24 SR 1105]
 - Subp. 6a. Limited resource value waters and associated use classes.

A. WATER QUALITY STANDARDS APPLICABLE TO USE CLASSES 3C, 4A, 4B, 5, AND 7 SURFACE WATERS

7 LIMITED RESOURCE VALUE	IC	4A IR	4B LS	5 AN	
(1) Bicarbonates (HCO ₃), meq/L				
_	_	5	_	_	
(2) Boron, μg/L					
_	_	500	_	_	
(3) Chloride, mg/L					
_	250	_	_	_	
(4) Escherichia (E.) coli	bacteria, or	ganisms/100 mI	J		
See item C	_	_	_	_	
(5) Hardness, Ca+Mg as	s CaCO ₃ , mg	g/L			
_	500	_	_	-	
7 LIMITED RESOURCE VALUE	3C IC	4A IR	4B LS	5 AN	
(6) Hydrogen sulfide, m	g/L				
_	_	-	_	0.02	
(7) Oxygen, dissolved, 1	mg/L				
See item C	_	_	_	_	
(8) pH minimum, su					
6.0	6.0	6.0	6.0	6.0	
(9) pH maximum, su					

B. *Escherichia (E.) coli* bacteria shall not exceed 630 organisms per 100 milliliters as a geometric mean of not less than five samples representative of conditions within any calendar month, nor shall more than ten percent of all samples taken during any calendar month individually exceed 1,260 organisms per 100 milliliters. The standard applies only between May 1 and October 31.

- C. The level of dissolved oxygen shall be maintained at concentrations that will avoid odors or putrid conditions in the receiving water or at concentrations at not less than one milligram per liter (daily average) provided that measurable concentrations are present at all times.
 - D. For radioactive materials, see part 7050.0224, subparts 2 and 3.
- E. Toxic pollutants shall not be allowed in such quantities or concentrations that will impair the specified uses.

Subp. 7. Site-specific modifications of standards.

- A. The standards in this part and in parts 7050.0221 to 7050.0227 are subject to review and modification as applied to a specific surface water body, reach, or segment. If site-specific information is available that shows that a site-specific modification is more appropriate than the statewide or ecoregion standard for a particular water body, reach, or segment, the site-specific information shall be applied.
- B. The information supporting a site-specific modification can be provided by the commissioner or by any person outside the agency. The commissioner shall evaluate all relevant data in support of a modified standard and determine whether a change in the standard for a specific water body or reach is justified.
- C. Any effluent limit determined to be necessary based on a modified standard shall only be required after the discharger has been given notice of the specific proposed effluent limits and an opportunity to request a hearing as provided in part 7000.1800.

Statutory Authority: MS s 115.03; 115.44

History: 9 SR 913; 12 SR 1810; 15 SR 1057; 18 SR 2195; 24 SR 1105; 24 SR 1133; 32 SR 1699

Published Electronically: July 23, 2013