CHAPTER 7011
MINNESOTA POLLUTION CONTROL AGENCY
STANDARDS FOR STATIONARY SOURCES

GENERALLY

7011.0010 APPLICABILITY OF STANDARDS OF PERFORMANCE.
7011.0020 CIRCUMVENTION.
7011.0050 GENERAL PROVISIONS OF FEDERAL STANDARDS INCORPORATED BY REFERENCE.

CONTROL EQUIPMENT

7011.0060 DEFINITIONS.
7011.0061 INCORPORATION BY REFERENCE.
7011.0065 APPLICABILITY.
7011.0070 LISTED CONTROL EQUIPMENT AND CONTROL EQUIPMENT EFFICIENCIES.
7011.0072 REQUIREMENTS FOR CERTIFIED HOODS.
7011.0075 LISTED CONTROL EQUIPMENT GENERAL REQUIREMENTS.
7011.0080 MONITORING AND RECORD KEEPING FOR LISTED CONTROL EQUIPMENT.

EMISSION STANDARDS FOR VISIBLE AIR CONTAMINANTS

7011.0100 SCOPE.
7011.0105 VISIBLE EMISSIONS; RESTRICTIONS FOR EXISTING FACILITIES.
7011.0110 VISIBLE EMISSIONS; RESTRICTIONS FOR NEW FACILITIES.
7011.0115 PERFORMANCE TESTS.
7011.0120 ADJUSTING OPACITY STANDARD.

CONTROLLING FUGITIVE PARTICULATE MATTER

7011.0150 PREVENTING PARTICULATE MATTER FROM BECOMING AIRBORNE.

INDIRECT HEATING FOSSIL-FUEL-BURNING EQUIPMENT

7011.0500 DEFINITIONS.
7011.0505 DETERMINING APPLICABLE STANDARDS OF PERFORMANCE.
7011.0510 STANDARDS OF PERFORMANCE FOR EXISTING INDIRECT HEATING EQUIPMENT.
7011.0515 STANDARDS OF PERFORMANCE FOR NEW INDIRECT HEATING EQUIPMENT.
7011.0520 ALLOWANCE FOR STACK HEIGHT FOR INDIRECT HEATING EQUIPMENT.
7011.0525 HIGH HEATING VALUE.
7011.0530 PERFORMANCE TEST METHODS.
7011.0535 PERFORMANCE TEST PROCEDURES.
7011.0540 DERATE.
7011.0545 TABLE I: EXISTING INDIRECT HEATING EQUIPMENT.
7011.0550 TABLE II: NEW INDIRECT HEATING EQUIPMENT.
RECORD KEEPING AND REPORTING FOR INDIRECT HEATING UNITS COMBUSTING SOLID WASTE.

INCORPORATION BY REFERENCE; NITROGEN OXIDES EMISSION REDUCTION REQUIREMENTS FOR AFFECTED SOURCES.

FOSSIL-FUEL-FIRED STEAM GENERATORS

INCORPORATION BY REFERENCE; NEW SOURCE PERFORMANCE STANDARDS; FOSSIL-FUEL-FIRED STEAM GENERATORS.

ELECTRIC UTILITY STEAM GENERATING UNITS

INCORPORATION BY REFERENCE; NEW SOURCE PERFORMANCE STANDARDS; ELECTRIC UTILITY STEAM GENERATING UNITS.

CONTROL OF MERCURY FROM ELECTRIC GENERATING UNITS.

INCORPORATION BY REFERENCE; NEW SOURCE PERFORMANCE STANDARDS; GREENHOUSE GAS EMISSIONS FOR ELECTRIC GENERATING UNITS.

INCORPORATION BY REFERENCE; EMISSION STANDARDS; COAL- AND OIL-FIRED ELECTRIC UTILITY STEAM GENERATORS.

INDUSTRIAL-COMMERCIAL-INSTITUTIONAL STEAM GENERATING UNITS

INCORPORATION BY REFERENCE; NEW SOURCE PERFORMANCE STANDARDS; STEAM GENERATING UNITS.

SMALL INDUSTRIAL-COMMERCIAL-INSTITUTIONAL STEAM GENERATING UNITS

INCORPORATION BY REFERENCE; NEW SOURCE PERFORMANCE STANDARDS; SMALL STEAM GENERATING UNITS.

DIRECT HEATING FOSSIL-FUEL-BURNING EQUIPMENT

DEFINITIONS.

DETERMINING APPLICABLE STANDARDS OF PERFORMANCE.

PERFORMANCE STANDARDS; FOSSIL-FUEL-BURNING DIRECT HEATING EQUIPMENT.

PERFORMANCE TEST METHODS.

PERFORMANCE TEST PROCEDURES.

RECORD KEEPING AND REPORTING FOR DIRECT HEATING UNITS COMBUSTING SOLID WASTE.

INDUSTRIAL PROCESS EQUIPMENT

DEFINITIONS.

SCOPE.

PERFORMANCE STANDARDS; PRE-1969 INDUSTRIAL PROCESS EQUIPMENT.

STANDARDS OF PERFORMANCE FOR POST-1969 INDUSTRIAL PROCESS EQUIPMENT.

PERFORMANCE TEST METHODS.

TABLE 1.

TABLE 2.
PORTLAND CEMENT PLANTS

7011.0830 INCORPORATION BY REFERENCE; NEW SOURCE PERFORMANCE STANDARDS; PORTLAND CEMENT PLANTS.

CONCRETE MANUFACTURING PLANT STANDARDS OF PERFORMANCE

7011.0850 DEFINITIONS.
7011.0852 STANDARDS OF PERFORMANCE FOR CONCRETE MANUFACTURING PLANTS.
7011.0854 CONCRETE MANUFACTURING PLANT CONTROL EQUIPMENT REQUIREMENTS.
7011.0857 PREVENTING PARTICULATE MATTER FROM BECOMING AIRBORNE.
7011.0858 NOISE.
7011.0859 SHUTDOWN AND BREAKDOWN PROCEDURES.

GASOLINE SERVICE STATIONS

7011.0865 INCORPORATIONS BY REFERENCE; DOCUMENTS.
7011.0870 STAGE-ONE VAPOR RECOVERY.

HOT MIX ASPHALT PLANTS

7011.0900 DEFINITIONS.
7011.0903 COMPLIANCE WITH AMBIENT AIR QUALITY STANDARDS.
7011.0905 STANDARDS OF PERFORMANCE FOR EXISTING HOT MIX ASPHALT PLANTS.
7011.0909 INCORPORATION BY REFERENCE; NEW SOURCE PERFORMANCE STANDARDS; HOT MIX ASPHALT PLANTS.
7011.0911 MAINTENANCE OF DRYER BURNER.
7011.0913 HOT MIX ASPHALT PLANT MATERIALS, FUELS, AND ADDITIVES OPERATING REQUIREMENTS.
7011.0917 ASPHALT PLANT CONTROL EQUIPMENT REQUIREMENTS.
7011.0920 PERFORMANCE TESTS.
7011.0922 OPERATIONAL REQUIREMENTS AND LIMITATIONS FROM PERFORMANCE TESTS.

ASPHALT PROCESSING AND ASPHALT ROOFING MANUFACTURE

7011.0950 INCORPORATION BY REFERENCE; NEW SOURCE PERFORMANCE STANDARDS; ASPHALT PROCESSING AND ASPHALT ROOFING MANUFACTURE.

BULK AGRICULTURAL COMMODITY FACILITIES

7011.1000 DEFINITIONS.
7011.1005 STANDARDS OF PERFORMANCE FOR DRY BULK AGRICULTURAL COMMODITY FACILITIES.
7011.1010 NUISANCE.
7011.1015 CONTROL REQUIREMENTS SCHEDULE.

COAL HANDLING FACILITIES

7011.1100 DEFINITIONS.
7011.1105 STANDARDS OF PERFORMANCE FOR CERTAIN COAL HANDLING FACILITIES.
STANDARDS OF PERFORMANCE FOR EXISTING OUTSTATE COAL HANDLING FACILITIES.

STANDARDS OF PERFORMANCE FOR PNEUMATIC COAL-CLEANING EQUIPMENT AND THERMAL DRYERS AT ANY COAL HANDLING FACILITY.

EXEMPTION.

CEASING OPERATIONS; WIND.

PERFORMANCE TEST METHOD.

PERFORMANCE TEST PROCEDURES.

DUST SUPPRESSANT AGENTS.

COAL PREPARATION PLANTS

INCORPORATION BY REFERENCE; NEW SOURCE PERFORMANCE STANDARDS; COAL PREPARATION AND PROCESSING PLANTS.

WASTE COMBUSTORS

DEFINITIONS.

INCORPORATION BY REFERENCE; DOCUMENTS.

NOTIFICATION REQUIRED OF CLASS IV WASTE COMBUSTORS.

APPLICABILITY OF STANDARDS OF PERFORMANCE FOR WASTE COMBUSTORS.

PROHIBITIONS.

STANDARDS OF PERFORMANCE FOR WASTE COMBUSTORS.

TABLE 1.

TABLE 2.

TABLE 3.

TABLE 4.

REQUIREMENTS OF CLASS IV WASTE COMBUSTORS.

OPERATING REQUIREMENTS.

GENERAL WASTE COMBUSTOR FACILITY REQUIREMENTS.

INDUSTRIAL SOLID WASTE MANAGEMENT PLAN.

PLAN TO SEPARATE SOLID WASTES CONTAINING MERCURY.

CONTINUOUS MONITORING.

REQUIRED PERFORMANCE TESTS, METHODS, AND PROCEDURES.

PERFORMANCE TEST, WASTE COMPOSITION STUDY, AND ASH SAMPLING FREQUENCY.

MERCURY OR PCDD/PCDF ADDITIVE EQUIPMENT OPERATION, MONITORING, AND REPORTING.

PERSONNEL TRAINING.

OPERATOR CERTIFICATION.

FULL OPERATOR CERTIFICATION.

CERTIFIED MUNICIPAL WASTE COMBUSTOR EXAMINER CERTIFICATE.

DUTIES OF CERTIFIED MUNICIPAL WASTE COMBUSTOR EXAMINER.
FULLY CERTIFIED OPERATOR.

OPERATING RECORDS AND REPORTS.

INCORPORATION BY REFERENCE; NEW SOURCE PERFORMANCE STANDARDS; LARGE MUNICIPAL WASTE COMBUSTORS.

INCORPORATION BY REFERENCE; NEW SOURCE PERFORMANCE STANDARDS; HOSPITAL/MEDICAL/INFECTIOUS WASTE INCINERATORS.

INCORPORATION BY REFERENCE; NEW SOURCE PERFORMANCE STANDARDS; SMALL MUNICIPAL WASTE COMBUSTORS.

INCORPORATION BY REFERENCE; NEW SOURCE PERFORMANCE STANDARDS; OTHER SOLID WASTE INCINERATION UNITS.

INCINERATORS

INCORPORATION BY REFERENCE; NEW SOURCE PERFORMANCE STANDARDS; INCINERATORS.

DEFINITIONS.

STANDARDS OF PERFORMANCE FOR EXISTING SEWAGE SLUDGE INCINERATORS.

STANDARDS OF PERFORMANCE FOR NEW SEWAGE SLUDGE INCINERATORS.

MONITORING OPERATIONS.

PERFORMANCE TEST METHODS.

PERFORMANCE TEST PROCEDURES.

EMISSION LIMITS; EXCEEDANCE REQUIREMENTS.

INCORPORATION BY REFERENCE; NEW SOURCE PERFORMANCE STANDARDS; SEWAGE SLUDGE INCINERATORS.

INCORPORATION BY REFERENCE; EMISSION GUIDELINES AND COMPLIANCE TIMES; EXISTING SEWAGE SLUDGE INCINERATOR UNITS.

COMMERCIAL AND INDUSTRIAL SOLID WASTE INCINERATORS

EXISTING COMMERCIAL AND INDUSTRIAL SOLID WASTE INCINERATORS; COMPLIANCE REQUIREMENTS.

INCORPORATION BY REFERENCE; EMISSION GUIDELINES AND COMPLIANCE TIMES; EXISTING COMMERCIAL AND INDUSTRIAL SOLID WASTE INCINERATORS.

INCORPORATION BY REFERENCE; NEW SOURCE PERFORMANCE STANDARDS; NEW COMMERCIAL AND INDUSTRIAL SOLID WASTE INCINERATORS.

PETROLEUM REFINERIES

DEFINITIONS APPLICABLE TO PETROLEUM REFINERIES.

PERFORMANCE STANDARDS; EXISTING AFFECTED FACILITIES AT PETROLEUM REFINERIES.

PERFORMANCE STANDARDS; NEW AFFECTED FACILITIES AT PETROLEUM REFINERIES.

EMISSION MONITORING.

PERFORMANCE TEST METHODS.

PERFORMANCE TEST PROCEDURES.

INCORPORATION BY REFERENCE; NEW SOURCE PERFORMANCE STANDARDS; PETROLEUM REFINERIES.
LIQUID PETROLEUM AND VOLATILE ORGANIC LIQUID STORAGE VESSELS

7011.1500 DEFINITIONS.
7011.1505 STANDARDS OF PERFORMANCE FOR STORAGE VESSELS.
7011.1510 MONITORING OPERATIONS.
7011.1515 EXCEPTION.
7011.1520 INCORPORATION BY REFERENCE; NEW SOURCE PERFORMANCE STANDARDS; STORAGE VESSELS.

BULK GASOLINE TERMINALS

7011.1550 INCORPORATION BY REFERENCE; NEW SOURCE PERFORMANCE STANDARDS; BULK GASOLINE TERMINALS.

SULFURIC ACID PLANTS

7011.1600 DEFINITIONS.
7011.1605 STANDARDS OF PERFORMANCE OF EXISTING SULFURIC ACID PRODUCTION UNITS.
7011.1615 CONTINUOUS EMISSION MONITORING.
7011.1620 PERFORMANCE TEST METHODS.
7011.1625 PERFORMANCE TEST PROCEDURES.
7011.1630 EXCEPTIONS.
7011.1635 INCORPORATION BY REFERENCE; NEW SOURCE PERFORMANCE STANDARDS; SULFURIC ACID PLANTS.

NITRIC ACID PLANTS

7011.1700 DEFINITIONS.
7011.1705 STANDARDS OF PERFORMANCE FOR EXISTING NITRIC ACID PRODUCTION UNITS.
7011.1715 EMISSION MONITORING.
7011.1720 PERFORMANCE TEST METHODS.
7011.1725 PERFORMANCE TEST PROCEDURES.
7011.1730 INCORPORATION BY REFERENCE; NEW SOURCE PERFORMANCE STANDARDS; NITRIC ACID PLANTS.

LEAD SMELTERS

7011.1820 INCORPORATION BY REFERENCE; NEW SOURCE PERFORMANCE STANDARDS; LEAD SMELTERS.

COPPER SMELTERS

7011.1840 INCORPORATION BY REFERENCE; NEW SOURCE PERFORMANCE STANDARDS; PRIMARY COPPER SMELTERS.

ZINC SMELTERS

7011.1880 INCORPORATION BY REFERENCE; NEW SOURCE PERFORMANCE STANDARDS; PRIMARY ZINC SMELTERS.
SECONDARY BRASS AND BRONZE INGOT PRODUCTION PLANTS

7011.1900 DEFINITIONS.
7011.1905 STANDARDS OF PERFORMANCE FOR SECONDARY BRASS AND BRONZE INGOT PRODUCTION PLANTS.
7011.1910 PERFORMANCE TEST METHODS.
7011.1915 PERFORMANCE TEST PROCEDURES.
7011.1920 INCORPORATION BY REFERENCE; NEW SOURCE PERFORMANCE STANDARDS; SECONDARY BRASS AND BRONZE PRODUCTION PLANTS.

IRON AND STEEL PLANTS

7011.2000 DEFINITIONS.
7011.2005 STANDARDS OF PERFORMANCE FOR IRON AND STEEL PLANTS.
7011.2010 PERFORMANCE TEST METHODS.
7011.2015 PERFORMANCE TEST PROCEDURES.
7011.2020 INCORPORATION BY REFERENCE; NEW SOURCE PERFORMANCE STANDARDS; STEEL PLANTS.

PRIMARY ALUMINUM REDUCTION PLANTS

7011.2050 INCORPORATION BY REFERENCE; NEW SOURCE PERFORMANCE STANDARDS; PRIMARY ALUMINUM REDUCTION PLANTS.

FERROALLOY PRODUCTION FACILITIES

7011.2080 INCORPORATION BY REFERENCE; NEW SOURCE PERFORMANCE STANDARDS; FERROALLOY PRODUCTION FACILITIES.

EMISSION STANDARDS FOR INORGANIC FIBROUS MATERIALS

7011.2100 DEFINITIONS.
7011.2105 SPRAYING INORGANIC FIBROUS MATERIALS.

STATIONARY INTERNAL COMBUSTION ENGINES

7011.2300 STANDARDS OF PERFORMANCE FOR STATIONARY INTERNAL COMBUSTION ENGINES.
7011.2305 INCORPORATION BY REFERENCE; NEW SOURCE PERFORMANCE STANDARDS; STATIONARY COMPRESSION IGNITION INTERNAL COMBUSTION ENGINES.
7011.2310 INCORPORATION BY REFERENCE; NEW SOURCE PERFORMANCE STANDARDS; STATIONARY SPARK IGNITION INTERNAL COMBUSTION ENGINES.

STATIONARY GAS TURBINES

7011.2350 INCORPORATION BY REFERENCE; NEW SOURCE PERFORMANCE STANDARDS; STATIONARY GAS TURBINES.
7011.2375 INCORPORATION BY REFERENCE; NEW SOURCE PERFORMANCE STANDARDS; STATIONARY COMBUSTION TURBINES.
PHOSPHATE FERTILIZER INDUSTRY

7011.2400 INCORPORATION BY REFERENCE; NEW SOURCE PERFORMANCE STANDARDS; PHOSPHATE FERTILIZER INDUSTRY.

KRAFT PULP MILLS

7011.2450 INCORPORATION BY REFERENCE; NEW SOURCE PERFORMANCE STANDARDS; KRAFT PULP MILLS.

GLASS MANUFACTURING PLANTS

7011.2500 INCORPORATION BY REFERENCE; NEW SOURCE PERFORMANCE STANDARDS; GLASS MANUFACTURING PLANTS.

SURFACE COATING

7011.2550 INCORPORATION BY REFERENCE; NEW SOURCE PERFORMANCE STANDARDS; SURFACE COATING OF METAL FURNITURE.
7011.2555 INCORPORATION BY REFERENCE; NEW SOURCE PERFORMANCE STANDARDS; AUTOMOBILE AND LIGHT-DUTY TRUCK SURFACE COATING OPERATIONS.
7011.2560 INCORPORATION BY REFERENCE; NEW SOURCE PERFORMANCE STANDARDS; PRESSURE SENSITIVE TAPE AND LABEL SURFACE COATING OPERATIONS.
7011.2565 INCORPORATION BY REFERENCE; NEW SOURCE PERFORMANCE STANDARDS; INDUSTRIAL SURFACE COATING: LARGE APPLIANCES.
7011.2570 INCORPORATION BY REFERENCE; NEW SOURCE PERFORMANCE STANDARDS; METAL COIL SURFACE COATING.
7011.2575 INCORPORATION BY REFERENCE; NEW SOURCE PERFORMANCE STANDARDS; BEVERAGE CAN SURFACE COATING INDUSTRY.
7011.2580 INCORPORATION BY REFERENCE; NEW SOURCE PERFORMANCE STANDARDS; INDUSTRIAL SURFACE COATING: SURFACE COATING OF PLASTIC PARTS FOR BUSINESS MACHINES.

LIME MANUFACTURING PLANTS

7011.2600 INCORPORATION BY REFERENCE; NEW SOURCE PERFORMANCE STANDARDS; LIME MANUFACTURING PLANTS.

LEAD-ACID BATTERY MANUFACTURING PLANTS

7011.2650 INCORPORATION BY REFERENCE; NEW SOURCE PERFORMANCE STANDARDS; LEAD-ACID BATTERY MANUFACTURING PLANTS.

METALLIC MINERAL PROCESSING PLANTS

7011.2700 INCORPORATION BY REFERENCE; NEW SOURCE PERFORMANCE STANDARDS; METALLIC MINERAL PROCESSING PLANTS.

PHOSPHATE ROCK PLANTS

7011.2750 INCORPORATION BY REFERENCE; NEW SOURCE PERFORMANCE STANDARDS; PHOSPHATE ROCK PLANTS.
AMMONIUM SULFATE MANUFACTURE
7011.2800 INCORPORATION BY REFERENCE; NEW SOURCE PERFORMANCE STANDARDS; AMMONIUM SULFATE MANUFACTURE.

GRAPHIC ARTS INDUSTRY
7011.2850 INCORPORATION BY REFERENCE; NEW SOURCE PERFORMANCE STANDARDS; PUBLICATION ROTOGRAVURE PRINTING.

SYNTHETIC ORGANIC CHEMICALS MANUFACTURING INDUSTRY
7011.2900 INCORPORATION BY REFERENCE; NEW SOURCE PERFORMANCE STANDARDS; SYNTHETIC ORGANIC CHEMICAL MANUFACTURING.

NEW RESIDENTIAL WOOD HEATERS
7011.2950 INCORPORATION BY REFERENCE; NEW SOURCE PERFORMANCE STANDARDS; RESIDENTIAL WOOD HEATERS.

HYDRONIC HEATERS AND FORCED-AIR FURNACES
7011.2960 INCORPORATION BY REFERENCE; NEW SOURCE PERFORMANCE STANDARDS; RESIDENTIAL HYDRONIC HEATERS AND FORCED-AIR FURNACES.

RUBBER TIRE MANUFACTURING INDUSTRY
7011.3000 INCORPORATION BY REFERENCE; NEW SOURCE PERFORMANCE STANDARDS; RUBBER TIRE MANUFACTURING INDUSTRY.

POLYMER MANUFACTURING INDUSTRY
7011.3050 INCORPORATION BY REFERENCE; NEW SOURCE PERFORMANCE STANDARDS; POLYMER MANUFACTURING INDUSTRY.

POLYMERIC COATING OF SUPPORTING SUBSTRATES FACILITIES
7011.3100 INCORPORATION BY REFERENCE; NEW SOURCE PERFORMANCE STANDARDS; POLYMERIC COATING OF SUPPORTING SUBSTRATES FACILITIES.

FLEXIBLE VINYL AND URETHANE COATING AND PRINTING
7011.3150 INCORPORATION BY REFERENCE; NEW SOURCE PERFORMANCE STANDARDS; FLEXIBLE VINYL AND URETHANE COATING AND PRINTING.

SYNTHETIC FIBER PRODUCTION FACILITIES
7011.3200 INCORPORATION BY REFERENCE; NEW SOURCE PERFORMANCE STANDARDS; SYNTHETIC FIBER PRODUCTION FACILITIES.

PETROLEUM DRY CLEANERS
7011.3250 INCORPORATION BY REFERENCE; NEW SOURCE PERFORMANCE STANDARDS; PETROLEUM DRY CLEANERS.

ONSHORE NATURAL GAS PROCESSING PLANTS
7011.3300 INCORPORATION BY REFERENCE; NEW SOURCE PERFORMANCE STANDARDS; ONSHORE NATURAL GAS PROCESSING.
CRUDE OIL AND NATURAL GAS PRODUCTION

7011.3325 INCORPORATION BY REFERENCE; NEW SOURCE PERFORMANCE STANDARDS; CRUDE OIL AND NATURAL GAS PRODUCTION, TRANSMISSION AND DISTRIBUTION.

NONMETALLIC MINERAL PROCESSING PLANTS

7011.3350 INCORPORATION BY REFERENCE; NEW SOURCE PERFORMANCE STANDARDS; NONMETALLIC MINERAL PROCESSING PLANTS.

WOOL FIBERGLASS INSULATION MANUFACTURING PLANTS

7011.3400 INCORPORATION BY REFERENCE; NEW SOURCE PERFORMANCE STANDARDS; WOOL FIBERGLASS INSULATION MANUFACTURING PLANTS.

VOC EMISSIONS FROM SOCMI REACTOR PROCESSES

7011.3430 INCORPORATION BY REFERENCE; NEW SOURCE PERFORMANCE STANDARDS; VOC EMISSIONS FROM SOCMI REACTOR PROCESSES.

MAGNETIC TAPE COATING FACILITIES

7011.3450 INCORPORATION BY REFERENCE; NEW SOURCE PERFORMANCE STANDARDS; MAGNETIC TAPE COATING FACILITIES.

GAS EMISSIONS FROM MUNICIPAL SOLID WASTE LANDFILLS

7011.3500 DEFINITIONS.
7011.3510 INCORPORATION BY REFERENCE; NEW SOURCE PERFORMANCE STANDARDS; MUNICIPAL SOLID WASTE LANDFILLS EXISTING ON OR AFTER MAY 30, 1991.
7011.3515 INCORPORATION BY REFERENCE; NEW SOURCE PERFORMANCE STANDARDS; MUNICIPAL SOLID WASTE LANDFILLS EXISTING AFTER JULY 17, 2014.
7011.3525 INCORPORATION BY REFERENCE; EMISSION GUIDELINES AND COMPLIANCE TIMES; MUNICIPAL SOLID WASTE LANDFILLS EXISTING ON OR BEFORE JULY 17, 2014.

EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS

7011.7040 INCORPORATION BY REFERENCE; EMISSION STANDARDS; ORGANIC HAZARDOUS AIR POLLUTANTS FROM SYNTHETIC ORGANIC CHEMICAL MANUFACTURING INDUSTRY.
7011.7050 INCORPORATION BY REFERENCE; EMISSION STANDARDS; INDUSTRIAL, COMMERCIAL, AND INSTITUTIONAL BOILERS AND PROCESS HEATERS; MAJOR SOURCES.
7011.7055 INCORPORATION BY REFERENCE; EMISSION STANDARDS; INDUSTRIAL, COMMERCIAL, AND INSTITUTIONAL BOILERS; AREA SOURCES.
7011.7060 INCORPORATION BY REFERENCE; EMISSION STANDARDS; ORGANIC HAZARDOUS AIR POLLUTANTS FOR EQUIPMENT LEAKS.
7011.7080 INCORPORATION BY REFERENCE; EMISSION STANDARDS; COKE OVEN BATTERIES.
7011.7090 INCORPORATION BY REFERENCE; EMISSION STANDARDS; COKE OVENS: PUSHING, QUENCHING, AND BATTERY STACKS.
7011.7100 INCORPORATION BY REFERENCE; EMISSION STANDARDS; PERCHLOROETHYLENE DRY CLEANING FACILITIES.
INCORPORATION BY REFERENCE; EMISSION STANDARDS; CHROMIUM EMISSIONS FROM HARD AND DECORATIVE CHROMIUM ELECTROPLATING AND CHROMIUM ANODIZING TANKS.

INCORPORATION BY REFERENCE; EMISSION STANDARDS; ETHYLENE OXIDE FOR STERILIZERS.

INCORPORATION BY REFERENCE; EMISSION STANDARDS; INDUSTRIAL PROCESS COOLING TOWERS.

INCORPORATION BY REFERENCE; EMISSION STANDARDS; GASOLINE DISTRIBUTION.

INCORPORATION BY REFERENCE; EMISSION STANDARDS; GASOLINE DISPENSING FACILITIES.

INCORPORATION BY REFERENCE; EMISSION STANDARDS; HALOGENATED SOLVENT CLEANING.

INCORPORATION BY REFERENCE; EMISSION STANDARDS; PRIMARY LEAD SMELTING.

INCORPORATION BY REFERENCE; EMISSION STANDARDS; SECONDARY LEAD SMELTING.

INCORPORATION BY REFERENCE; EMISSION STANDARDS; MARINE TANK VESSEL LOADING OPERATIONS.

INCORPORATION BY REFERENCE; EMISSION STANDARDS; PETROLEUM REFINERIES.

INCORPORATION BY REFERENCE; EMISSION STANDARDS; OIL AND NATURAL GAS PRODUCTION, TRANSMISSION, AND STORAGE.

INCORPORATION BY REFERENCE; EMISSION STANDARDS; MAGNETIC TAPE MANUFACTURING OPERATIONS.

INCORPORATION BY REFERENCE; EMISSION STANDARDS; AEROSPACE MANUFACTURING AND REWORK FACILITIES.

INCORPORATION BY REFERENCE; EMISSION STANDARDS; WOOD FURNITURE MANUFACTURING OPERATIONS.

INCORPORATION BY REFERENCE; EMISSION STANDARDS; SHIPBUILDING AND SHIP REPAIR OPERATIONS.

INCORPORATION BY REFERENCE; EMISSION STANDARDS; BOAT MANUFACTURING.

INCORPORATION BY REFERENCE; EMISSION STANDARDS; PRINTING AND PUBLISHING INDUSTRY.

INCORPORATION BY REFERENCE; EMISSION STANDARDS; PAPER AND OTHER WEB COATING.

INCORPORATION BY REFERENCE; EMISSION STANDARDS; MUNICIPAL SOLID WASTE LANDFILLS.

INCORPORATION BY REFERENCE; EMISSION STANDARDS; OFF-SITE WASTE OPERATIONS.

INCORPORATION BY REFERENCE; EMISSION STANDARDS; HAZARDOUS WASTE COMBUSTION.

INCORPORATION BY REFERENCE; EMISSION STANDARDS; POLYMERS AND RESINS.

INCORPORATION BY REFERENCE; EMISSION STANDARDS; FERROALLOYS PRODUCTION.

INCORPORATION BY REFERENCE; EMISSION STANDARDS; FLEXIBLE POLYURETHANE FOAM PRODUCTION.

INCORPORATION BY REFERENCE; EMISSION STANDARDS; FLEXIBLE POLYURETHANE FOAM PRODUCTION AND FABRICATION OPERATIONS.

INCORPORATION BY REFERENCE; EMISSION STANDARDS; MINERAL WOOL PRODUCTION.
7011.7560 INCORPORATION BY REFERENCE; EMISSION STANDARDS; PESTICIDE ACTIVE INGREDIENT PRODUCTION.

7011.7580 INCORPORATION BY REFERENCE; EMISSION STANDARDS; PHARMACEUTICALS PRODUCTION.

7011.7600 INCORPORATION BY REFERENCE; EMISSION STANDARDS; PHOSPHORIC ACID MANUFACTURING AND PHOSPHATE FERTILIZERS PRODUCTION.

7011.7610 INCORPORATION BY REFERENCE; EMISSION STANDARDS; HYDROCHLORIC ACID PRODUCTION.

7011.7620 INCORPORATION BY REFERENCE; EMISSION STANDARDS; POLYETHER POLYOLS PRODUCTION.

7011.7640 INCORPORATION BY REFERENCE; EMISSION STANDARDS; PORTLAND CEMENT MANUFACTURING.

7011.7650 INCORPORATION BY REFERENCE; EMISSION STANDARDS; PRIMARY COPPER SMELTING.

7011.7660 INCORPORATION BY REFERENCE; EMISSION STANDARDS; PRIMARY ALUMINUM PRODUCTION.

7011.7665 INCORPORATION BY REFERENCE; EMISSION STANDARDS; SECONDARY ALUMINUM PRODUCTION.

7011.7670 INCORPORATION BY REFERENCE; EMISSION STANDARDS; STEEL PICKLING - HYDROCHLORIC ACID PROCESS.

7011.7675 INCORPORATION BY REFERENCE; EMISSION STANDARDS; INTEGRATED IRON AND STEEL MANUFACTURING FACILITIES.

7011.7680 INCORPORATION BY REFERENCE; EMISSION STANDARDS; PUBLICLY OWNED TREATMENT WORKS.

7011.7700 INCORPORATION BY REFERENCE; EMISSION STANDARDS; PULP AND PAPER PRODUCTION.

7011.7720 INCORPORATION BY REFERENCE; EMISSION STANDARDS; WET-FORMED FIBERGLASS MAT PRODUCTION.

7011.7730 INCORPORATION BY REFERENCE; EMISSION STANDARDS; WOOL FIBERGLASS MANUFACTURING.

7011.7740 INCORPORATION BY REFERENCE; EMISSION STANDARDS; CELLULOSE PRODUCTS MANUFACTURING.

7011.7760 INCORPORATION BY REFERENCE; EMISSION STANDARDS; LEATHER FINISHING OPERATIONS.

7011.7770 INCORPORATION BY REFERENCE; EMISSION STANDARDS; PRINTING, COATING, AND DYEING OF FABRICS AND OTHER TEXTILES.

7011.7780 INCORPORATION BY REFERENCE; EMISSION STANDARDS; MANUFACTURING NUTRITIONAL YEAST.

7011.7800 INCORPORATION BY REFERENCE; EMISSION STANDARDS; REINFORCED PLASTIC COMPOSITES PRODUCTION.

7011.7820 INCORPORATION BY REFERENCE; EMISSION STANDARDS; POLYVINYL CHLORIDE AND COPOLYMERS PRODUCTION.

7011.7840 INCORPORATION BY REFERENCE; EMISSION STANDARDS; SOLVENT EXTRACTION FOR VEGETABLE OIL PRODUCTION.

7011.7860 INCORPORATION BY REFERENCE; EMISSION STANDARDS; RUBBER TIRE MANUFACTURING.
<table>
<thead>
<tr>
<th>Rule Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>7011.7880</td>
<td>INCORPORATION BY REFERENCE; EMISSION STANDARDS; FRICTION MATERIALS MANUFACTURING FACILITIES.</td>
</tr>
<tr>
<td>7011.7900</td>
<td>INCORPORATION BY REFERENCE; EMISSION STANDARDS; SURFACE COATING OF LARGE APPLIANCES.</td>
</tr>
<tr>
<td>7011.7905</td>
<td>INCORPORATION BY REFERENCE; EMISSION STANDARDS; SURFACE COATING OF METAL COIL.</td>
</tr>
<tr>
<td>7011.7910</td>
<td>INCORPORATION BY REFERENCE; EMISSION STANDARDS; SURFACE COATING OF METAL FURNITURE.</td>
</tr>
<tr>
<td>7011.7920</td>
<td>INCORPORATION BY REFERENCE; EMISSION STANDARDS; REFRACTORY PRODUCTS MANUFACTURING.</td>
</tr>
<tr>
<td>7011.7930</td>
<td>INCORPORATION BY REFERENCE; EMISSION STANDARDS; BRICK AND STRUCTURAL CLAY PRODUCTS MANUFACTURING.</td>
</tr>
<tr>
<td>7011.7935</td>
<td>INCORPORATION BY REFERENCE; EMISSION STANDARDS; CLAY CERAMICS MANUFACTURING.</td>
</tr>
<tr>
<td>7011.7940</td>
<td>INCORPORATION BY REFERENCE; EMISSION STANDARDS; ASPHALT PROCESSING AND ASPHALT ROOFING MANUFACTURING.</td>
</tr>
<tr>
<td>7011.7960</td>
<td>INCORPORATION BY REFERENCE; EMISSION STANDARDS; SEMICONDUCTOR MANUFACTURING.</td>
</tr>
<tr>
<td>7011.7980</td>
<td>INCORPORATION BY REFERENCE; EMISSION STANDARDS; ENGINE TEST CELLS/STANDS.</td>
</tr>
<tr>
<td>7011.8000</td>
<td>INCORPORATION BY REFERENCE; EMISSION STANDARDS; SURFACE COATING OF WOOD BUILDING PRODUCTS.</td>
</tr>
<tr>
<td>7011.8010</td>
<td>INCORPORATION BY REFERENCE; EMISSION STANDARDS; SITE REMEDIATION.</td>
</tr>
<tr>
<td>7011.8020</td>
<td>INCORPORATION BY REFERENCE; EMISSION STANDARDS; PRIMARY MAGNESIUM REFINING.</td>
</tr>
<tr>
<td>7011.8030</td>
<td>INCORPORATION BY REFERENCE; EMISSION STANDARDS; TACONITE IRON ORE PROCESSING.</td>
</tr>
<tr>
<td>7011.8040</td>
<td>INCORPORATION BY REFERENCE; EMISSION STANDARDS; IRON AND STEEL FOUNDRIES.</td>
</tr>
<tr>
<td>7011.8050</td>
<td>INCORPORATION BY REFERENCE; EMISSION STANDARDS; MISCELLANEOUS ORGANIC CHEMICAL MANUFACTURING.</td>
</tr>
<tr>
<td>7011.8060</td>
<td>INCORPORATION BY REFERENCE; EMISSION STANDARDS; SURFACE COATING OF METAL CANS.</td>
</tr>
<tr>
<td>7011.8070</td>
<td>INCORPORATION BY REFERENCE; EMISSION STANDARDS; MISCELLANEOUS COATING MANUFACTURING.</td>
</tr>
<tr>
<td>7011.8080</td>
<td>INCORPORATION BY REFERENCE; EMISSION STANDARDS; MERCURY EMISSIONS FROM MERCURY CELL CHLOR-ALKALI PLANTS.</td>
</tr>
<tr>
<td>7011.8090</td>
<td>INCORPORATION BY REFERENCE; EMISSION STANDARDS; SURFACE COATING OF MISCELLANEOUS METAL PARTS AND PRODUCTS.</td>
</tr>
<tr>
<td>7011.8100</td>
<td>INCORPORATION BY REFERENCE; EMISSION STANDARDS; LIME MANUFACTURING PLANTS.</td>
</tr>
<tr>
<td>7011.8110</td>
<td>INCORPORATION BY REFERENCE; EMISSION STANDARDS; ORGANIC LIQUIDS DISTRIBUTION (NONGASOLINE).</td>
</tr>
<tr>
<td>7011.8120</td>
<td>INCORPORATION BY REFERENCE; EMISSION STANDARDS; STATIONARY COMBUSTION TURBINES.</td>
</tr>
</tbody>
</table>
7011.8130 INCORPORATION BY REFERENCE; EMISSION STANDARDS; SURFACE COATING OF PLASTIC PARTS AND PRODUCTS.

7011.8140 INCORPORATION BY REFERENCE; EMISSION STANDARDS; SURFACE COATING OF AUTOMOBILES AND LIGHT-DUTY TRUCKS.

7011.8150 INCORPORATION BY REFERENCE; EMISSION STANDARDS; STATIONARY RECIPIROCATING INTERNAL COMBUSTION ENGINES.

7011.8160 INCORPORATION BY REFERENCE; EMISSION STANDARDS; PLYWOOD AND COMPOSITE WOOD PRODUCTS.

7011.8190 INCORPORATION BY REFERENCE; EMISSION STANDARDS; CLOSED VENT SYSTEMS, CONTROL DEVICES, RECOVERY DEVICES AND ROUTING TO FUEL GAS SYSTEM OR PROCESS.

7011.8200 INCORPORATION BY REFERENCE; EMISSION STANDARDS; EQUIPMENT LEAKS.

7011.8205 INCORPORATION BY REFERENCE; EMISSION STANDARDS; STORAGE VESSELS (TANKS) - CONTROL LEVEL 2.

7011.8210 INCORPORATION BY REFERENCE; EMISSION STANDARDS; ETHYLENE MANUFACTURING PROCESS UNITS: HEAT EXCHANGE SYSTEMS AND WASTE OPERATIONS.

7011.8215 INCORPORATION BY REFERENCE; EMISSION STANDARDS; ELECTRIC ARC FURNACE STEELMAKING FACILITIES.

7011.8220 INCORPORATION BY REFERENCE; EMISSION STANDARDS; PAINT STRIPPING AND MISCELLANEOUS SURFACE COATING OPERATIONS; AREA SOURCES.

7011.8225 INCORPORATION BY REFERENCE; EMISSION STANDARDS; LEAD ACID BATTERY MANUFACTURING.

7011.8230 INCORPORATION BY REFERENCE; EMISSION STANDARDS; WOOD PRESERVING; AREA SOURCES.

7011.8235 INCORPORATION BY REFERENCE; EMISSION STANDARDS; GLASS MANUFACTURING AREA SOURCES.

7011.8240 INCORPORATION BY REFERENCE; EMISSION STANDARDS; SECONDARY NONFERROUS METALS PROCESSING AREA SOURCES.

7011.8245 INCORPORATION BY REFERENCE; EMISSIONS STANDARDS; CHEMICAL MANUFACTURING AREA SOURCES.

7011.8250 INCORPORATION BY REFERENCE; EMISSION STANDARDS; AREA SOURCE STANDARDS FOR PLATING AND POLISHING OPERATIONS.

7011.8255 INCORPORATION BY REFERENCE; EMISSION STANDARDS; METAL FABRICATION AND FINISHING.

7011.8260 INCORPORATION BY REFERENCE; EMISSION STANDARDS; FERROALLOYS PRODUCTION FACILITIES.

7011.8265 INCORPORATION BY REFERENCE; EMISSION STANDARDS; ALUMINUM, COPPER, AND OTHER NONFERROUS FOUNDRIES.

7011.8270 INCORPORATION BY REFERENCE; EMISSION STANDARDS; CHEMICAL PREPARATIONS INDUSTRY.

7011.8275 INCORPORATION BY REFERENCE; EMISSION STANDARDS; PAINTS AND ALLIED PRODUCTS MANUFACTURING.

7011.8280 INCORPORATION BY REFERENCE; EMISSION STANDARDS; PREPARED FEEDS MANUFACTURING.

7011.9910 INCORPORATION BY REFERENCE; EMISSION STANDARDS; ARSENIC.
7011.9920 INCORPORATION BY REFERENCE; EMISSION STANDARDS; ASBESTOS.
7011.9921 DEFINITIONS.
7011.9922 MANUFACTURING OPERATIONS.
7011.9923 SPRAYING.
7011.9925 FABRIC FILTER SPECIFICATIONS.
7011.9926 SUBSTITUTE DEVICES FOR FABRIC FILTERS.
7011.9927 INSTALLING AND OPERATING CONTROL EQUIPMENT.
7011.9930 INCORPORATION BY REFERENCE; EMISSION STANDARDS; BENZENE.
7011.9940 INCORPORATION BY REFERENCE; EMISSION STANDARDS; BERYLLIUM.
7011.9950 INCORPORATION BY REFERENCE; EMISSION STANDARDS; MERCURY.
7011.9960 INCORPORATION BY REFERENCE; EMISSION STANDARDS; RADON.
7011.9970 INCORPORATION BY REFERENCE; EMISSION STANDARDS; RADIONUCLIDES.
7011.9980 INCORPORATION BY REFERENCE; EMISSION STANDARDS; VINYL CHLORIDE.
7011.9990 INCORPORATION BY REFERENCE; EMISSION STANDARDS; VOLATILE HAZARDOUS AIR POLLUTANTS.

GENERALLY

7011.0010 APPLICABILITY OF STANDARDS OF PERFORMANCE.

Subpart 1. Existing facility. An owner or operator of an existing emission facility shall comply with all applicable state air pollution control rules for existing emission facilities.

Subp. 2. New facility. An owner or operator who constructs, modifies, or reconstructs an emission facility shall comply with the new source performance standards, if applicable, and the standards of performance for a new emission facility set forth in the state air pollution control rules. However, if the administrator has determined a state standard of performance to be of equal or superior environmental protection compared to the new source performance standards, then the owner or operator need only comply with the state standard of performance. "Administrator" has the meaning given in part 7007.0100, subpart 3.

Subp. 3. Exception. For the purpose of the state air pollution control rules, the use of an alternative type of fuel or raw material is not a modification if the existing facility was designed to accommodate the alternative type of fuel or raw material. An emission facility is considered to be designed to accommodate an alternative type of fuel or raw material if that use could be accomplished under the facility's construction specifications as amended prior to the change.

Subp. 4. Opacity standards. The opacity standards in an applicable requirement apply at all times except during periods of start-up, shutdown, and malfunction, and as otherwise provided in an applicable requirement or compliance document as defined in parts 7007.0100 and 7017.2005. The exemption for periods of start-up, shutdown, and malfunction applies only if:

A. at all times, including periods of start-up, shutdown, or malfunction, the owner or operator, to the extent practicable, maintains and operates the affected emission facility and air
pollution control equipment in a manner consistent with good operating practice for the installed equipment design. Determination of whether acceptable operating and maintenance procedures are being used shall be based on, among other information, monitoring results, opacity observations, review of operating and maintenance procedures, and inspection of the source;

 B. the owner or operator complies with parts 7019.1000 and 7019.2000 in the event of a shutdown, breakdown, or malfunction; and

 C. the applicable requirement or compliance document does not state that the opacity standard applies during such conditions.

Subp. 5. Transition to new opacity averaging method. All permits issued before July 27, 1998, are amended to reflect the amendments to this chapter adopted on July 27, 1998, that are related to opacity averaging and excursions.

Statutory Authority: MS s 116.07

History: 8 SR 2275; 18 SR 614; 23 SR 145; 23 SR 2224

Published Electronically: September 17, 2020

7011.0020 CIRCUMVENTION.

No owner or operator may install or use a device or means that conceals or dilutes emissions, which would otherwise violate a federal or state air pollution control rule, without reducing the total amount of pollutant emitted.

Statutory Authority: MS s 116.07

History: 8 SR 2275; 18 SR 614

Published Electronically: February 25, 2008

7011.0050 GENERAL PROVISIONS OF FEDERAL STANDARDS INCORPORATED BY REFERENCE.

Subpart 1. General. For purposes of interpreting, applying, and enforcing federal regulations that are incorporated by reference into this chapter:

 A. Code of Federal Regulations, title 40, sections 60.1, 60.2, 60.3, 60.5, 60.6, 60.12, 60.14, 60.15, 60.17, and 60.18, as amended, are incorporated by reference;

 B. Code of Federal Regulations, title 40, sections 63.1, 63.2, 63.3, 63.4, 63.5, 63.6, 63.11, and 63.14, as amended, are incorporated by reference; and

 C. Code of Federal Regulations, title 40, sections 61.02, 61.03, 61.05, 61.06, 61.07, 61.08, 61.12, 61.15, 61.18, and 61.19, as amended, are incorporated by reference, except that the authorities identified in Code of Federal Regulations, title 40, section 61.12 (d)(1), are not delegated to the commissioner and are retained by the administrator.

Subp. 2. Required information. All requests, reports, applications, submittals, and other communications to the administrator that are incorporated by reference into this chapter must be
submitted to the commissioner unless otherwise specified in Code of Federal Regulations or state rule.

Subp. 3. **Authorities.** References to the administrator in the incorporated federal regulations refer to the commissioner, except when authorities are specifically identified in Code of Federal Regulations or state rule as nondelegable.

Statutory Authority: MS s 116.07
History: 18 SR 580; 44 SR 1030
Published Electronically: April 16, 2020

CONTROL EQUIPMENT

7011.0060 DEFINITIONS.

Subpart 1. **Scope.** The definitions in parts 7005.0100 and 7007.0100 apply to the terms used in parts 7011.0060 to 7011.0080 unless the terms are defined in this part. The definitions in this part apply to the terms used in parts 7011.0060 to 7011.0080.

Subp. 2. **Capture efficiency.** "Capture efficiency" means the percentage of emissions produced by a process that are captured by an enclosure and/or ductwork and transported to air pollution control equipment.

Subp. 3. **Collection efficiency.** "Collection efficiency" means the percentage of emissions entering the air pollution control equipment that are collected by the air pollution control equipment and thus removed from the exhaust stream. "Collection" pertains to pollutants that are collected but molecular composition may or may not be changed.

Subp. 3a. **Control efficiency.** "Control efficiency" has the meaning given to control equipment efficiency in subpart 3b.

Subp. 3b. **Control equipment efficiency.** "Control equipment efficiency" means the percentage of emissions produced by a process that are not emitted to the atmosphere. Control equipment efficiency is equal to the product of the capture efficiency and collection efficiency or the product of capture efficiency and destruction efficiency.

Subp. 3c. **Control equipment manufacturer.** "Control equipment manufacturer" means a person that manufactures and sells control equipment, if at least 50 percent of the dollar value of the annual control equipment sales are made to persons who are not a subsidiary, division, or subdivision of the control equipment manufacturer.

Subp. 3d. **Destruction efficiency.** "Destruction efficiency" means the percentage of emissions entering the air pollution control equipment that are destroyed by the air pollution control equipment and thus removed from the exhaust stream. "Destruction" pertains to pollutants that are destroyed whereby molecular composition is changed.

Subp. 3e. **Hood.** "Hood" means a shaped inlet to a pollution control system that does not totally surround emissions from an emissions unit, that is designed, used, and maintained to capture and
discharge the air emissions through ductwork to control equipment, and that conforms to the design and operating practices recommended in "Industrial Ventilation - A Manual of Recommended Practice, American Conference of Governmental Industrial Hygienists." This document is subject to frequent change. A spray booth can be a hood if it meets the definition in this subpart.

Subp. 4. **Listed control equipment.** "Listed control equipment" means the control equipment at a stationary source listed in part 7011.0070, subpart 1a, Table A.

Subp. 4a. **Testing company.** "Testing company" means a corporation, partnership, limited liability company, or sole proprietorship that conducts evaluations of hood design parameters as a normal part of its business activities and that is not the owner or operator of the emission facility or a subsidiary, division, or subdivision of the owner or operator of the emission facility.

Subp. 5. **Total enclosure.** "Total enclosure" means an enclosure that completely surrounds emissions from an emissions unit such that all emissions are captured and discharged through ductwork to control equipment.

Statutory Authority: MS s 116.07

History: 19 SR 1345; 22 SR 1237; 23 SR 2224; 32 SR 904

Published Electronically: February 25, 2008

7011.0061 INCORPORATION BY REFERENCE.

For the purpose of parts 7011.0060 to 7011.0080, the document, Industrial Ventilation - A Manual of Recommended Practice, American Conference of Governmental Industrial Hygienists (1984), 1300 Kemper Meadow Drive, Cincinnati, Ohio 45240, is incorporated by reference. American Conference of Governmental Industrial Hygienists is the author and publisher. This document is available through the Minitex interlibrary loan system (University of Minnesota Library). This document is subject to frequent change.

Statutory Authority: MS s 116.07

History: 19 SR 1345; 32 SR 904

Published Electronically: February 25, 2008

7011.0065 APPLICABILITY.

Subpart 1. **Applicability.** The owner or operator of a stationary source must comply with parts 7011.0060 to 7011.0080 if the owner or operator elected to use the control equipment efficiencies for listed control equipment established pursuant to part 7011.0070 to calculate potential to emit, from emissions units that discharge through the listed control equipment, to:

A. determine what type of permit is required, pursuant to part 7007.0150, subpart 4, item B;

B. determine what type of amendment to a part 70 or state permit is required, pursuant to part 7007.1200;
C. qualify for an insignificant modification under part 7007.1250;

D. qualify for registration permit option D under part 7007.1130;

E. qualify for a capped permit under parts 7007.1140 to 7007.1148; or

F. determine that a change triggers the notification requirement under part 7007.1150, item C, subitem (3).

Subp. 2. [Repealed, 32 SR 904]

Statutory Authority: MS s 115.03; 116.07

History: 19 SR 1345; 22 SR 1237; 23 SR 2224; 29 SR 626; 32 SR 904; 41 SR 763

Published Electronically: January 27, 2017

7011.0070 LISTED CONTROL EQUIPMENT AND CONTROL EQUIPMENT EFFICIENCIES.

Subpart 1. Listed control equipment efficiencies.

A. Unless a part 70, state, or general permit specifies a different control efficiency, the owner or operator of a stationary source must at all times attain at least the control efficiency listed in Table A for each piece of listed control equipment at the stationary source. The applicable control efficiency for a type of listed control equipment and a given pollutant is determined by whether air emissions are discharged to the control equipment through a hood that is certified as described in part 7011.0072, through a noncertified hood, or through a total enclosure. The control equipment efficiencies in Table A do not apply to any hazardous air pollutant.

B. The use of the control efficiencies listed in Table A under subpart 1a that are associated with a hood that is not certified is limited to the owner or operator of a stationary source that qualifies for a registration permit under parts 7007.1110 to 7007.1130.

Subp. 1a. Exceptions where control efficiency disallowed. The owner or operator may not use a control efficiency listed in Table A if:

A. the commissioner determines that the listed efficiency is inapplicable or is not representative of the source due to complexity of the process or source of emissions, lack of reliable data, presence of a pollutant or constituent such as organic or inorganic condensable particulate matter or an organic compound significantly more difficult to control than the overall VOC gas stream that makes the categorical efficiency nonrepresentative, or other site-specific conditions; or

B. the commissioner determines that alternate site-specific requirements are necessary to ensure compliance with applicable requirements or to protect human health or the environment.
CONTROL EQUIPMENT EFFICIENCY - TABLE A

<table>
<thead>
<tr>
<th>ID#</th>
<th>CONTROL EQUIPMENT DESCRIPTION</th>
<th>POLLUTANT</th>
<th>CONTROL EFFICIENCY</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>PM</td>
<td>TOTAL ENCLOSURE</td>
</tr>
<tr>
<td>007</td>
<td>Centrifugal Collector (cyclone)-high efficiency means: a cyclonic device with parameters stated in drawing 1 and table 1</td>
<td>PM-10</td>
<td>90%</td>
</tr>
<tr>
<td>008</td>
<td>Centrifugal Collector (cyclone)-medium efficiency means: a cyclonic device with parameters stated in drawing 1 and table 1</td>
<td>PM-10</td>
<td>80%</td>
</tr>
<tr>
<td>009</td>
<td>Centrifugal Collector (cyclone)-low efficiency means: a cyclonic device with parameters stated in drawing 1 and table 1</td>
<td>PM-10</td>
<td>25%</td>
</tr>
<tr>
<td>076</td>
<td>Multiple Cyclone without Fly Ash Reinjection means: a cyclonic device with more than one tube where fly ash is not reinjected</td>
<td>PM-10</td>
<td>90%</td>
</tr>
<tr>
<td>057, 085</td>
<td>Wet Cyclone Separator or Cyclonic Scrubbers means: a cyclonic device that sprays water into a cyclone</td>
<td>PM, PM-10</td>
<td>84%</td>
</tr>
</tbody>
</table>

Table A - Section 1 - Equipment Designed Primarily for Particulate Matter Control

PM CONTROL CATEGORY-CYCLONES means a device where airflow is forced to spin in a vortex through a tube.

PM CONTROL CATEGORY-ELECTROSTATIC PRECIPITATORS means a control device in which the incoming particulate matter...
receives an electrical charge and is then collected on a surface with the opposite electrical charge

<table>
<thead>
<tr>
<th>PM CONTROL CATEGORY - OTHER CONTROLS</th>
</tr>
</thead>
<tbody>
<tr>
<td>016, 017, 018</td>
</tr>
<tr>
<td>052</td>
</tr>
<tr>
<td>053</td>
</tr>
<tr>
<td>055</td>
</tr>
<tr>
<td>056, 113</td>
</tr>
<tr>
<td>058, 086</td>
</tr>
</tbody>
</table>

- assumed efficiency for boiler fly ash control
 - PM-10: 40% NA NA
- assumed efficiency for other applications
 - PM: 98% 78% 59%
 - PM-10: 94% 75% 56%
removal that provide little resistance to air flow

<table>
<thead>
<tr>
<th>HEPA Filter or ULPA Filter</th>
<th>PM</th>
<th>PM-10</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>99.98%</td>
<td>80%</td>
</tr>
<tr>
<td></td>
<td>99.98%</td>
<td>80%</td>
</tr>
</tbody>
</table>

| Charged Scrubber means: a control device in which electric power is used to precharge particulate matter in the gas stream as a means of increasing the scrubber's collection efficiency for fine particles |
PM	PM-10
94%	76%
84%	68%

| Condensation Scrubber means: a control device in which steam is injected into a wet scrubber to create supersaturated conditions and promote condensation of water on fine particulate matter in the gas stream |
PM	PM-10
94%	76%
84%	68%

Table A - Section 2 - Equipment Designed for VOC Control (includes efficiencies for pollutants where there is a co-benefit of control)

VOC CONTROL CATEGORY

| Catalytic Afterburners (catalytic oxidation) means: a device used to reduce VOCs to the products of PM-10 combustion through catalytic (use of a catalyst) oxidation in a combustion chamber |
VOC	PM	PM-10
94%	76%	
94%	76%	

| Thermal Afterburners (thermal oxidation) means: a device used to reduce VOCs to the products of PM-10 combustion through thermal (high CO temperature) oxidation in a combustion chamber |
VOC	PM	PM-10
97%	78%	
97%	78%	

| Flaring or Direct Combustor means: a device in which air, |
VOC	PM	PM-10
98%	79%	
61%	50%	
combustible organic waste gases, PM-10: 61% 50% 37%
CO: 98% 79% 59%

and supplementary fuel (if needed) react in the flame zone (e.g., at the flare tip) to destroy the VOCs.

Drawing 1

Table 1

<table>
<thead>
<tr>
<th>Cyclone Type</th>
<th>High Efficiency</th>
<th>Medium Efficiency</th>
<th>Low Efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ratio Dimensions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Height of inlet, H/D</td>
<td>≤0.44</td>
<td>>0.44 and <0.8</td>
<td>≥0.8</td>
</tr>
<tr>
<td>Width of inlet, W/D</td>
<td>≤0.2</td>
<td>>0.2 and <0.375</td>
<td>≥0.375</td>
</tr>
<tr>
<td>Diameter of gas exit, D_e/D</td>
<td>≤0.4</td>
<td>>0.4 and <0.75</td>
<td>≥0.75</td>
</tr>
<tr>
<td>Length of vortex finder, S/D</td>
<td>≤0.5</td>
<td>>0.5 and <0.875</td>
<td>≥0.875</td>
</tr>
</tbody>
</table>

If one or more of the "ratio dimensions," as listed in table 1, are in a different efficiency category (high, medium, low), then the lowest efficiency category shall be applied.
Subp. 1b. **Transition period.** Any owner or operator of a stationary source that used the control efficiencies in part 7011.0070 to qualify for its permit and is ineligible for its permit on or after January 1, 2007, shall apply for another type of permit on or before December 31, 2008.

Subp. 2. **Alternative control equipment and capture efficiencies; control efficiencies for hazardous air pollutants.** The owner or operator of a stationary source may use an alternative control equipment efficiency or capture efficiency or both for the control equipment listed in subpart 1, if the actual control efficiency or capture efficiency has been verified by a performance test approved by the commissioner under parts 7017.2001 to 7017.2060. The owner or operator of a stationary source may use a control equipment efficiency for listed control equipment for a hazardous air pollutant, if the control efficiency has been verified by a performance test approved by the commissioner under parts 7017.2001 to 7017.2060. The request for the alternative control efficiency or capture efficiency or both may be made through a permit application for a part 70, state, registration, capped, or general permit, or in a required notice or application submitted under parts 7007.1150 to 7007.1500. The owner or operator of a stationary source must attain at all times the alternative control efficiency or capture efficiency or both for a piece of listed control equipment at the stationary source established under this subpart.

Subp. 3. [Repealed, 32 SR 904]

Subp. 4. [Repealed, 32 SR 904]

Statutory Authority: MS s 115.03; 116.07

History: 19 SR 1345; 20 SR 2316; 22 SR 1237; 23 SR 2224; 29 SR 626; 32 SR 904; 41 SR 763

Published Electronically: April 16, 2020

7011.0072 REQUIREMENTS FOR CERTIFIED HOODS.

Subpart 1. **Applicability.** This part applies only to certified hoods and hoods the owner or operator elects to be certified. Nothing in this part shall be construed to allow the owner or operator of an emission facility to violate an applicable requirement or compliance document. Hoods evaluated before June 8, 1999, using a form, the contents of which differ from the content in subpart 3, are not required to be reevaluated, unless requested by the commissioner to demonstrate continued conformity with the design and operating practices described in the manual incorporated by reference under part 7011.0061.

Subp. 2. **Certification required.** In order to use a certified hood control efficiency value in part 7011.0070, subpart 1a, Table A, the owner or operator of a stationary source must:

A. arrange for a testing company to conduct a hood evaluation;

B. document, on a form provided by the commissioner, that the hood conforms to the design and operating practices recommended in the manual incorporated by reference under part 7011.0061 and must include with the permit application a certification statement as specified in item C, if the hood exists at the time of application. If the hood does not exist at the time of application, then the certification required in item C shall be sent to the commissioner within 30 days after start-up. The
form used to demonstrate that the hood conforms to the required design and operating practices shall contain the elements listed in subpart 3; and

C. include on the form required under item B a certification statement signed by the responsible official, stating as follows: "I certify under penalty of law that the aforementioned hood(s) has (have) been evaluated under my direction or supervision by qualified personnel and that, to the best of my knowledge and belief, the (each) hood conforms to the design and operating practices recommended in "Industrial Ventilation - A Manual of Recommended Practice, American Conference of Governmental Industrial Hygienists."

Subp. 3. Contents of hood evaluation form. The hood evaluation form required in subpart 2 shall include:

A. hood dimensions recommended by the manual incorporated by reference under part 7011.0061;

B. design capture velocity and justification for use of this velocity and a list of the manual pages relied on;

C. minimum recommended air flow into the hood;

D. recommended hood face velocity or slot velocity, and, if applicable, plenum and duct velocity;

E. capture velocity test plan; and

F. actual values of design parameters listed in items A to D, as well as fan rotation speed or fan power draw, as determined through testing.

Subp. 4. Monitoring and record keeping. The owner or operator of a certified hood shall:

A. maintain at the stationary source the most current record of each hood evaluation required by part 7011.0070; and

B. measure the fan rotation speed, fan power draw, face velocity, or other comparable air flow indicator for each hood and maintain a yearly summary of these measurements. Each yearly summary shall be maintained at the stationary source for a minimum of five years.

Statutory Authority: MS s 116.07
History: 32 SR 904
Published Electronically: February 25, 2008

7011.0075 LISTED CONTROL EQUIPMENT GENERAL REQUIREMENTS.

Subpart 1. Operating control equipment. The owner or operator of a stationary source shall operate all listed control equipment located at the stationary source whenever operating the emission units controlled by the listed control equipment in compliance with parts 7011.0060 to 7011.0080. Unless specifically allowed by a part 70, state, or general permit, each piece of listed control equipment, with the exception of low-temperature fabric filters (ID #018) using visible emissions
as the monitoring parameter under part 7011.0080, shall at all times be operated in the range established by the control equipment manufacturer's specifications for each monitoring parameter listed in part 7011.0080, or within the operating parameters set by the commissioner as the result of the most recent performance test conducted to determine control efficiency under parts 7017.2001 to 7017.2060 if those are more restrictive.

The owner or operator with fabric filters (ID #016, #017, #018) using pressure drop as the monitoring parameter under part 7011.0080 and applying for a registration permit or a capped permit, may request an alternative range to the control equipment manufacturer's specifications, if the proposed range is based on two years of compliant monitoring data supplied with the request. The proposed operating range shall be deemed acceptable unless the owner or operator is notified otherwise in writing within 30 days of receipt by the commissioner. The commissioner shall deny a request for an alternative monitoring parameter range if the commissioner finds that:

A. an owner or operator has failed to disclose fully all facts relevant to the proposed monitoring parameter range of the control device or the owner or operator has knowingly submitted false or misleading information to the commissioner;

B. operation of the control device in the monitoring parameter range proposed by the owner or operator would result in noncompliance with applicable requirements, endanger human health or the environment, or subject the stationary source to different applicable requirements or requirements under chapter 7007; or

C. the proposed range is not supported by the data supplied with the request.

Subp. 2. Maintaining control equipment. The owner or operator of a stationary source shall maintain each piece of listed control equipment according to the control equipment manufacturer's specifications, shall comply with source-specific maintenance requirements specified in a part 70, state, or general permit, and shall perform the following on each piece of listed control equipment:

A. maintain an inventory of spare parts that are subject to frequent replacement, as required by the manufacturing specification or documented in records under items H and I;

B. train staff on the operation and monitoring of control equipment and troubleshooting, and train and require staff to respond to indications of malfunctioning equipment, including alarms and other indicators of abnormal operation;

C. thoroughly inspect all control equipment at least annually, or as required by the manufacturing specification (this often requires shutting down temporarily);

D. inspect monthly, or as required by the manufacturing specification, components that are subject to wear or plugging, for example: bearings, belts, hoses, fans, nozzles, orifices, and ducts;

E. inspect quarterly, or as required by the manufacturing specification, components that are not subject to wear including structural components, housings, ducts, and hoods;

F. check daily, or as required by the manufacturing specification, monitoring equipment, for example: pressure gauges, chart recorders, temperature indicators, and recorders;
G. calibrate annually, or as required by the manufacturing specification, all monitoring equipment;

H. maintain a record of activities conducted in items A to G consisting of the activity completed, the date the activity was completed, and any corrective action taken; and

I. maintain a record of parts replaced, repaired, or modified for the previous five years.

Subp. 3. Installing monitoring equipment. The owner or operator of a stationary source shall install monitoring equipment to measure the operating parameters of all listed control equipment as specified by parts 7011.0072 and 7011.0080 or by source specific monitoring requirements specified in a part 70, state, or general permit. The monitoring equipment must be installed prior to operation of any new process equipment controlled by the control equipment or, for stationary sources in operation on December 27, 1994, by the application deadline listed in part 7007.0350, subpart 1, item A. The owner or operator of a stationary source shall operate the monitoring equipment for each piece of listed control equipment at all times the listed control equipment is required to operate in compliance with part 7011.0075.

Subp. 4. Shutdown and breakdown procedures. In the event of a shutdown of listed control equipment, or a breakdown of listed control equipment, the owner or operator of a stationary source shall comply with part 7019.1000.

Subp. 5. Reporting deviations. The owner or operator of a stationary source shall report to the commissioner in accordance with the deadlines in part 7007.0800, subpart 6, item B, subitem (2), any recorded reading outside the specification or range of specification allowed by subpart 1 of any monitored operating parameter required by part 7011.0080, except that owners or operators with a registration permit option D or a capped permit to which parts 7011.0060 to 7011.0080 apply shall make this report only if a deviation occurred in the reporting period. Owners or operators of low-temperature fabric control equipment (ID #018) using visible emissions as the monitoring parameter under part 7011.0080 shall report any visible emissions observed from the control equipment as a deviation.

Subp. 6. Demonstrating capture and control equipment efficiency. The owner or operator shall, upon request of the commissioner or the administrator, conduct a performance test under parts 7017.2001 to 7017.2060 to determine the capture efficiency of a hood or other capture device or to determine the efficiency of the control equipment. In addition to the reasons specified in part 7017.2020, subpart 1, the commissioner or the administrator may make such a request to verify that the capture device or control equipment at a stationary source is attaining the efficiency assumed under part 7011.0070.

Subp. 7. Recalculating potential to emit.

A. The owner or operator shall recalculate the potential to emit of the stationary source under part 7007.0150, subpart 4, or under part 7007.1200 for amendments to part 70 or state permits, if the owner or operator becomes aware of any information indicating that the calculation originally performed under part 7007.0150, subpart 4, or 7007.1200, would change because the listed control equipment is not as efficient as originally assumed under part 7011.0070 or changes have been.
made to decrease the listed control equipment's efficiency. The owner or operator shall submit this recalculation to the commissioner within 30 days of becoming aware of the information.

B. The owner or operator shall, upon request of the commissioner or the administrator, recalculate the potential to emit of the stationary source under part 7007.0150, subpart 4, or part 7007.1200 for amendments to part 70 and state permits, and submit the recalculation to the commissioner or the administrator by the date specified in the request.

Statutory Authority: MS s 116.07

History: 19 SR 1345; 22 SR 1237; 23 SR 2224; 29 SR 626; 32 SR 904

Published Electronically: April 16, 2020

7011.0080 MONITORING AND RECORD KEEPING FOR LISTED CONTROL EQUIPMENT.

The owner or operator of a stationary source must comply with the monitoring and record keeping required for listed control equipment by the table in this part. The owner or operator shall maintain the records required by this part for a minimum of five years from the date the record was made. Unless a specific format is required, the records may be maintained in either electronic or paper format. For certified hoods, the owner or operator shall comply with part 7011.0072.

<table>
<thead>
<tr>
<th>Identification Number(s)</th>
<th>Pollution Control Equipment Type</th>
<th>Monitoring Parameter(s)</th>
<th>Record-keeping Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Equipment designed for particulate matter control</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>007, 008, 009, 076, Centrifugal collector (cyclone)</td>
<td>Pressure drop</td>
<td>Record pressure drop every 24 hours if in operation</td>
<td></td>
</tr>
<tr>
<td>010, 011, 012, 146 Electrostatic precipitator</td>
<td>Voltage, secondary current, and, if used, conditioning agent flow rate</td>
<td>Continuous readout of voltage, and secondary current. If used, daily record of conditioning agent flow rate</td>
<td></td>
</tr>
<tr>
<td>016, 017 Fabric filter (bag house), Pressure drop high temperature (T>250°F), medium temperature (180°F>T<250°F)</td>
<td>Pressure drop</td>
<td>Record pressure drop every 24 hours if in operation</td>
<td></td>
</tr>
<tr>
<td>Code</td>
<td>Equipment Type</td>
<td>Parameters Recorded</td>
<td>Monitoring Frequency</td>
</tr>
<tr>
<td>------</td>
<td>--</td>
<td>--</td>
<td>----------------------</td>
</tr>
<tr>
<td>018</td>
<td>Fabric filter (bag house), low temperature (T<180°F)</td>
<td>Pressure drop or visible emissions observation from filter outlet during an entire cleaning cycle, unless the commissioner specifies pressure drop and/or visible emissions as the indicator(s) of fabric filter performance.</td>
<td>Record pressure drop every 24 hours if in operation, or Record whether any visible emissions are observed and the time period of observation every 24 hours if in operation; or record both if the commissioner requires monitoring of both parameters.</td>
</tr>
<tr>
<td>052</td>
<td>Spray tower</td>
<td>Liquid flow rate and pressure drop</td>
<td>Record each parameter every 24 hours if in operation.</td>
</tr>
<tr>
<td>053, 055</td>
<td>Venturi scrubber, impingement plate scrubber</td>
<td>Pressure drop and liquid flow rate</td>
<td>Record each parameter every 24 hours if in operation.</td>
</tr>
<tr>
<td>056, 113</td>
<td>Mechanically aided separator</td>
<td>Pressure drop</td>
<td>Record every 24 hours if in operation.</td>
</tr>
<tr>
<td>058, 101</td>
<td>HEPA and other wall filters</td>
<td>Condition of the filters, including, but not limited to, alignment, saturation, and tears and holes.</td>
<td>Record of filter(s) condition every 24 hours if in operation.</td>
</tr>
<tr>
<td>057, 085</td>
<td>Wet cyclone separator</td>
<td>Pressure drop; and water pressure</td>
<td>Record each parameter every 24 hours if in operation.</td>
</tr>
<tr>
<td>503</td>
<td>Charged scrubber</td>
<td>Pressure drop and liquid flow rate</td>
<td>Record each parameter every 24 hours if in operation.</td>
</tr>
<tr>
<td>517</td>
<td>Condensation scrubber</td>
<td>Pressure drop and either steam supply rate or blowdown rate</td>
<td>Record each parameter every 24 hours if in operation.</td>
</tr>
</tbody>
</table>

B. Equipment designed for volatile organic compound control
021, 022, 131, 133 Thermal afterburner

Computation temperature or inlet and outlet temperatures

Record temperatures at least once every 15 minutes

019, 020, 109 Catalytic afterburner

Inlet and outlet temperatures; and catalyst bed reactivity as per manufacturer's specifications

Record temperatures or manual readings at least once every 15 minutes; and record results of catalyst bed reactivity

023 Flaring

Temperature indicating presence of a flame

Record temperatures at least once every 15 minutes

Statutory Authority: MS s 115.03; 116.07

History: 19 SR 1345; 20 SR 2316; 23 SR 2224; 32 SR 904; 41 SR 763

Published Electronically: January 27, 2017

EMISSION STANDARDS FOR VISIBLE AIR CONTAMINANTS

7011.0100 SCOPE.

The standards of performance in parts 7011.0100 to 7011.0115 apply to any emission facility for which a specific standard of performance has not been promulgated in another rule.

Statutory Authority: MS s 116.07

History: 18 SR 614

Published Electronically: February 25, 2008

7011.0105 VISIBLE EMISSIONS; RESTRICTIONS FOR EXISTING FACILITIES.

No owner or operator of an existing emission facility to which parts 7011.0100 to 7011.0115 are applicable shall cause to be discharged into the atmosphere from the facility any gases which exhibit greater than 20 percent opacity; except for one six-minute period per hour of not more than 33 percent opacity. An exceedance of this opacity standard occurs whenever any one-hour period contains two or more six-minute periods during which the average opacity exceeds 20 percent or whenever any one-hour period contains one or more six-minute periods during which the average opacity exceeds 33 percent. For the purposes of this part, "existing emission facility" means an emission facility on which construction, modification, or reconstruction did not commence after January 31, 1977.

Statutory Authority: MS s 116.07

History: 18 SR 614; 22 SR 1237; 23 SR 145

Published Electronically: April 3, 2019
7011.0110 VISIBLE EMISSIONS; RESTRICTIONS FOR NEW FACILITIES.

No owner or operator of a new emission facility to which parts 7011.0100 to 7011.0115 are applicable shall cause to be discharged into the atmosphere from the facility any gases which exhibit greater than 20 percent opacity. For the purposes of this part, "new emission facility" means an emission facility on which construction, modification, or reconstruction commenced after January 31, 1977.

Statutory Authority: MS s 116.07
History: 18 SR 614; 22 SR 1237
Published Electronically: April 3, 2019

7011.0115 PERFORMANCE TESTS.

Unless another method is approved by the commissioner, any person required to submit performance tests for emission facilities for which parts 7011.0100 to 7011.0115 are applicable shall utilize Method 9 for visual determination of opacity.

Performance tests shall be conducted according to the requirements of this part and parts 7017.2001 to 7017.2060.

Statutory Authority: MS s 116.07
History: 18 SR 614; 18 SR 1412
Published Electronically: April 16, 2020

7011.0120 ADJUSTING OPACITY STANDARD.

Subpart 1. Application for permit modification. An owner or operator of an emission facility may file an application for a permit modification under chapter 7007 for adjustment of the opacity standard applicable to an emissions unit. In addition to the items required under chapter 7007, the application must contain data that demonstrates that:

A. based on tests conducted under parts 7017.1002 to 7017.2060, the emissions unit is in compliance with the applicable standard of performance for particulate matter and all other standards of performance, except the opacity standard;

B. the stationary source is in compliance with all applicable standards of performance except the opacity standard at the emissions unit for which adjustments are being sought or have already been permitted by the commissioner; and

C. the stationary source was operated in a manner to minimize the opacity of emissions at the emissions unit during the performance tests conducted under item A.

Subp. 2. Atmospheric dispersion modeling. If the data submitted under subpart 1 indicates that an adjustment of the opacity standard may cause or contribute to a violation of an ambient air quality standard, the commissioner shall require the owner or operator to conduct atmospheric dispersion modeling and include the results of the modeling in the application for a permit.
modification. However, a stationary source that has potential emissions of particulate matter of less than 25 tons per year is not required to conduct modeling. Modeling must be performed according to "Guidelines on Air Quality Models," EPA-450/2-78-027R, as amended by supplemental updates, or methods that the commissioner finds to be comparably reliable. The Guidelines are incorporated by reference. The Guidelines are written and published by the USEPA, Office of Air and Radiation, Office of Air Quality Planning and Standards, Research Triangle Park, North Carolina 27711. The guidelines are subject to frequent change and are available from the Minnesota State Law Library, 25 Rev. Dr. Martin Luther King Jr. Blvd., Saint Paul, Minnesota 55155.

Subp. 3. **Opacity adjustment determination and permit modification.** The commissioner shall set an adjusted opacity standard at the most restrictive level which the performance tests conducted under subpart 1, items A and C demonstrate the emissions unit is capable of meeting and shall modify the permit to establish the adjusted opacity standard, if the requirements of subparts 1 and 2 are met and the stationary source, with the adjusted opacity standard, would meet any one of the following:

- A. not cause or contribute to a violation of an ambient air quality standard;
- B. have potential emissions of particulate matter of less than 25 tons per year and less than one ton per day; or
- C. contribute less than one µg/m3 to an annual ambient particulate matter standard violation and less than five µg/m3 to a 24-hour ambient particulate matter standard violation.

Statutory Authority: MS s 116.07

History: 8 SR 2275; L 1987 c 186 s 15; 13 SR 2154; 18 SR 614; 18 SR 1412; 23 SR 1764; 23 SR 2224

Published Electronically: April 16, 2020

CONTROLLING FUGITIVE PARTICULATE MATTER

7011.0150 PREVENTING PARTICULATE MATTER FROM BECOMING AIRBORNE.

No person shall cause or permit the handling, use, transporting, or storage of any material in a manner which may allow avoidable amounts of particulate matter to become airborne.

No person shall cause or permit a building or its appurtenances or a road, or a driveway, or an open area to be constructed, used, repaired, or demolished without applying all such reasonable measures as may be required to prevent particulate matter from becoming airborne. All persons shall take reasonable precautions to prevent the discharge of visible fugitive dust emissions beyond the lot line of the property on which the emissions originate. The commissioner may require such reasonable measures as may be necessary to prevent particulate matter from becoming airborne including, but not limited to, paving or frequent clearing of roads, driveways, and parking lots; application of dust-free surfaces; application of water; and the planting and maintenance of vegetative ground cover.

Statutory Authority: MS s 116.07
INDIRECT HEATING FOSSIL-FUEL-BURNING EQUIPMENT

7011.0500 DEFINITIONS.

Subpart 1. **Scope.** As used in parts 7011.0500 to 7011.0550, the following words shall have the meanings defined herein.

Subp. 2. **Actual heat input.** "Actual heat input" means the number of Btu per hour (cal/hr) determined by multiplying the gross heating value of the fuel by the rate of fuel burned.

Subp. 3. **Coal refuse.** "Coal refuse" means waste products of coal mining, cleaning, and coal preparation operations (e.g. culm, gob, etc.) containing coal, matrix material, clay, and other organic and inorganic material.

Subp. 4. **Derating.** "Derating" means limitation of heat input and corresponding steam output capacity.
Subp. 5. **Direct heating equipment.** "Direct heating equipment" means a furnace, kiln, dryer, or other combustion equipment used in the burning of a fossil fuel for the purpose of processing a material where the products of combustion have direct contact with the heated material.

Subp. 6. **Distillate oil.** "Distillate oil" means grades of oils known as No. 1 and No. 2, as defined in the A.S.T.M. D 396 (1973).

Subp. 7. **Fossil fuel.** "Fossil fuel" means natural gas, petroleum, coal, wood, peat, and any form of solid, liquid, or gaseous fuel derived from such materials for the purpose of creating useful heat.

Subp. 8. **Gross heating value.** "Gross heating value" means the gross calorific value (cal/g or Btu/1b) of the fuel combusted as determined by A.S.T.M. test methods D 2015-66(72) for solid fuels; D 1826-64(70) for gaseous fuels, and D 240-64(73) for liquid fuels.

Subp. 9. **Indirect heating equipment.** "Indirect heating equipment" means a furnace, a boiler, or other unit of combustion equipment used in the process of burning fossil fuel for the purpose of producing steam, hot water, hot air, or other hot liquid, gas, or solid, where the products of combustion do not have direct contact with the heated medium.

Subp. 10. **Rated heat input.** "Rated heat input" means the number of Btu per hour (cal/hr) which the manufacturer has determined to be the continuous rated capability of the indirect heating equipment, or, where the rated heat input is not specified by the manufacturer, the number of Btu per hour (cal/hr) determined by dividing the rated heat output by the overall thermal efficiency.

Subp. 11. **Residual oil.** "Residual oil" means grades of oils known as No. 4, No. 5 (light), No. 5 (heavy), and No. 6, as listed in A.S.T.M. D 396 (1973).

Subp. 12. **Steam generating unit.** "Steam generating unit" means indirect heating equipment used to produce steam.

Statutory Authority: *MS s 116.07*

History: *18 SR 614*

Published Electronically: *February 25, 2008*

7011.0505 **DETERMINING APPLICABLE STANDARDS OF PERFORMANCE.**

Subpart 1. **Scope.** Parts 7011.0500 to 7011.0550 shall apply to indirect heating equipment for which a standard of performance has not been promulgated in a specific rule.

Subp. 2. **Rated heat input.** The applicable standards of performance in part 7011.0545 or 7011.0550 shall be determined by using the rated heat input of the specific indirect heating equipment and the total rated heat inputs of all indirect heating equipment and all direct heating equipment of one owner or operator at that particular location.

Subp. 3. **Simultaneous burning of different fuels.** Simultaneous burning of different fuels:

A. When different fossil fuels are burned simultaneously in any combination, the applicable sulfur dioxide standard shall be determined by proration using the following formula:
\[
y(a) + z(b) \\
\frac{w}{w = \frac{x + y + z}{}} \\
\]

where:

- \(w \) is the maximum allowable emissions of sulfur dioxide gases in lbs per million Btu (nanograms/joule);
- \(x \) is the percentage of total heat input derived from gaseous fossil fuel;
- \(y \) is the percentage of total heat input derived from liquid fossil fuel;
- \(z \) is the percentage of total heat input derived from solid fossil fuel;
- \(a \) is the allowable SO\(_2\) standard for liquid fossil fuels expressed in lbs per million Btu (nanograms/joule); and
- \(b \) is the allowable SO\(_2\) standard for solid fossil fuels expressed in lbs per million Btu (nanograms/joule).

B. When different fossil fuels are burned simultaneously in any combination, the applicable nitrogen oxides standard shall be determined by proration using the following formula:

\[
x(c) + y(a) + z(b) \\
\frac{w}{w = \frac{x + y + z}{}} \\
\]

where:

- \(w, x, y, \) and \(z \) mean the same as in the formula in item A, for determining the applicable sulfur dioxide standard;
- \(a \) is the allowable NO\(_x\) standard for liquid fossil fuels expressed in lbs per million Btu (nanograms/joule);
- \(b \) is the allowable NO\(_x\) standard for solid fossil fuels expressed in lbs per million Btu (nanograms/joule); and
- \(c \) is the allowable NO\(_x\) standard for gaseous fossil fuels expressed in lbs per million Btu (nanograms/joule).

Subp. 4. Exception. When lignite or a solid fossil fuel containing 25 percent by weight, or more, of coal refuse is burned in combination with gaseous, liquid, or other solid fossil fuel, the standard of performance for nitrogen oxides shall not apply.

Statutory Authority: MS s 116.07
7011.0510 STANDARDS OF PERFORMANCE FOR EXISTING INDIRECT HEATING EQUIPMENT.

Subpart 1. Particulate matter and sulfur dioxide. No owner or operator of existing indirect heating equipment shall cause to be discharged into the atmosphere from said equipment any gases that contain filterable particulate matter or sulfur dioxide in excess of the standards of performance shown in part 7011.0545.

Subp. 2. Opacity. No owner or operator of existing indirect heating equipment shall cause to be discharged into the atmosphere from said equipment any gases which exhibit greater than 20 percent opacity, except for one six-minute period per hour of not more than 60 percent opacity. An exceedance of this opacity standard occurs whenever any one-hour period contains two or more six-minute periods during which the average opacity exceeds 20 percent or whenever any one-hour period contains one or more six-minute periods during which the average opacity exceeds 60 percent.

Subp. 3. Definition. For the purposes of this part and part 7011.0545, "existing indirect heating equipment" means indirect heating equipment on which construction, modification, or reconstruction did not commence after January 31, 1977.

Statutory Authority: MS s 115.03; 116.07

History: 18 SR 614; 22 SR 1237; 23 SR 145; 41 SR 763

Published Electronically: April 3, 2019

7011.0515 STANDARDS OF PERFORMANCE FOR NEW INDIRECT HEATING EQUIPMENT.

Subpart 1. Particulate matter, sulfur dioxide, and nitrogen oxides. No owner or operator of new indirect heating equipment shall cause to be discharged into the atmosphere from said equipment any gases that contain filterable particulate matter, sulfur dioxide, or nitrogen oxides in excess of the standards of performance shown in part 7011.0550.

Subp. 2. Opacity. No owner or operator of new indirect heating equipment of greater than 250 million Btu per hour rated heat input shall cause to be discharged into the atmosphere from said equipment any gases which exhibit greater than 20 percent opacity, except for one six-minute period per hour of not more than 27 percent opacity. An exceedance of this opacity standard occurs whenever any one-hour period contains two or more six-minute periods during which the average opacity exceeds 20 percent or whenever any one-hour period contains one or more six-minute periods during which the average opacity exceeds 27 percent.

No owner or operator of new indirect heating equipment of 250 million Btu per hour or less rated heat input shall cause to be discharged into the atmosphere from said equipment any gases which exhibit greater than 20 percent opacity; except for one six-minute period per hour of not more than 60 percent opacity. An exceedance of this opacity standard occurs whenever any one-hour
period contains two or more six-minute periods during which the average opacity exceeds 20 percent or whenever any one-hour period contains one or more six-minute periods during which the average opacity exceeds 60 percent.

Subp. 3. Definition. For the purposes of this part and part 7011.0550, "new indirect heating equipment" means indirect heating equipment on which construction, modification, or reconstruction commenced after January 31, 1977.

Statutory Authority: MS s 115.03; 116.07
History: 18 SR 614; 22 SR 1237; 23 SR 145; 41 SR 763
Published Electronically: January 27, 2017

7011.0520 ALLOWANCE FOR STACK HEIGHT FOR INDIRECT HEATING EQUIPMENT.

Subpart 1. Requirement. The owner or operator of any indirect heating equipment shall determine and install a stack of such height that will not cause pollutant concentrations at ground levels to exceed any applicable ambient air quality standard or rule.

Subp. 2. Methodology. The determination of the ground level concentrations shall be based upon applicable dispersion calculations approved by the commissioner.

Statutory Authority: MS s 116.07
History: 18 SR 614
Published Electronically: April 16, 2020

7011.0525 HIGH HEATING VALUE.

The high heating value of a fossil fuel shall mean the same as the gross heating value.

Statutory Authority: MS s 116.07
History: 18 SR 614
Published Electronically: February 25, 2008

7011.0530 PERFORMANCE TEST METHODS.

Unless another method is approved by the commissioner, any person required to submit performance tests for indirect heating equipment must use the following test methods to demonstrate compliance:

A. Method 1 for selection of sampling site and sample traverses;

B. Method 3 for gas analysis;

C. Method 5 for concentration of filterable particulate matter and the associated moisture content;

D. Method 6 for concentration of SO₂;
E. Method 7 for concentration of NO\(_x\); and

F. Method 9 for visual determination of opacity.

Statutory Authority: MS s 115.03; 116.07

History: L 1987 c 186 s 15; 18 SR 614; 41 SR 763

Published Electronically: January 27, 2017

7011.0535 PERFORMANCE TEST PROCEDURES.

Subpart 1. In general. Performance tests shall be conducted according to the requirements of this part and parts 7017.2001 to 7017.2060.

Subp. 2. Method 1. The sampling site, as selected by Method 1, shall be the same for each pollutant during a performance test.

Subp. 3. Method 5. For Method 5, the sampling time for each run must be at least 60 minutes and the minimum sampling volume shall be 0.85 dscm (30 dscf) except that smaller sampling times or volumes, when necessitated by process variables or other factors, may be approved by the commissioner.

Subp. 4. Methods 6 and 7. For Methods 6 and 7, the sampling point in the duct shall be at the center of the cross section or at a point no closer to the walls than 1 m (3.28 feet). For Method 6 the sample shall be extracted at a rate proportional to the gas velocity at the sampling point.

Subp. 5. Method 6. For Method 6, the minimum sampling time shall be 20 minutes and the minimum sampling volume 0.02 dscm (0.71 dscf) for each sample. The arithmetic mean of two samples shall constitute one run. Samples shall be taken at approximately 30-minute intervals.

Subp. 6. Method 7. For Method 7, each run shall consist of at least four grab samples taken at approximately 15-minute intervals. The arithmetic mean of the samples shall constitute the run value.

Subp. 7. Nanograms. For each performance test, the emissions expressed in nanograms/joule (lb/million Btu) shall be determined by the following procedure:

\[
E = CF \left(\frac{20.90}{20.9 - \%O_2} \right)
\]

where:

A. E = pollutant emission, g/million cal nanograms/joule (lb/million Btu);

B. C = pollutant concentration g/dscm (lb/dscf), determined by Method 5, 6, or 7;

C. \%O\(_2\) = oxygen content by volume (expressed as percent), dry basis. Percent oxygen shall be determined by using the integrated sampling procedures of Method 3 and by analyzing the
sample with a continuous monitoring system, or with the Orsat analyzer. The sample shall be obtained as follows:

(1) For determination of sulfur dioxide and nitrogen oxides emissions, the oxygen sample shall be obtained at approximately the same point in the duct as used to obtain the samples for Methods 6 and 7 determinations, respectively.

(2) For determination of particulate emissions, the oxygen sample shall be obtained simultaneously by traversing the duct at the same sampling location used for each run of Method 5 in accordance with Method 1, except that 12 sample points shall be used in all cases;

D. The owner or operator may use either subitem (1) or (2) to determine the value of F. F = factor representing a ratio of the volume of dry flue gases generated to the calorific value of the fuel combusted.

(1) Values of F are given as follows:
 (a) for anthracitic coal according to A.S.T.M. D388-66, F = 2.723 \times 10^{-7} \text{ dscm/J (10140 dscf/10^6 Btu)};
 (b) for subbituminous and bituminous coal according to A.S.T.M. D388-66, F = 2.637 \times 10^{-7} \text{ dscm/J (9820 dscf/10^6 Btu)};
 (c) for liquid fossil fuels including crude, residual, and distillate oils, F = 2.476 \times 10^{-7} \text{ dscm/J (9220 dscf/10^6 Btu)}; and
 (d) for gaseous fossil fuels including natural gas, propane, and butane, F = 2.347 \times 10^{-7} \text{ dscm/J (8740 dscf/10^6 Btu)}.

(2) An owner or operator may use the following equation to determine an F factor (dscf/10^6 Btu):

\[
F = \frac{10^6[3.64(\%H) + 1.53(\%C) + 0.57(\%S) + 0.14(\%N) - 0.46(\%O)]}{\text{GVH}}
\]

where:

(a) H, C, S, N, and O are content by weight of hydrogen, carbon, sulfur, nitrogen, and oxygen (expressed as percent), respectively, as determined by ultimate analysis of the fuel fired, dry basis, using A.S.T.M. methods D3168-74 or D3176 (solid fuels) or D240-64(73) (liquid fuels) or computed from results using A.S.T.M. method D1137-53(70), D1945-64(73) or D1946-67(72) (gaseous fuels) as applicable; and

(b) GHV is the gross heating value (Btu/lb dry basis);

E. When combinations of fuels are fired, the F factors determined by item C or D shall be prorated in accordance with the following formula:
\[xF_1 + yF_2 + zF_3 \]

\[F = \frac{\text{something}}{100} \]

where:

\(x \) = the percentage of total heat input derived from gaseous fossil fuel;

\(y \) = the percentage of total heat input derived from liquid fossil fuel;

\(z \) = the percentage of total heat input derived from solid fossil fuel;

\(F_1 \) = the value of \(F \) for gaseous fossil fuels according to item D or E;

\(F_2 \) = the value of \(F \) for liquid fossil fuels according to item D or E; and

\(F_3 \) = the value of \(F \) for solid fossil fuels according to item D or E;

F. When combinations of fossil fuels are fired, the actual heat input, expressed in cal/hr (Btu/hr), shall be determined during each testing period. The rate of fuels burned during each testing period shall be determined by suitable methods and shall be confirmed by a material balance over the indirect heating system.

Subp. 8. **Alternate method.** When the emission factor cannot be calculated by means of the method outlined in subpart 7, the emission factors for all pollutants for all new and existing indirect heating equipment expressed in nanograms/joule (lb/million Btu) shall be determined by the following procedure:

\[E_i \]

\[E = \frac{\text{something}}{Z} \]

where:

\(E \) = pollutant emissions, in nanograms/joule (lb/million Btu);

\(E_i \) = pollutant emission rate, in nanograms/hr (lb/hr), determined by Method 5; and

\(z \) = actual heat input, in joules/hr, (million Btu/hr).

Subp. 9. **Operation of indirect heating equipment.** The indirect heating equipment shall be operated during the performance test at 90 percent or more of the rated heat input, or at 100 percent of peak operating load if an owner or operator intends to achieve compliance by derating.

Statutory Authority: MS s 115.03; 116.07

History: 18 SR 614; 18 SR 1412; 22 SR 1237; 41 SR 763

Published Electronically: April 16, 2020
7011.0540 DERATE.

The owner or operator of indirect heating equipment who elects to achieve compliance with an applicable standard of performance by derating must:

A. advise the commissioner in writing of the intent to achieve compliance by derating and the capacity level at which the owner or operator intends to operate this equipment;

B. agree to a permit condition in the required operating permit that prohibits operating the equipment over the derate level;

C. install a boiler steam flow meter to continuously record, indicate, and integrate boiler steam flow, and must:

 (1) submit a written report to the commissioner within ten days of any excess steam flow occurrence above the specified derate load;

 (2) use a one-hour averaging period in determining an excess above derate with corrections for deviations in steam pressure or temperature if required;

 (3) submit written yearly reports to the commissioner confirming that no excesses have occurred during normal operations; and

 (4) retain and make available for inspection by the commissioner or the commissioner's authorized employees or agents steam flow charts for a minimum of two years after the date of measurement; and

D. submit an effective method of physical limitation of boiler load for approval by the commissioner before authorization of a boiler derate. The limitation may include a tieback signal from the steam flow meter to the combustion control system cutting back fuel input at the derate load, a maximum limit stop on the fuel input control drive or valve, or other equivalent physical means.

Statutory Authority: MS s 116.07

History: L 1987 c 186 s 15; 18 SR 614; 44 SR 1030

Published Electronically: April 16, 2020
TABLE I: EXISTING INDIRECT HEATING EQUIPMENT.

<table>
<thead>
<tr>
<th>RATED HEAT INPUT OF THE INDIRECT HEATING EQUIPMENT (Btu/h)</th>
<th>MILLION BTU/H.</th>
<th>EMISSION LIMITATIONS</th>
<th>LBS. PER MILLION BTU</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Within Minneapolis-S.-Paul All Quality Control Region</td>
<td>Greater than 250</td>
<td>Greater than 250</td>
<td>3.0</td>
</tr>
<tr>
<td></td>
<td>Greater than 250</td>
<td>Greater than 250</td>
<td>3.0</td>
</tr>
<tr>
<td></td>
<td>Less than or equal to 250</td>
<td>4.0</td>
<td>2.0</td>
</tr>
<tr>
<td></td>
<td>Less than or equal to 250</td>
<td>4.0</td>
<td>N.A.</td>
</tr>
<tr>
<td>B. Within the City of Duluth</td>
<td>Greater than 250</td>
<td>Greater than 250</td>
<td>4.0</td>
</tr>
<tr>
<td></td>
<td>Greater than 250</td>
<td>Greater than 250</td>
<td>4.0</td>
</tr>
<tr>
<td></td>
<td>Less than or equal to 250</td>
<td>4.0</td>
<td>2.0</td>
</tr>
<tr>
<td></td>
<td>Less than or equal to 250</td>
<td>4.0</td>
<td>N.A.</td>
</tr>
<tr>
<td>C. Outside Minneapolis-S.-Paul All Quality Control Region and Greater than 250</td>
<td>Greater than 250</td>
<td>Greater than 250</td>
<td>4.0</td>
</tr>
<tr>
<td></td>
<td>Greater than 250</td>
<td>Greater than 250</td>
<td>4.0</td>
</tr>
<tr>
<td></td>
<td>Less than or equal to 250</td>
<td>4.0</td>
<td>2.0</td>
</tr>
<tr>
<td></td>
<td>Less than or equal to 250</td>
<td>4.0</td>
<td>N.A.</td>
</tr>
</tbody>
</table>

*N.A. — Not applicable

Statutory Authority:
History:
Published Electronically:

Official Publication of the State of Minnesota
Revisor of Statutes
TABLE II: NEW INDIRECT HEATING EQUIPMENT

<table>
<thead>
<tr>
<th>RATED HEAT INPUT OF THE INDIRECT HEATING EQUIPMENT</th>
<th>RATED HEAT INPUT OF ALL DIRECT AND INDIRECT HEATING EQUIPMENT AT THE PARTICULAR LOCATION</th>
<th>EMISSION LIMITATIONS LBS. PER MILLION BTU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Million BTU/HR.</td>
<td>Million BTU/HR.</td>
<td>Particulate Matter Fuels</td>
</tr>
<tr>
<td>A. Within Minneapolis-St. Paul</td>
<td></td>
<td>0.1</td>
</tr>
<tr>
<td>Air Quality Control Region</td>
<td>Greater than 250</td>
<td>0.1</td>
</tr>
<tr>
<td>Greater than 100 but less than or equal to 250</td>
<td>Greater than 250</td>
<td>0.4</td>
</tr>
<tr>
<td>Less than or equal to 100</td>
<td>Greater than 250</td>
<td>0.4</td>
</tr>
<tr>
<td>Less than or equal to 250</td>
<td>Less than or equal to 250</td>
<td>0.4</td>
</tr>
<tr>
<td>B. Within the City of Duluth</td>
<td></td>
<td>0.1</td>
</tr>
<tr>
<td>Greater than 250</td>
<td>Greater than 250</td>
<td>0.1</td>
</tr>
<tr>
<td>Greater than 100 but less than or equal to 250</td>
<td>Greater than 250</td>
<td>0.4</td>
</tr>
<tr>
<td>Less than or equal to 100</td>
<td>Greater than 250</td>
<td>0.4</td>
</tr>
<tr>
<td>Less than or equal to 250</td>
<td>Less than or equal to 250</td>
<td>0.4</td>
</tr>
<tr>
<td>C. Outside Minneapolis-St. Paul</td>
<td></td>
<td>0.1</td>
</tr>
<tr>
<td>Air Quality Control Region and Outside the City of Duluth</td>
<td>Greater than 250</td>
<td>0.4</td>
</tr>
<tr>
<td>Greater than 250</td>
<td>Greater than 250</td>
<td>0.4</td>
</tr>
<tr>
<td>Less than or equal to 250</td>
<td>Less than or equal to 250</td>
<td>0.4</td>
</tr>
</tbody>
</table>

*NO\textsubscript{x} * expressed as NO\textsubscript{2}
**N.A. - Not applicable
7011.0551 RECORD KEEPING AND REPORTING FOR INDIRECT HEATING UNITS COMBUSTING SOLID WASTE.

Subpart 1. Application. The owner or operator of indirect heating equipment combusting mixed municipal solid waste or refuse-derived fuel which makes up 30 percent or less by weight of total fuel input, as determined by subpart 2, shall comply with the conditions of this part. If the unit combusts more than 30 percent of mixed municipal solid waste or refuse-derived fuel, parts 7011.1201 to 7011.1294 apply.

Subp. 2. Calculation. The fuel feed stream composition calculation shall be the ratio of the weights of mixed municipal solid waste and refuse-derived fuel to mixed municipal solid waste, refuse-derived fuel, and all other fuels delivered to the combustion chamber. The calculation shall be made for each 24-hour period that the equipment is operated.

Subp. 3. Log. The owner or operator shall maintain an operating log where the date, weights of mixed municipal solid waste and refuse-derived fuel combusted, weight of each other fuel combusted, and the result of the calculation made in subpart 2 is recorded daily.

Subp. 4. Report. The owner or operator shall submit to the commissioner a quarterly report containing the date, weights of mixed municipal solid waste and refuse-derived fuel, and the weight of each other fuel combusted during the quarter. The reports shall be submitted within 30 days following December 30, March 30, June 30, and September 30 of each year.

Statutory Authority: MS s 116.07
History: 18 SR 2584; 22 SR 1975; L 2014 c 248 s 19; 39 SR 386
Published Electronically: October 1, 2014

7011.0553 INCORPORATION BY REFERENCE; NITROGEN OXIDES EMISSION REDUCTION REQUIREMENTS FOR AFFECTED SOURCES.

Affected sources, as defined in part 7007.0100, subpart 4, must comply with Code of Federal Regulations, title 40, part 76, as amended, entitled "Acid Rain Nitrogen Oxides Emission Reduction Program," which is incorporated by reference.

Statutory Authority: MS s 116.07
History: 19 SR 1666; 44 SR 1030
Published Electronically: April 16, 2020

FOSSIL-FUEL-FIRED STEAM GENERATORS

7011.0555 INCORPORATION BY REFERENCE; NEW SOURCE PERFORMANCE STANDARDS; FOSSIL-FUEL-FIRED STEAM GENERATORS.

Statutory Authority: MS s 116.07
ELECTRIC UTILITY STEAM GENERATING UNITS

7011.0560 INCORPORATION BY REFERENCE; NEW SOURCE PERFORMANCE STANDARDS; ELECTRIC UTILITY STEAM GENERATING UNITS.

Code of Federal Regulations, title 40, part 60, subpart Da, as amended, entitled "Standards of Performance for Electric Utility Steam Generating Units," is incorporated by reference, except that the authorities identified in Code of Federal Regulations, title 40, section 60.45Da, are not delegated to the commissioner and are retained by the administrator.

Statutory Authority: MS s 116.07

History: 18 SR 580; 44 SR 1030
Published Electronically: April 16, 2020

7011.0561 CONTROL OF MERCURY FROM ELECTRIC GENERATING UNITS.

Subpart 1. Applicability. The owners or operators of a coal-fired electric generating unit that have demonstrated actual mercury emissions of five pounds per year or more must comply with this part, except as provided under subpart 3.

Subp. 2. Definitions. The terms used in this part have the meanings given them in this subpart.

A. "Boiler operating day" means a 24-hour period between 12:00 midnight and the following midnight during which any fuel is combusted at any time in the steam-generating unit. It is not necessary for fuel to be combusted during the entire 24-hour period.

B. "Coal-fired electric generating unit" or "coal-fired EGU" means an electric generating unit that burns coal either exclusively or with any fuels in any amount.

C. "Electric generating unit" or "EGU" means a fossil-fuel combustion unit greater than 25 megawatt (MW) electric that serves a generator that produces electricity for sale. A fossil-fuel fired unit that cogenerates steam and electricity and supplies more than one-third of its potential electric output capacity to any utility power distribution system for sale is considered an electric generating unit.

D. "Grace period" means a specified number of hours after the deadline of a required quality assurance test has passed, within which the test may be performed without the loss of data.

E. "Operating hour" means a clock hour in which an EGU combusts any fuel for part of or for the entire hour.

F. "Quality-assured operating quarter" means a calendar quarter in which there are at least 168 operating hours.
Subp. 3. **Exemption.** Beginning one year after September 29, 2014, the owners or operators of a coal-fired EGU are not subject to this part if the coal-fired EGU does not:

A. emit five pounds of mercury per year or more as demonstrated in subpart 9;

B. combust coal for more than ten percent of the average annual heat input during any three consecutive calendar years; or

C. combust coal for more than 15 percent of the annual heat input during any calendar year.

Subp. 4. **Performance standards for mercury emissions.** Unless the commissioner establishes an alternative mercury emissions reduction under Minnesota Statutes, section 216B.687, the owners or operators of coal-fired electric generating units that do not qualify for the exemption under subpart 3 must control mercury emissions as described in this subpart.

A. By January 1, 2018, owners or operators of a coal-fired EGU with a nameplate electricity generation capacity greater than 100 MW must:

 (1) control mercury such that at least 90 percent of the mercury present in the fuel is captured and not emitted; or

 (2) demonstrate that the unit emits no more than 0.8 pounds of mercury per trillion British thermal units (Tbtu) of heat input.

B. By January 1, 2025, owners or operators of a coal-fired EGU that is not a supplemental unit as defined in Minnesota Statutes, sections 216B.682 to 216B.688, and with a nameplate capacity less than or equal to 100 MW must:

 (1) control mercury such that at least 70 percent of the mercury present in the fuel is captured and not emitted; or

 (2) demonstrate that the unit emits no more than 2.3 pounds of mercury per Tbtu of heat input.

C. By January 1, 2018, owners or operators of a coal-fired EGU that is a supplemental unit as defined in Minnesota Statutes, sections 216B.682 to 216B.688, must:

 (1) control mercury such that at least 70 percent of the mercury present in the fuel is captured and not emitted; or

 (2) demonstrate that the unit emits no more than 2.3 pounds of mercury per Tbtu heat input.

Subp. 5. **Monitoring mercury emissions.** The owners or operators of a coal-fired EGU must monitor mercury emissions as described in this subpart.

A. Coal-fired EGUs with a generating capacity equal to or greater than 250 MW (net) must continuously monitor mercury at a representative sampling location following the outlet of the last air pollution control device. A continuous monitor is either a continuous emissions monitoring
system (CEMS) for mercury or a sorbent trap monitoring system capable of monitoring mercury
as described in this part.

 (1) If the system is a CEMS for mercury, the owners or operators must prepare a
monitoring plan according to subpart 6. If the system is a sorbent trap system, the owner or operator
must prepare a monitoring plan according to subpart 7. The plan must be submitted within 180
days of September 29, 2014, or as established by a permit, whichever is later.

 (2) If applicable federal regulations establish requirements for installation and operation
of continuous monitoring of the coal-fired EGU, the monitoring plan must describe the compliance
procedures for the monitors according to the federal regulation, in addition to the requirements of
this part.

B. If a coal-fired EGU with a generating capacity less than 250 MW does not use a CEMS
or a sorbent trap monitoring system to monitor mercury, the owner or operator must conduct
performance testing for mercury according to this item at least once every 12 months and must
complete the test no more than 13 months after the previous test. The initial test must be conducted
by the applicable compliance deadline in subpart 4. Owners or operators may conduct performance
stack tests for mercury no less frequently than once every three years, but no longer than 37 months
after the previous performance test, if: (i) the performance tests for at least the immediately preceding
three consecutive years show mercury reduction is greater than or equal to 85 percent; or (ii) mercury
emissions are at or below 1.2 pounds of mercury per Tbtu of heat input; and, in both cases, if there
are no changes in the operation of the EGU or air pollution control equipment that could increase
emissions. The owner or operator must resume annual performance stack tests if the test results
show mercury reduction is less than 85 percent or mercury emissions are above 1.2 pounds of
mercury per Tbtu of heat input. Subitems (1) to (3) apply to performance testing conducted under
this item.

 (1) Performance testing must be conducted using Code of Federal Regulations, title 40,
part 60, Appendix A-8, Method 30B. The initial performance test must be conducted for 30 boiler
operating days under all process operating conditions. Sorbent traps must be used no longer than
ten boiler operating days. Subsequent performance tests may be ten boiler operating days long.

 (2) Compliance is determined by calculating the average mercury concentration from
all sorbent trap results.

 (3) Performance testing must be conducted according to parts 7017.2001 to 7017.2060
unless modified by this subpart.

Subp. 6. Monitoring provisions; CEMS for mercury. This subpart applies to the measurement
of mercury from a coal-fired EGU using a continuous emissions monitoring system (CEMS) for
mercury. "CEMS for mercury" means the total equipment required to measure the total vapor phase
mercury concentration, consisting of three major subsystems: sample acquisition, transport, and
conditioning; mercury converter and analyzer; and a data acquisition and handling system.

A. The monitoring plan for the CEMS for mercury must include:

 (1) a description of the CEMS span value and justification for the span value's selection;
2. methods, procedures, equations, and performance specifications, both main and alternate, to be used to conduct a certification test of the CEMS for mercury. The certification must include a seven-day calibration error test, a linearity check, a three-level system integrity check, a cycle time test, and a relative accuracy test audit as described in Code of Federal Regulations, title 40, part 60, Appendices for Test Methods;

3. methods, procedures, equations, and performance specifications to be used for ongoing daily calibration error tests, system integrity checks, linearity checks, or three-level system integrity checks, and a relative accuracy test audit. Relative accuracy must be calculated as described in Code of Federal Regulations, title 40, part 60, Appendix B: Performance Specification 2, section 12, or Performance Specification 6;

4. a description of calculations used to convert mercury concentration values to the appropriate units of the emission standard; and

5. procedures to provide substituted data in the event that monitors are not collecting mercury emissions data and data is missing from the monitoring record.

B. The CEMS must operate in compliance with parts 7017.0100, 7017.1002, 7017.1030, 7017.1080 to 7017.1130, 7017.1150, and 7017.1180.

C. Owners or operators must conduct routine quality assurance and control tests on a frequency as follows:

1. a calibration error test must be conducted daily using either mid- or high-level gas. The calibrations are not required when the EGU is not in operation;

2. single-level system integrity checks must be conducted weekly, meaning once every seven consecutive operating days for systems with mercury converters. This test is not required if daily calibrations are done with a National Institute of Standards and Technology-traceable source of oxidized mercury;

3. linearity checks or three-level system integrity checks must be conducted quarterly in each quality-assured operating quarter and no less than once every four calendar quarters;

4. a relative accuracy test audit is required annually, meaning once every four quality-assured operating quarters. This deadline may be extended for non-quality-assured operating quarters up to a maximum of eight quarters from the quarter of the previous test; and

5. a 720 operating-hour grace period is allowed for relative accuracy test audits.

D. Calibration gas mercury concentrations used to conduct quality assurance tests on a CEMS must have the following concentrations:

1. zero-level with a mercury concentration below the detectable limit of the analyzer;

2. low-level with a mercury concentration of 20 to 30 percent of the span value of the analyzer;
(3) mid-level with a mercury concentration of 50 to 60 percent of the span value of the analyzer;

(4) high-level with a mercury concentration of 80 to 100 percent of the span value of the analyzer; and

(5) alternative concentrations may be used if approved by the commissioner. The data collected with the alternative concentration must be improved, given the applicable limit to qualify for approval.

E. Measurement or adjustment of the CEMS mercury data for bias is not required.

F. The owners or operators must certify, operate, maintain, and quality-assure the CEMS used to convert measured hourly mercury concentrations to applicable emission standards according to the applicable provisions of Code of Federal Regulations, title 40, part 75.

G. The owners or operators must reduce the hourly averages data from the CEMS for mercury according to Code of Federal Regulations, title 40, section 60.13(h)(2).

H. The owners or operators must convert hourly emissions concentrations to 30 boiler operating day rolling average (lb/Tbtu) according to appropriate emission rate equations of Code of Federal Regulations, title 40, part 60, Appendix A-7, Method 19.

I. Using fuel sampling data generated by the procedures in subpart 8, the owners or operators must demonstrate that the output from item G is no greater than ten percent of the input from fuel or demonstrate that emissions in item H are no greater than those specified in subpart 4.

J. The first 30 days of the monitoring period are used to determine compliance with the mercury emissions concentration limit.

Subp. 7. Monitoring provisions; sorbent trap monitoring system.

A. Owners or operators of a coal-fired EGU using a sorbent trap monitoring system must follow the monitoring provisions under this subpart for the measurement of mercury. "Sorbent trap monitoring system" means the equipment necessary to monitor mercury emissions continuously by using paired sorbent traps containing iodated charcoal or other sorbent medium. The system consists of sample acquisition, transport, conditioning, sorbent traps, and an automated data acquisition and handling system. The system samples the stack gas at a constant proportional rate relative to the stack gas volumetric flow rate. The sampling is a batch process. The average mercury concentration in the stack gas for the sampling period is determined, in units of micrograms per dry standard cubic meter (μg/dscm), based on the sample volume measured by the gas flow meter and the mass of mercury collected in the sorbent traps. The use of a sorbent trap monitoring system also requires the installation and certification of a stack gas flow monitor to maintain the ratio of stack gas flow rate to sample flow rate.

B. The monitoring plan for the sorbent trap monitoring system must include:

(1) methods, procedures, equations, and performance specifications, both main and alternate, to be used to conduct a certification test of the sorbent trap monitoring system;
methods, procedures, equations, and performance specifications, both main and alternate, to be used for ongoing relative accuracy test audits;

(3) the rationale for the minimum acceptable data collection period for the size of the sorbent trap selected;

(4) procedures used to monitor system integrity and data quality;

(5) a description of calculations used to convert mercury concentration values to the appropriate units of the emission standard;

(6) procedures for inscribing or permanently marking a unique identification number on each sorbent trap for tracking purposes. A record system must be developed to track the identification of the monitoring system along with dates and hours for each collection period; and

(7) procedures for providing substituted data in the event that monitors are not available to measure mercury emissions and data is missing from the monitoring record.

C. The continuous monitor must be operated in compliance with parts 7017.0100, 7017.1002, 7017.1030, 7017.1080 to 7017.1130, 7017.1150, and 7017.1180.

D. Monitoring systems that are used to measure stack gas volumetric flow rate, diluent gas concentration, or stack gas moisture content, either for routine operation of a sorbent trap monitoring system or to convert mercury concentration data to units of the applicable emission limit, must be certified according to the applicable provisions of Code of Federal Regulations, title 40, part 75.

E. The owners or operators must determine the mercury concentration for each data collection period and assign this concentration value to each operating hour in the data collection period.

F. The owners or operators must convert hourly emissions concentrations to 30 boiler operating day rolling average (lb/Tbtu) according to appropriate emission rate equations of Code of Federal Regulations, title 40, part 60, Appendix A-7, Method 19.

G. Using fuel sampling data generated by the procedures in subpart 8, the owners or operators must demonstrate that the output from item F meets the limits specified in subpart 4.

H. The first 30 days of the monitoring period is the first period used to determine compliance with the mercury emissions concentration limit.

Subp. 8. **Procedures for determining mercury content of fuel.** The owner or operator shall prepare a fuel sampling and analysis plan and submit it to the commissioner 30 days prior to collecting the initial fuel sample. When the mercury content of fuel is needed to determine total mercury emission reductions, owners or operators of a coal-fired EGU must use the fuel sampling and measuring fuel content procedures in items A to E. The mercury content of fuel used for start-up, unit shutdown, or transient flame stability does not need to be measured. The owners or operators must:

A. collect samples of each fuel using ASTM D2234/D2234M;
B. prepare a composited sample for each fuel type using ASTM D2013/D2013M;

C. determine the heat content of the fuel using ASTM D5865;

D. determine the moisture content of the fuel using ASTM D3173; and

E. measure mercury in the fuel sample using ASTM D6722-11, or SW-846-7471 for solid samples, and report in terms of lb/ton of fuel burned.

Subp. 9. **Demonstrating applicability of mercury control requirements.** The owners or operators of a coal-fired EGU without a continuous monitor for mercury must conduct a 28 to 30 operating day performance test to determine the mercury mass emissions according to this subpart. The initial test must be completed within one year of September 29, 2014. The owner or operator must:

A. conduct performance tests according to parts 7017.2001 to 7017.2060. When preparing the test plan required in part 7017.2030, the owner or operator must identify parametric data for air pollution control devices in place during the performance test that will be recorded;

B. use Code of Federal Regulations, title 40, part 60, Appendix A-8, Method 30B, or a substantially similar alternative method approved by the commissioner;

C. locate the Method 30B sampling probe tip at a point within the ten percent centroidal area of the duct at a location selected according to Method 1 in Code of Federal Regulations, title 40, part 60, Appendix A-1, and conduct at least three nominally equal length test runs over the 28-to 30-day test period. Test runs may not be longer than ten days;

D. collect diluents gas data over the corresponding time period using Code of Federal Regulations, title 40, part 60, Appendix A-2, Method 3A, or a diluent gas monitor certified according to Code of Federal Regulations, title 40, part 75;

E. for calculation of pounds per year of mercury, collect:

 (1) stack gas flow rate using Method 2, 2F, or 2G in Code of Federal Regulations, title 40, part 60, Appendix A-1 or A-2, or a flow rate monitor that has been certified according to Code of Federal Regulations, title 40, part 75; and

 (2) moisture data using Method 4 in Code of Federal Regulations, title 40, part 60, Appendix A-3, or a moisture monitor certified according to Code of Federal Regulations, title 40, part 75;

F. calculate the average mercury concentration, in micrograms per cubic meter (μg/m³), for the 28- to 30-day performance test, as the arithmetic average of all sorbent trap results. The owner or operator must calculate the average CO₂ or O₂ concentration for the test period. The owner or operator must use the average mercury concentration and diluents gas values to express the performance test results in units of pounds of mercury per trillion British thermal units (lb/Tbtu) and actual pounds of mercury emitted per year, using the expected fuel heat input over a one-year period. Alternatively, the owner or operator must calculate pounds of mercury emitted per year...
using the average mercury concentration, average stack gas flow rate, average stack gas moisture, and maximum operating hours per year;

G. record parametric data for air pollution control devices in place during the performance test. If the calculation in item F demonstrates that the EGU emits less than five pounds per year of mercury, the owner or operator must operate air pollution control equipment at the rates exhibited during the performance test; and

H. repeat the performance test once every five years to demonstrate that the mercury emissions from the EGU remain below five pounds per year.

Subp. 10. Incorporations by reference. For purposes of this part, the methods listed in items A and B are incorporated by reference, as amended. These documents are subject to frequent change:

A. The Annual Book of American Society for Testing and Materials International (ASTM) methods D2234/D2234M (Standard Practice for Collection of a Gross Sample of Coal), D2013/D2013M (Standard Practice for Preparing Coal Samples for Analysis), D5865 (Standard Test Method for Gross Calorific Value of Coal and Coke), D3173 (Standard Test Method for Moisture in the Analysis Sample of Coal and Coke), and D6722 (Standard Test Method for Total Mercury in Coal and Coal Combustion Residues by Direct Combustion Analysis). These methods are published in the Annual Book of ASTM Standards, Volume 05.06, Gaseous Fuels; Coal and Coke; Catalysts; Bioenergy and Industrial Chemicals from Biomass (2017). These documents are available through the Minitex interlibrary loan system; and

Statutory Authority: MS s 116.07

History: 39 SR 386; 43 SR 797; 44 SR 1030

Published Electronically: April 16, 2020

7011.0562 INCORPORATION BY REFERENCE; NEW SOURCE PERFORMANCE STANDARDS; GREENHOUSE GAS EMISSIONS FOR ELECTRIC GENERATING UNITS.

Statutory Authority: MS s 116.07

History: 44 SR 1030

Published Electronically: April 16, 2020
7011.0563 INCORPORATION BY REFERENCE; EMISSION STANDARDS; COAL- AND OIL-FIRED ELECTRIC UTILITY STEAM GENERATORS.

Statutory Authority: MS s 116.07
History: 39 SR 386; 44 SR 1030
Published Electronically: April 16, 2020

INDUSTRIAL-COMMERCIAL-INSTITUTIONAL STEAM GENERATING UNITS

7011.0565 INCORPORATION BY REFERENCE; NEW SOURCE PERFORMANCE STANDARDS; STEAM GENERATING UNITS.

Statutory Authority: MS s 116.07
History: 18 SR 580; 44 SR 1030
Published Electronically: April 16, 2020

SMALL INDUSTRIAL-COMMERCIAL-INSTITUTIONAL STEAM GENERATING UNITS

7011.0570 INCORPORATION BY REFERENCE; NEW SOURCE PERFORMANCE STANDARDS; SMALL STEAM GENERATING UNITS.

Statutory Authority: MS s 116.07
History: 18 SR 580; 44 SR 1030
Published Electronically: April 16, 2020

DIRECT HEATING FOSSIL-FUEL-BURNING EQUIPMENT

7011.0600 DEFINITIONS.

Subpart 1. Scope. As used in parts 7011.0600 to 7011.0620, the following words shall have the meanings defined herein.
Subp. 2. Actual heat input. "Actual heat input" means the number of Btu per hour (cal/hr) determined by multiplying the gross heating value of the fuel by the rate of fuel burned.

Subp. 3. Direct heating equipment. "Direct heating equipment" means a furnace, kiln, dryer, or other combustion equipment used in the burning of a fossil fuel for the purpose of processing a material where the products of combustion have direct contact with the heated material.

Subp. 4. Fossil fuel. "Fossil fuel" means natural gas, petroleum, coal, wood, peat, and any form of solid, liquid, or gaseous fuel derived from such materials for the purpose of creating useful heat.

Subp. 5. Gross heating value. "Gross heating value" means the gross calorific value (cal/g or Btu/lb) of the fuel combusted as determined by A.S.T.M. test methods D 2015-66(72) for solid fuels; D 1826-64(70) for gaseous fuels, and D 240-64(73) for liquid fuels.

Subp. 6. Indirect heating equipment. "Indirect heating equipment" means a furnace, a boiler or other unit of combustion equipment used in the process of burning fossil fuel for the purpose of producing steam, hot water, hot air, or other hot liquid, gas, or solid, where the products of combustion do not have direct contact with the heated medium.

Subp. 7. Rated heat input. "Rated heat input" means the number of Btu per hour (cal/hr) which the manufacturer has determined to be the continuous rated capability of the direct heating equipment.

Statutory Authority: MS s 116.07

History: 18 SR 614
Published Electronically: February 25, 2008

7011.0605 DETERMINING APPLICABLE STANDARDS OF PERFORMANCE.

Parts 7011.0600 to 7011.0620 shall apply to direct heating equipment for which a standard of performance has not been promulgated in a specific rule.

The applicable standard of performance for sulfur dioxide shall be determined by using the total rated heat input of all indirect heating equipment and all direct heating equipment of one owner or operator at that particular location.

When different fossil fuels are burned simultaneously in any combination, the applicable sulfur dioxide (SO$_2$) standard shall be determined by proration using the following formula:

\[
y(a) + z(b) \\
\frac{w}{x + y + z}
\]

where:
w is the maximum allowable emissions of sulfur dioxide gases in lbs/per million Btu (g/million cal);

x is the percentage of total heat input derived from gaseous fossil fuel;

y is the percentage of total heat input derived from liquid fossil fuel;

z is the percentage of total heat input derived from solid fossil fuel;

a is the allowable SO\(_2\) standard for liquid fossil fuels expressed in lbs per million Btu (g/million cal); and

b is the allowable SO\(_2\) standard for solid fossil fuels expressed in lbs per million Btu (g/million cal).

Statutory Authority: MS s 116.07

History: 18 SR 614

Published Electronically: April 3, 2019

7011.0610 PERFORMANCE STANDARDS; FOSSIL-FUEL-BURNING DIRECT HEATING EQUIPMENT.

Subpart 1. Particulate matter; limitations.

A. No owner or operator of any direct heating equipment shall cause to be discharged into the atmosphere from the direct heating equipment any gases that:

(1) contain the sum of filterable and organic condensable particulate matter in excess of the limits allowed by parts 7011.0700 to 7011.0735; or

(2) exhibit greater than 20 percent opacity, except for one six-minute period per hour of not more than 60 percent opacity. An exceedance of this opacity standard occurs whenever any one-hour period contains two or more six-minute periods during which the average opacity exceeds 20 percent or whenever any one-hour period contains one or more six-minute periods during which the average opacity exceeds 60 percent.

B. No owner or operator of an existing gray iron cupola with a melting capacity of less than 1-1/2 tons per hour shall allow emissions which exceed 0.3 grain per standard cubic foot, dry basis, and the owner or operator shall incinerate all gases, vapors, and gas entrained effluents from such cupolas at a temperature of not less than 1,200 degrees Fahrenheit for a period of not less than 0.3 seconds. The owner or operator of any other gray iron cupola shall meet the requirements of item A.

Subp. 2. Sulfur oxide; limitations. Sulfur oxide limitations:

A. Within Minneapolis-Saint Paul Air Quality Control Region. No owner or operator of direct heating equipment located within the Minneapolis-Saint Paul Air Quality Control Region shall cause to be discharged into the atmosphere from such equipment any gases which contain sulfur dioxide:
(1) in excess of three pounds per million Btu heat input if a solid fossil fuel is burned or 1.6 pounds per million Btu heat input if a liquid fossil fuel is burned, if the total rated heat input of all indirect and direct heating equipment of the owner or operator at that particular location exceeds 250 million Btu per hour;

(2) in excess of four pounds per million Btu heat input if a solid fossil fuel is burned or two pounds per million Btu heat input if a liquid fossil fuel is burned, if the total rated heat input of all indirect and direct heating equipment of the owner or operator at that particular location is equal to or less than 250 million Btu per hour.

B. Outside Minneapolis-Saint Paul Air Quality Control Region. No owner or operator of direct heating equipment located outside the Minneapolis-Saint Paul Air Quality Control Region shall cause to be discharged into the atmosphere from such equipment any gases which contain sulfur dioxide in excess of four pounds per million Btu heat input if a solid fossil fuel is burned or two pounds per million Btu heat input if a liquid fossil fuel is burned, if the total rated heat input of all indirect and direct heating equipment of the owner or operator at that particular location is greater than 250 million Btu per hour.

Statutory Authority: MS s 115.03; 116.07
History: 18 SR 614; 23 SR 145; 41 SR 763
Published Electronically: September 17, 2020

7011.0615 PERFORMANCE TEST METHODS.

Unless another method is approved by the commissioner, any person required to submit performance tests for direct heating equipment must use the following test methods to demonstrate compliance:

A. Method 1 for selection of sampling site and sample traverses;

B. Method 3 for gas analysis;

C. Method 5 for concentration of filterable particulate matter and the associated moisture content and Method 202 for concentration of organic condensable particulate matter;

D. Method 6 for concentration of SO$_2$; and

E. Method 9 for visual determination of opacity.

Statutory Authority: MS s 115.03; 116.07
History: 18 SR 614; 41 SR 763
Published Electronically: April 16, 2020

7011.0620 PERFORMANCE TEST PROCEDURES.

Subpart 1. In general. Performance tests shall be conducted according to the requirements of this part and parts 7017.2001 to 7017.2060.
Subp. 2. **Sampling site.** The sampling site, as selected by Method 1, shall be the same for each pollutant during a performance test.

Subp. 3. **Sampling time for Methods 5 and 202.** For Methods 5 and 202, the sampling time for each run must be at least 60 minutes and the minimum sampling volume must be 0.85 dscm (30 dscf) except that owners or operators may, prior to testing, request approval from the commissioner for smaller sampling times or volumes, when necessitated by process variables or site-specific limitations.

Subp. 4. **Sampling point for Method 6.** For Method 6, the sampling point in the duct shall be at the center of the cross section or at a point no closer to the walls than one meter (3.28 ft.). The sample shall be extracted at a rate proportional to the gas velocity at the sampling point.

Subp. 5. **Sampling time for Method 6.** For Method 6, the minimum sampling time shall be 20 minutes and the minimum sampling volume 0.02 dscm (0.71 dscf) for each sample. The arithmetic mean of two samples shall constitute one run. Samples shall be taken at approximately 30-minute intervals.

Subp. 6. **Sulfur dioxide emissions.** For each performance test for sulfur dioxide emissions, the emissions expressed in g/million cal (lb/million Btu) shall be determined by the following procedure if the actual heat input is used:

\[
E = CF \left(\frac{20.90}{20.9 - \%O_2} \right)
\]

where:

A. \(E \) = pollutant emission, g/million cal (lb/million Btu);

B. \(C \) = pollutant concentration, g/dscm (lb/dscf);

C. \(\%O_2 \) = oxygen content by volume (expressed as percent), dry basis. Percent oxygen shall be determined by using the integrated sampling procedures of Method 3 or with the Orsat analyzer. The sample shall be obtained at approximately the same point in the duct as used to obtain the samples for Method 6;

D. The owner or operator may use either subitem (1) or (2) to determine the value of \(F \). \(F \) = factor representing a ratio of the volume of dry flue gases generated to the calorific value of the fuel combusted.

(1) Values of \(F \) are given as follows:

(a) for anthracitic coal according to A.S.T.M. D388-66, \(F = 0.01139 \text{ dscm/}10^4 \text{ cal} \) (101.4 dscf/10^4 Btu);

(b) for subbituminous and bituminous coal according to A.S.T.M. D388-66, \(F = 0.01103 \text{ dscm/}10^4 \text{ cal} \) (98.2 dscf/10^4 Btu);
(c) for liquid fossil fuels including crude, residual, and distillate oils, \(F = 0.01036 \ \text{dscm}/10^4 \ \text{cal} \ (92.2 \ \text{dscf}/10^4 \ \text{Btu}) \); and

(d) for gaseous fossil fuels including natural gas, propane, and butane, \(F = 0.00982 \ \text{dscm}/10^4 \ \text{cal} \ (87.4 \ \text{dscf}/10^4 \ \text{BTU}) \).

(2) An owner or operator may use the following equation to determine an F factor (dscf/10^4 Btu):

\[
F = \frac{10^6 \cdot 3.64(\%H) + 1.53(\%C) + 0.57(\%S) + 0.14(\%N) - 0.46(\%)}{\text{GVH}}
\]

where:

(a) \(H, C, S, N, \) and \(O \) are content by weight of hydrogen, carbon, sulfur, nitrogen, and oxygen (expressed as percent), respectively, as determined by ultimate analysis of the fuel fired, dry basis, using A.S.T.M. methods D3178-74 or D3176 (solid fuels) or D240-64(73) (liquid fuels) or computed from results using A.S.T.M. method D1137-53(70), D1945-64(73) or D1946-67(72) (gaseous fuels) as applicable; and

(b) \(\text{GHV} \) is the gross heating value.

E. When combinations of fuels are fired, the F factors determined by item D or E shall be prorated in accordance with the following formula:

\[
F = \frac{xF_1 + yF_2 + zF_3}{100}
\]

where:

\(x = \) the percentage of total heat input derived from gaseous fossil fuel;
\(y = \) the percentage of total heat input derived from liquid fossil fuel;
\(z = \) the percentage of total heat input derived from solid fossil fuel;
\(F_1 = \) the value of F for gaseous fossil fuels according to item D or E;
\(F_2 = \) the value of F for liquid fossil fuels according to item D or E;
\(F_3 = \) the value of F for solid fossil fuels according to item D or E.

F. When combinations of fossil fuels are fired, the actual heat input, expressed in cal/hr (Btu/hr), shall be determined during each testing period. The rate of fuels burned during each testing period shall be determined using the appropriate F factor for each fuel type, and the total heat input from all fuels shall be calculated and reported.
period shall be determined by suitable methods and shall be confirmed by a material balance over
the direct heating system.

Statutory Authority: MS s 115.03; 116.07

History: 18 SR 614; 18 SR 1412; 22 SR 1237; 41 SR 763

Published Electronically: January 27, 2017

7011.0625 RECORD KEEPING AND REPORTING FOR DIRECT HEATING UNITS
COMBUSTING SOLID WASTE.

Subpart 1. Application. The owner or operator of direct heating equipment combusting mixed
municipal solid waste or refuse-derived fuel which makes up 30 percent or less by weight of total
fuel weight input, as determined by subpart 2, shall comply with the conditions of subparts 3 and
4. If the unit combusts more than 30 percent of mixed municipal solid waste or refuse-derived fuel,
parts 7011.1201 to 7011.1294 apply.

Subp. 2. Calculation. The fuel feed stream composition calculation shall be the ratio of the
weights of mixed municipal solid waste and refuse-derived fuel to mixed municipal solid waste,
refuse-derived fuel, and all other fuels delivered to the combustion chamber. The calculation shall
be made for each 24-hour period that the equipment is operated.

Subp. 3. Log. The owner or operator shall maintain an operating log where the date, weight
of mixed municipal solid waste and refuse-derived fuel, weight of each other fuel combusted, and
the result of the calculation made in subpart 2 is recorded daily.

Subp. 4. Reports. The owner or operator shall submit to the commissioner a quarterly report
containing the date, weight of mixed municipal solid waste and refuse-derived fuel, and weight of
each other fuel combusted during the quarter. The reports shall be submitted within 30 days following
December 30, March 30, June 30, and September 30 of each year.

Statutory Authority: MS s 116.07

History: 18 SR 2584; 22 SR 1975; L 2014 c 248 s 19; 39 SR 386

Published Electronically: October 1, 2014

INDUSTRIAL PROCESS EQUIPMENT

7011.0700 DEFINITIONS.

Subpart 1. Scope. As used in parts 7011.0700 to 7011.0735, the following words shall have
the meanings defined herein.

Subp. 2. Collection efficiency. "Collection efficiency" means the percent of the total amount
of particulate matter entering the control equipment which is removed from the exhaust stream by
the control equipment and is calculated by the following equation:
100(A - B)

collection efficiency =

\[
\text{A}
\]

where:

A = the amount (grams or pounds) or the concentration (gr/SCF) of particulate matter entering the collection equipment; and

B = the amount (grams or pounds) or the concentration (gr/SCF) of particulate matter leaving the control equipment.

Subp. 3. Industrial process equipment. "Industrial process equipment" means any equipment, apparatus, or device embracing chemical, industrial, or manufacturing facilities such as ovens, mixing kettles, heating and reheating furnaces, kilns, stills, dryers, roasters, and equipment used in connection therewith, and all other methods or forms of manufacturing or processing that may emit any air contaminant such as smoke, odor, particulate matter, or gaseous matter. Industrial process equipment is an affected facility. An emission facility may consist of more than one unit of industrial process equipment.

Subp. 4. Process weight. "Process weight" means the total weight in a given time period of all materials introduced into any industrial process equipment that may cause any emission of particulate matter. Solid fuels charged are considered as part of the process weight, but liquid and gaseous fuels and combustion air are not. For a cyclical or batch operation, the process weight per hour is derived by dividing the total process weight by the number of hours in one complete operation from the beginning of any given process to the completion thereof, excluding any time during which the equipment is idle. For a continuous operation, the process weight per hour is derived by dividing the process weight for a typical period of time.

Statutory Authority: MS s 116.07

History: 18 SR 614

Published Electronically: February 25, 2008

7011.0705 SCOPE.

Parts 7011.0700 to 7011.0735 shall apply to industrial process equipment for which a standard of performance has not been promulgated in a specific rule.

Statutory Authority: MS s 116.07

History: 18 SR 614

Published Electronically: February 25, 2008
7011.0710 PERFORMANCE STANDARDS; PRE-1969 INDUSTRIAL PROCESS EQUIPMENT.

Subpart 1. **Prohibited discharge of gases.** No owner or operator of any industrial process equipment that was in operation before July 9, 1969, shall cause to be discharged into the atmosphere from the industrial process equipment any gases that:

A. in any one hour contain the sum of filterable and organic condensable particulate matter in excess of the amount permitted in part 7011.0730 for the allocated process weight; provided that the owner or operator shall not be required to reduce the particulate matter emission below the concentration permitted in part 7011.0735 for the appropriate source gas volume; provided further that regardless of the mass emission permitted by part 7011.0730, the owner or operator shall not be permitted to emit the sum of filterable and organic condensable particulate matter in a concentration in excess of 0.30 grains per standard cubic foot of exhaust gas; or

B. exhibit greater than 20 percent opacity, except for one six-minute period per hour of not more than 60 percent opacity. An exceedance of this opacity standard occurs whenever any one-hour period contains two or more six-minute periods during which the average opacity exceeds 20 percent or whenever any one-hour period contains one or more six-minute periods during which the average opacity exceeds 60 percent.

Subp. 2. **Compliance.** The owner or operator of any industrial process equipment which was in operation before July 9, 1969, which has control equipment with a collection efficiency of not less than 99 percent by weight shall be considered in compliance with the requirements of subpart 1, item A.

Subp. 3. **Equipment located outside St. Paul, Minneapolis, and Duluth.** The owner or operator of any industrial process equipment which was in operation before July 9, 1969, which is located outside the Minneapolis-St. Paul Air Quality Control Region and the city of Duluth, which is located not less than one-fourth mile from any residence or public roadway, and which has control equipment with a collection efficiency of not less than 85 percent by weight, and the operation of the entire emission facility does not cause a violation of the ambient air quality standards, shall be considered in compliance with the requirements of subpart 1, item A.

Statutory Authority: MS s 115.03; 116.07

History: 18 SR 614; 23 SR 145; 41 SR 763

Published Electronically: September 17, 2020

7011.0715 STANDARDS OF PERFORMANCE FOR POST-1969 INDUSTRIAL PROCESS EQUIPMENT.

Subpart 1. **Prohibited discharge of gases.** No owner or operator of any industrial process equipment that was not in operation before July 9, 1969, shall cause to be discharged into the atmosphere from the industrial process equipment any gases that:

A. in any one hour contain the sum of filterable and organic condensable particulate matter in excess of the amount permitted in part 7011.0730 for the allocated process weight; provided that
the owner or operator shall not be required to reduce the particulate matter emission below the concentration permitted in part 7011.0735 for the appropriate source gas volume; provided that regardless of the mass emission permitted by part 7011.0730, the owner or operator shall not be permitted to emit the sum of filterable and organic condensable particulate matter in a concentration in excess of 0.30 grains per standard cubic foot of exhaust gas; or

B. exhibit greater than 20 percent opacity.

Subp. 2. Compliance. The owner or operator of any industrial process equipment which was not in operation before July 9, 1969, which has control equipment with a collection efficiency of not less than 99.7 percent by weight shall be considered in compliance with the requirements of subpart 1, item A.

Subp. 3. Equipment located outside of Saint Paul, Minneapolis, and Duluth. The owner or operator of any industrial equipment which was in operation after July 9, 1969, which is located outside the Minneapolis-Saint Paul Air Quality Control Region and the city of Duluth, which is located not less than one-fourth mile from any residence or public roadway, and which has control equipment with a collection efficiency of not less than 85 percent by weight, and the operation of the entire emission facility does not cause a violation of the ambient air quality standards, shall be considered in compliance with the requirements of subpart 1, item A.

Statutory Authority: MS s 115.03; 116.07

History: 18 SR 614; 41 SR 763

Published Electronically: January 27, 2017

7011.0720 PERFORMANCE TEST METHODS.

Unless another method is approved by the commissioner, any owner or operator required to submit performance tests for any industrial process equipment must use the following test methods to demonstrate compliance:

A. Method 1 for sample and velocity traverses;

B. Method 2 for velocity and volumetric flow rate;

C. Method 3 for gas analysis;

D. Method 5 for the concentration of filterable particulate matter and associated moisture content and Method 202 for the concentration of organic condensables; and

E. Method 9 for visual determination of the opacity of emissions from stationary sources.

Statutory Authority: MS s 115.03; 116.07

History: 18 SR 614; 41 SR 763

Published Electronically: April 16, 2020

7011.0725 [Repealed, 41 SR 763]

Published Electronically: January 27, 2017
TABLE 1.

<table>
<thead>
<tr>
<th>Process Weight Rate (pounds/hour)</th>
<th>Emission Rate (pounds/hour)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>0.55</td>
</tr>
<tr>
<td>500</td>
<td>1.53</td>
</tr>
<tr>
<td>1,000</td>
<td>2.25</td>
</tr>
<tr>
<td>5,000</td>
<td>6.34</td>
</tr>
<tr>
<td>10,000</td>
<td>9.73</td>
</tr>
<tr>
<td>20,000</td>
<td>14.99</td>
</tr>
<tr>
<td>60,000</td>
<td>29.60</td>
</tr>
<tr>
<td>80,000</td>
<td>31.19</td>
</tr>
<tr>
<td>120,000</td>
<td>33.28</td>
</tr>
<tr>
<td>160,000</td>
<td>34.85</td>
</tr>
<tr>
<td>200,000</td>
<td>36.11</td>
</tr>
<tr>
<td>400,000</td>
<td>40.35</td>
</tr>
<tr>
<td>1,000,000</td>
<td>46.72</td>
</tr>
</tbody>
</table>

Interpolation of the data in this part for the process weight rates up to 60,000 pounds/hour shall be accomplished by the use of the equation:

\[E = 3.59P^{0.62} \]

\[< \]

\[P = 30 \text{ tons/hour} \]

and interpolation and extrapolation of the data for process weight rates in excess of 60,000 pounds/hour shall be accomplished by use of the equation:

\[E = 17.31P^{0.16} \]

\[P > 30 \text{ tons/hour} \]

where:

- \(E \) = emissions in pounds per hour;
- \(P \) = process weight rate in tons per hour.

Statutory Authority: *MS s 116.07*
TABLE 2.

<table>
<thead>
<tr>
<th>Source Gas Volume, DSCFM<sup>a</sup></th>
<th>Concentration GR/DSCF<sup>b</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>7,000 or less</td>
<td>0.100</td>
</tr>
<tr>
<td>8,000</td>
<td>0.096</td>
</tr>
<tr>
<td>9,000</td>
<td>0.092</td>
</tr>
<tr>
<td>10,000</td>
<td>0.089</td>
</tr>
<tr>
<td>20,000</td>
<td>0.071</td>
</tr>
<tr>
<td>30,000</td>
<td>0.062</td>
</tr>
<tr>
<td>40,000</td>
<td>0.057</td>
</tr>
<tr>
<td>50,000</td>
<td>0.053</td>
</tr>
<tr>
<td>60,000</td>
<td>0.050</td>
</tr>
<tr>
<td>80,000</td>
<td>0.045</td>
</tr>
<tr>
<td>100,000</td>
<td>0.042</td>
</tr>
<tr>
<td>120,000</td>
<td>0.040</td>
</tr>
<tr>
<td>140,000</td>
<td>0.038</td>
</tr>
<tr>
<td>160,000</td>
<td>0.036</td>
</tr>
<tr>
<td>180,000</td>
<td>0.035</td>
</tr>
<tr>
<td>200,000</td>
<td>0.034</td>
</tr>
<tr>
<td>300,000</td>
<td>0.030</td>
</tr>
<tr>
<td>400,000</td>
<td>0.027</td>
</tr>
<tr>
<td>500,000</td>
<td>0.025</td>
</tr>
<tr>
<td>600,000</td>
<td>0.024</td>
</tr>
<tr>
<td>800,000</td>
<td>0.021</td>
</tr>
</tbody>
</table>
1,000,000
or more
0.020

a Dry standard cubic feet per minute
b Grains per dry standard cubic foot.

Statutory Authority: MS s 116.07
History: 13 SR 2154; 18 SR 614
Published Electronically: February 25, 2008

7011.0800 [Repealed, 23 SR 2224]
Published Electronically: February 25, 2008

7011.0805 [Repealed, 23 SR 2224]
Published Electronically: February 25, 2008

7011.0810 [Repealed, 18 SR 580]
Published Electronically: February 25, 2008

7011.0815 [Repealed, 23 SR 2224]
Published Electronically: February 25, 2008

7011.0820 [Repealed, 23 SR 2224]
Published Electronically: February 25, 2008

7011.0825 [Repealed, 23 SR 2224]
Published Electronically: February 25, 2008

PORTLAND CEMENT PLANTS

7011.0830 INCORPORATION BY REFERENCE; NEW SOURCE PERFORMANCE STANDARDS; PORTLAND CEMENT PLANTS.

Statutory Authority: MS s 116.07
History: 18 SR 580; 44 SR 1030
Published Electronically: April 16, 2020

CONCRETE MANUFACTURING PLANT STANDARDS OF PERFORMANCE

7011.0850 DEFINITIONS.

Subpart 1. Scope. The definition in this part applies to the terms used in parts 7011.0850 to 7011.0859. The definitions in parts 7005.0100, 7007.0100, and 7011.0060 apply to the terms used in parts 7011.0850 to 7011.0859, unless the terms are otherwise defined in this part.
Subp. 6. **Fabric filter.** "Fabric filter" means a control device in which the incoming gas stream passes through a porous filter forming a dust cake.

Statutory Authority: *MS s 116.07
History: 23 SR 1241; 27 SR 1579
Published Electronically: February 25, 2008

7011.0852 STANDARDS OF PERFORMANCE FOR CONCRETE MANUFACTURING PLANTS.

No owner or operator of a concrete manufacturing plant shall cause to be discharged into the atmosphere from the concrete manufacturing plant any emissions which:

A. contain particulate matter in excess of the limits allowed by parts 7011.0700 to 7011.0735; or

B. exhibit greater than 20 percent opacity.

Statutory Authority: *MS s 116.07
History: 23 SR 1241
Published Electronically: February 25, 2008

7011.0854 CONCRETE MANUFACTURING PLANT CONTROL EQUIPMENT REQUIREMENTS.

Subpart 1. **Operation of concrete manufacturing plant control equipment.** Unless otherwise allowed in a state or part 70 permit, emissions during cementitious material receiving from cement silos and other cementitious material storage devices shall pass through a fabric filter. For concrete manufacturing plants in operation on December 2, 1998, the owner or operator must install control equipment no later than December 2, 1999. For concrete manufacturing plants not in operation on December 2, 1998, the control equipment must be installed prior to operation of any concrete manufacturing plant.

Subp. 2. **Operation and maintenance of fabric filter control equipment.** The owner or operator of a concrete manufacturing plant shall perform the following on each piece of control equipment required in subpart 1:

A. properly operate and maintain the control equipment to function as it was designed. Proper operation and maintenance includes effective performance, adequate funding, and adequate operator staffing and training;
B. thoroughly conduct an internal and external inspection of control equipment at least annually, which often requires shutting down temporarily, and maintain a record of the activities conducted in the inspection including the activities completed, the date the activity was completed, and any corrective action taken; and

C. maintain a record of parts replaced, repaired, or modified.

Subp. 3. Monitoring of fabric filter control equipment. During cementitious material receiving, the owner or operator of a concrete manufacturing plant, or a designee, shall observe the outlet of each piece of control equipment required in subpart 1 for any visible emissions once each day cementitious material is received, and record the date and time period during which the observation was made and whether or not any visible emissions were observed. If visible emissions are observed, the owner or operator, or a designee, shall take all practical steps to modify operations to reduce the emissions and shall take corrective action to eliminate visible emissions prior to the following business day. The commissioner may require feasible and practical modifications in the operation to reduce emissions of air pollutants.

Subp. 4. Record retention. The owner or operator shall maintain the records required by this part for a minimum of five years from the date the record was made. The owner or operator shall maintain records for the current calendar year of operation at the concrete manufacturing plant. For all years prior to the current calendar year, the owner or operator shall maintain records at either the concrete manufacturing plant or at an office of the owner or operator of the concrete manufacturing plant.

Statutory Authority: MS s 116.07
History: 23 SR 1241
Published Electronically: February 25, 2008
7011.0858 NOISE.

The owner or operator of a concrete manufacturing plant shall comply with the noise pollution control rules in chapter 7030.

Statutory Authority: MS s 116.07
History: 23 SR 1241
Published Electronically: February 25, 2008

7011.0859 SHUTDOWN AND BREAKDOWN PROCEDURES.

In the event of a shutdown or breakdown of process or control equipment that causes any increase in emissions of any regulated air pollutant, the owner or operator of a stationary source shall comply with the notification, operation changes, and all other requirements in part 7019.1000.

Statutory Authority: MS s 116.07
History: 23 SR 1241
Published Electronically: February 25, 2008

7011.0860 [Repealed, 27 SR 1579]
Published Electronically: February 25, 2008

GASOLINE SERVICE STATIONS

7011.0865 INCORPORATIONS BY REFERENCE; DOCUMENTS.

A. For the purpose of part 7011.0870, the documents in items B and C are incorporated by reference. These documents are not subject to frequent change.

C. United States Environmental Protection Agency, Office of Air Quality Planning and Standards, Design Criteria for Stage I Vapor Control Systems - Gasoline Service Stations, November 1975. This publication is available through the Minitex interlibrary loan system.

Statutory Authority: MS s 116.07
History: 27 SR 1579; 44 SR 1030
Published Electronically: April 16, 2020
7011.0870 STAGE-ONE VAPOR RECOVERY.

Subpart 1. **Applicability.** The owner or operator of a gasoline service station required to install and operate a stage-one vapor recovery system shall comply with this part.

Subp. 2. **System design.** Stage-one vapor recovery systems must:

A. conform with the requirements of Design Criteria for Stage I Vapor Control Systems - Gasoline Service Stations as incorporated by reference in part 7011.0865;

B. incorporate a submerged fill pipe in each storage tank; and

C. have a vent system that is equipped with a pressure vacuum valve that complies with Vapor Recovery Certification Procedure CP-201, as incorporated by reference in part 7011.0865.

Subp. 3. **System operation and maintenance.**

A. The owner or operator of a gasoline service station with a vapor recovery system shall not accept gasoline without the vapor recovery system properly connected.

B. The owner or operator of a gasoline service station with stage-one vapor recovery shall:

 (1) maintain and operate the vapor recovery system in accordance with manufacturer's specifications;

 (2) promptly repair any malfunction of the system;

 (3) keep on the premises a copy of the manufacturer's operation and maintenance instructions and make these instructions available to the commissioner or an authorized representative of the commissioner on request; and

 (4) maintain system monitoring or testing devices in proper working order.

Statutory Authority: MS s 116.07

History: 27 SR 1579

Published Electronically: February 25, 2008

HOT MIX ASPHALT PLANTS

7011.0900 DEFINITIONS.

Subpart 1. **Scope.** The definitions in this part apply to the terms used in parts 7011.0900 to 7011.0920. The definitions in parts 7005.0100, 7007.0100, and 7011.0060 apply to the terms used in parts 7011.0900 to 7011.0920, unless the terms are defined in this part.

Subp. 2. **Asphalt plant control equipment.** "Asphalt plant control equipment" means the control equipment at a hot mix asphalt plant listed in part 7011.0917, subpart 7.

Subp. 3. **Existing hot mix asphalt plant.** "Existing hot mix asphalt plant" means a hot mix asphalt plant that is not a new hot mix asphalt plant.
Subp. 4. **Hot mix asphalt plant.** "Hot mix asphalt plant" means a facility used to manufacture hot mix asphalt paving materials by heating and drying aggregate and mixing with asphalt cements. "Hot mix asphalt plant" includes dryers; systems for screening, handling, storing, and weighing hot aggregate; systems for loading, transferring, and storing mineral filler; systems for mixing hot mix asphalt; and the loading, transfer, and storage systems associated with emission control systems.

Subp. 5. **New hot mix asphalt plant.** "New hot mix asphalt plant" means a hot mix asphalt plant that commences construction, modification, or reconstruction, as defined in Code of Federal Regulations, title 40, section 60.2, after June 11, 1973, and includes all hot mix asphalt plants subject to the new source performance standards incorporated by reference in part 7011.0909.

Statutory Authority: MS s 116.07

History: 18 SR 614; 20 SR 2253(NO. 42); 23 SR 2224

Published Electronically: February 25, 2008

7011.0903 COMPLIANCE WITH AMBIENT AIR QUALITY STANDARDS.

Subpart 1. **Fuel sulfur content limitation.** Notwithstanding part 7011.0913, no owner or operator of a hot mix asphalt plant shall use in the dryer burner any fuel with a sulfur content greater than 0.70 percent, unless:

A. authorized by a part 70, state, or general permit; or

B. compliance with part 7009.0080 has been demonstrated under subpart 2 for each dryer fuel with a sulfur content greater than 0.70 percent.

Subp. 2. **Modeling of emissions from high sulfur content fuels.** Prior to the use of each dryer fuel with a sulfur content greater than 0.70 percent, the owner or operator of a hot mix asphalt plant shall perform air dispersion modeling to determine whether burning that fuel would comply with the ambient air quality standard for sulfur dioxides (maximum one hour concentration not to be exceeded more than once per year) in part 7009.0080. The owner or operator shall model sulfur dioxide emissions using the most recent version of EPA's screen model described in SCREEN3 Model User's Guide, EPA-454/B-95-004, United States Environmental Protection Agency, Office of Air Quality Planning and Standards, September 1995, which is incorporated by reference and is subject to frequent change. This publication and copies of the SCREEN3 model are available from the Pollution Control Agency library through the Minitex interlibrary loan system, through the National Technical Information Service (NTIS), Springfield, VA, (703) 487-4650, or may be downloaded from the Support Center for Regulatory Air Models (SCRAM) Bulletin Board System (BBS). The SCRAM BBS may be accessed at (919) 541-5742.

Subp. 3. **Records required.**

A. For any fuel used in the dryer burner, except natural gas, methane, butane, propane, gasoline, kerosene, diesel fuel, and No. 1 and No. 2 fuel oil, the owner or operator of a hot mix asphalt plant shall keep for each fuel delivery a record of a vendor certification or fuel analysis which shows the sulfur content of the fuel.
B. The owner or operator of a hot mix asphalt plant that has done modeling under subpart 2 shall keep a record of the modeling results. The record shall include:

1. the sulfur content of the fuel modeled;
2. the site modeled;
3. model output files; and
4. supporting calculations.

The owner or operator shall maintain the records required by this subpart for a minimum of five years from the date the record was made.

Subp. 4. **Hot mix asphalt plants with registration permits.** If the commissioner finds that a hot mix asphalt plant that has applied for or been issued a registration permit needs source-specific permit conditions to prevent violation of any ambient air quality standard, the commissioner shall require the owner or operator of the hot mix asphalt plant to apply for and obtain a part 70, state, or general permit. The owner or operator of a hot mix asphalt plant shall submit the required permit application within 120 days of the commissioner's written request under this subpart.

Subp. 5. **Compliance with ambient air quality standards.** Nothing in this part shall be construed to allow violation of any national or state ambient air quality standards. If the commissioner requests it, the owner or operator of a hot mix asphalt plant must demonstrate compliance with the national or state ambient air quality standards.

Statutory Authority: MS s 116.07

History: 20 SR 2253(NO. 42)

Published Electronically: February 25, 2008

7011.0905 **STANDARDS OF PERFORMANCE FOR EXISTING HOT MIX ASPHALT PLANTS.**

No owner or operator of an existing hot mix asphalt plant shall cause to be discharged into the atmosphere from the hot mix asphalt plant any gases that:

A. contain the sum of filterable and organic condensable particulate matter in excess of the limits allowed by parts 7011.0700 to 7011.0735; or

B. exhibit greater than 20 percent opacity.

Statutory Authority: MS s 115.03; 116.07

History: 18 SR 614; 20 SR 2253(NO. 42); 41 SR 763

Published Electronically: January 27, 2017
7011.0909 INCORPORATION BY REFERENCE; NEW SOURCE PERFORMANCE STANDARDS; HOT MIX ASPHALT PLANTS.

Statutory Authority: MS s 116.07
History: 20 SR 2253(NO. 42); 44 SR 1030
Published Electronically: April 16, 2020

7011.0910 [Repealed, 18 SR 580]
Published Electronically: February 25, 2008

7011.0911 MAINTENANCE OF DRYER BURNER.

Subpart 1. Annual tuning of dryer burner. The owner or operator of a hot mix asphalt plant must tune the dryer burner for maximum combustion efficiency once each calendar year.

Subp. 2. Daily check of dryer burner. The owner or operator of a hot mix asphalt plant must do the following while producing hot mix asphalt each day except when burning natural gas or propane:

A. read the fuel pressure gauge on the dryer burner; and
B. check for a negative draft at the dryer burner inlet.

Subp. 3. Records kept on dryer burner. The owner or operator of a hot mix asphalt plant must maintain a record of:

A. the dates of the annual tuning of the dryer burner;
B. the daily reading from the fuel pressure gauge on the dryer burner except when burning natural gas or propane;
C. whether there was a negative draft at the dryer burner inlet each day except when burning natural gas or propane; and
D. any corrective actions taken as a result of the daily checks required by subpart 2.

Statutory Authority: MS s 116.07
History: 20 SR 2253(NO. 42)
Published Electronically: February 25, 2008

7011.0913 HOT MIX ASPHALT PLANT MATERIALS, FUELS, AND ADDITIVES OPERATING REQUIREMENTS.

Subpart 1. Materials, fuels, and additives allowed. Except as provided in subpart 3, the owner or operator of a hot mix asphalt plant is allowed to use only the materials, fuels, and additives designated in subpart 2 unless specifically disallowed in a part 70, state, or general permit.
Subp. 2. List of authorized materials, fuels, and additives.

A. The designated materials are clay, silt, sand, gravel, and crushed stone produced from naturally occurring geologic formations, without additives; recycled asphalt pavement; portland cement concrete; recycled sediments from asphalt plant scrubber operations; fines from asphalt plant fabric filter operations; asphalt cement; and hydrated lime.

B. The designated fuels for combustion are natural gas, methane, butane, and propane; gasoline, kerosene, diesel fuel, jet fuel, and fuel oils (No. 1, No. 2, No. 3, No. 4, No. 5, No. 6); on-specification used oil as defined in part 7045.0020, subpart 60a, provided that total halogens shall not exceed 1,000 parts per million; and virgin oil that is discarded before use and that otherwise meets the requirements of this item for on-specification used oil.

C. The designated additives are silicone, organic soaps, and other substances of a similar nature added to the asphalt cement.

Subp. 3. Procedure for approval of additional materials, fuels, and additives. The owner or operator may use materials, fuels, or additives not listed in subpart 2, if:

A. the use is specifically allowed by a part 70, state, or general permit; or

B. for hot mix asphalt plants with a registration permit, the commissioner has provided written approval of the use prior to its incorporation into asphalt or use as a fuel.

Requests under item B must be received by the commissioner at least 60 days before the materials, fuels, or additives are used. The requests must be on a form provided by the commissioner. The owner or operator shall conduct performance testing under parts 7017.2001 to 7017.2060 to determine actual emission rates from the use of the material, fuel, or additive. The actual emission rates shall be used to determine actual emissions under part 7007.1130, subpart 3, for hot mix asphalt plants that hold option D registration permits. The commissioner shall deny these requests if the commissioner determines that use of the material would endanger human health or the environment or would subject the hot mix asphalt plant to different applicable requirements or different requirements under chapter 7007. The performance testing required by this subpart may be waived by the commissioner when the nonlisted material is substantially similar in composition to a listed material, or when the material has already been the subject of performance tests at a similar hot mix asphalt plant.

Subp. 4. Compliance. The owner or operator must comply with the conditions on the use of the materials, fuels, and additives established in the part 70, state, or general permit if the use is authorized under subpart 3, item A. The owner or operator must comply with the conditions on the use of the materials, fuels, and additives set forth in the commissioner's written approval if the use is authorized under subpart 3, item B.

Subp. 5. Records required. The owner or operator shall keep records of the materials, fuels, and additives used and the amount used on a calendar year basis. The owner or operator shall maintain the records required under this subpart for a minimum of five years from the date the record was made.
ASPHALT PLANT CONTROL EQUIPMENT REQUIREMENTS.

Subpart 1. **Operation of asphalt plant control equipment.** The owner or operator of a hot mix asphalt plant shall operate in compliance with this part all asphalt plant control equipment located at the stationary source whenever operating the emission units controlled by the asphalt plant control equipment. Unless specifically allowed by a part 70, state, or general permit, each piece of asphalt plant control equipment shall at all times be operated such that the monitoring parameters listed in subpart 7 are in the range established by the control equipment manufacturer's specifications, or within the operating parameters established by the commissioner as the result of the most recent performance test conducted under parts 7017.2001 to 7017.2060, if those are more restrictive.

The owner or operator applying for a registration permit or capped permit may request an alternative range to the control equipment manufacturer's specifications, if the proposed range is based on two previous years of compliant monitoring data supplied with the request. For hot mix asphalt plants applying for a registration permit in operation on April 22, 1996, this request shall be made by the application deadline listed in part 7007.0350, subpart 1, item A. The proposed operating range shall be deemed acceptable unless notified otherwise in writing within 30 days of receipt by the commissioner. The commissioner shall deny a request for an alternative monitoring parameter range if the commissioner finds that:

A. an owner or operator has failed to disclose fully all facts relevant to the proposed monitoring parameter range of the asphalt plant control device or the owner or operator has knowingly submitted false or misleading information to the commissioner;

B. operation of the control device in the monitoring parameter range proposed by the owner or operator would endanger human health or the environment, or subject the hot mix asphalt plant to different applicable requirements or requirements under chapter 7007; or

C. the proposed range is not supported by the data supplied with the request.

Subp. 2. **Maintaining asphalt plant control equipment.** The owner or operator of a hot mix asphalt plant shall maintain each piece of asphalt plant control equipment as designed to ensure compliance with applicable requirements, comply with source-specific maintenance requirements specified in a part 70, state, or general permit, and shall perform the following on each piece of asphalt plant control equipment unless otherwise specified in a part 70, state, or general permit:

A. thoroughly inspect all asphalt plant control equipment, including structural components, annually;
B. inspect ducts, connections, and housings for leaks monthly;

C. check monitoring equipment daily to ensure it is operating in the range required by subpart 1, for example: pressure gauges, temperature indicators, flow gauges, and recorders;

D. calibrate all monitoring equipment annually;

E. for fabric filter control devices: check exterior cleaning system equipment and its operation daily; and check interior cleaning equipment and its operation, and the clean air side of bags for evidence of leaks at least monthly; and

F. for control devices using water such as spray towers, scrubbers, and wet cyclone separators: check sediment level in non-self-cleaning ponds daily so as not to exceed one-half the pond depth, and check to ensure the pH of the water leaving the control device is between five and ten weekly; and check accessible dampers, spray bars, nozzles, and demister monthly for wear.

The owner or operator shall maintain a record of activities conducted in items A to F, consisting of the activity completed, the date the activity was completed, and any corrective action taken; and the owner or operator shall maintain the records required by this subpart for a minimum of five years from the date the record was made.

Subp. 3. Installing monitoring equipment. The owner or operator of a hot mix asphalt plant shall install monitoring equipment to measure operating hours as specified in part 7011.0922, subpart 3, and the monitoring parameters for all asphalt plant control equipment as specified by subpart 7. For hot mix asphalt plants not in operation on April 22, 1996, the monitoring equipment must be installed prior to operation of any hot mix asphalt plant equipment controlled by the control equipment. For hot mix asphalt plants in operation on April 22, 1996, the owner or operator must install monitoring equipment no later than 30 days after April 22, 1996.

Subp. 4. Operating monitoring equipment. The owner or operator of a hot mix asphalt plant shall operate in compliance with this part the monitoring equipment for each piece of asphalt plant control equipment at all times the asphalt plant control equipment is required to operate.

Subp. 5. Shutdown and breakdown procedures. In the event of a shutdown or breakdown of asphalt plant control equipment, the owner or operator of a hot mix asphalt plant shall comply with part 7019.1000.

Subp. 6. Deviation of asphalt plant control equipment from operating specifications. Unless otherwise specified in a part 70, state, or general permit, the owner or operator of a stationary source shall report to the commissioner any recorded reading outside of the specification or range of specifications allowed by subpart 1 from any monitored operating parameter required by subpart 7, in accordance with the deadlines in part 7007.0800, subpart 6, item B, subitem (2), except that owners and operators with a registration permit option D or capped permit shall make this report only if a deviation occurred in the reporting period.

Subp. 7. Monitoring and record keeping for asphalt plant control equipment. Unless otherwise specified in a part 70, state, or general permit, the owner or operator of a hot mix asphalt plant shall comply with the monitoring and record keeping required by the table in this subpart for
asphalt plant control equipment. The owner or operator shall maintain the records required by this subpart for a minimum of five years from the date the record was made.

<table>
<thead>
<tr>
<th>EPA ID NO.</th>
<th>POLLUTION CONTROL EQUIPMENT TYPE</th>
<th>MONITORING PARAMETERS</th>
<th>RECORD-KEEPING REQUIREMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>001, 002, 003</td>
<td>"Miscellaneous Wet Scrubber" means a control device in which the particulates in the incoming gas stream are entrained by a liquid and the control device is not a spray tower, venturi scrubber, impingement plate scrubber, or a wet cyclone separator.</td>
<td>Pressure drop, liquid flow rate, and water pressure</td>
<td>Record each parameter every calendar day of operation</td>
</tr>
<tr>
<td>016</td>
<td>"Fabric Filter" (Bag House) means a control device in which the incoming gas stream passes through a porous fabric filter forming a dust cake.</td>
<td>Pressure drop</td>
<td>Record every calendar day of operation</td>
</tr>
<tr>
<td>052</td>
<td>"Spray Tower" means a control device in which the incoming gas stream passes through a chamber in which it contacts a liquid spray.</td>
<td>Liquid flow rate, pressure drop, and water pressure</td>
<td>Record each parameter every calendar day of operation</td>
</tr>
<tr>
<td>053</td>
<td>"Venturi Scrubber" means a control device in which the incoming gas stream passes through a venturi into which low pressure liquid is introduced.</td>
<td>Pressure drop, liquid flow rate, and water pressure</td>
<td>Record each parameter every calendar day of operation</td>
</tr>
<tr>
<td>055</td>
<td>"Impingement Plate Scrubber" means a control device in which the incoming gas stream passes a liquid spray and is then directed at high velocity into a plate.</td>
<td>Pressure drop, liquid flow rate, and water pressure</td>
<td>Record each parameter every calendar day of operation</td>
</tr>
<tr>
<td>085</td>
<td>"Wet Cyclone Separator" or "Cyclonic Scrubbers" means a cyclonic device that sprays water into a cyclone.</td>
<td>Pressure drop, water pressure, and water flow rate</td>
<td>Record each parameter every calendar day of operation</td>
</tr>
<tr>
<td>019</td>
<td>"Afterburners" (thermal or catalytic oxidation) means a device used to reduce VOCs to the products of</td>
<td>Combustion temperature or inlet and outlet temperatures</td>
<td>Continuous hard copy readout of temperatures or</td>
</tr>
</tbody>
</table>
PERFORMANCE TESTS.

Subpart 1. Methods and procedures. Performance tests shall be conducted according to the requirements of this part and parts 7017.2001 to 7017.2060.

Subp. 2. Performance test frequency for hot mix asphalt plants using fabric filters. If an owner or operator of a hot mix asphalt plant uses a fabric filter, including, but not limited to, EPA ID No. 016 listed in part 7011.0917, subpart 7, as the primary or secondary control equipment to remove particulate matter, then the owner or operator shall conduct performance testing for particulate matter and opacity as required by part 7017.2020, subpart 1.

Subp. 3. Performance test frequency for hot mix asphalt plants with control equipment that uses liquid to remove pollutants. If an owner or operator operates a hot mix asphalt plant that has only control equipment that uses liquid to remove pollutants or has a secondary control device that uses liquid to remove pollutants, including, but not limited to, EPA ID Nos. 052, 053, 055, and 085 listed in part 7011.0917, subpart 7, then the owner or operator shall conduct performance testing for particulate matter and opacity as described in items A to E.

A. If the hot mix asphalt plant produced no more than 35,000 tons in each of the three previous calendar years and has a manufacturer's rated capacity of 100 tons per hour or less at five percent moisture, then the owner or operator shall conduct performance testing as required by part 7017.2020, subpart 1.

B. Except as provided in item A, if the hot mix asphalt plant produced no more than 100,000 tons in any of the three previous calendar years, then the owner or operator shall conduct performance testing every three calendar years.

C. If the hot mix asphalt plant produced greater than 100,000 tons, but no more than 200,000 tons in any of the three previous calendar years, then the owner or operator shall conduct performance testing every two calendar years.

D. If the hot mix asphalt plant produced more than 200,000 tons in the previous calendar year, then the owner or operator shall conduct performance testing within 60 days of start-up in the following calendar year.

E. The owner or operator of a hot mix asphalt plant shall conduct additional performance testing as required by part 7017.2020, subpart 1.
Subp. 4. **Performance test required for all hot mix asphalt plants.** If the owner or operator of a hot mix asphalt plant has not conducted a performance test for particulate matter and opacity approved by the commissioner under parts 7017.2001 to 7017.2060 since January 1, 1991, the owner or operator must conduct such a performance test:

A. in 1996, for hot mix asphalt plants that are operated in the state in 1996; or

B. within 60 days after the hot mix asphalt plant begins operation in the state.

Statutory Authority: MS s 116.07

History: 18 SR 614; 18 SR 1412; 20 SR 2253(NO. 42)

Published Electronically: February 25, 2008

7011.0922 OPERATIONAL REQUIREMENTS AND LIMITATIONS FROM PERFORMANCE TESTS.

Subpart 1. **Throughput limit.** The owner or operator of a hot mix asphalt plant shall not exceed the production throughput at which compliance with part 7011.0905 or 7011.0909 was demonstrated during the plant's most recent performance test, unless authorized by subpart 2.

Subp. 2. **Certain exceptions to throughput limit.** Except as provided in items A and B, if a hot mix asphalt plant demonstrated compliance for particulate matter and opacity during its most recent performance test and its tested emission rate (gr/dscf or lb/hr) was less than 80 percent of the applicable rule or permit emission limit, then the owner or operator may increase production throughput ten percent over that allowed under subpart 1.

A. If a hot mix asphalt plant with a fabric filter control device has conducted a performance test since January 1, 1991, has demonstrated compliance for particulate matter and opacity, and its tested emission rate (gr/dscf or lb/hr) was less than 50 percent but greater than or equal to 25 percent of the applicable rule or permit emission limit, then the owner or operator may increase production throughput 15 percent over that allowed under subpart 1.

B. If a hot mix asphalt plant with a fabric filter control device has conducted a performance test since January 1, 1991, has demonstrated compliance for particulate matter and opacity, and its tested emission rate (gr/dscf or lb/hr) was less than 25 percent of the applicable rule or permit emission limit, then the owner or operator may increase production throughput 20 percent over that allowed by subpart 1.

Subp. 3. **Monitoring and record keeping required.** To determine compliance with subpart 1, the owner or operator of a hot mix asphalt plant must:

A. operate an accumulating hour meter on the dryer burner at all times the dryer burner is in operation;

B. record each day the plant's hours of operation as determined by the hour meter and total tons of hot mix asphalt produced; and
C. determine the production throughput by dividing the total tons of hot mix asphalt produced by the hours of operation for each calendar day of operation.

Statutory Authority: MS s 116.07
History: 20 SR 2253(NO. 42)
Published Electronically: February 25, 2008

7011.0925 [Renumbered 7011.0909]
Published Electronically: February 25, 2008

ASPHALT PROCESSING AND ASPHALT ROOFING MANUFACTURE

7011.0950 INCORPORATION BY REFERENCE; NEW SOURCE PERFORMANCE STANDARDS; ASPHALT PROCESSING AND ASPHALT ROOFING MANUFACTURE.

Statutory Authority: MS s 116.07
History: 18 SR 580; 44 SR 1030
Published Electronically: April 16, 2020

BULK AGRICULTURAL COMMODITY FACILITIES

7011.1000 DEFINITIONS.

Subpart 1. Scope. For the purposes of parts 7011.1000 to 7011.1015, the following terms have the meanings given them.

Subp. 2. Capture system. "Capture system" means equipment such as hoods, ducts, fans, and dampers used to capture particulate matter.

Subp. 3. Column dryer. "Column dryer" means equipment used to reduce the moisture content of grain in which the grain flows from the top to the bottom in one or more continuous packed columns between two perforated metal sheets.

Subp. 4. Dry bulk agricultural commodity, commodity. "Dry bulk agricultural commodity" or "commodity" includes grain, grain by-products, seed, beet pulp or pellets, and alfalfa meal or pellets.

Subp. 5. Dry bulk agricultural commodity facility. "Dry bulk agricultural commodity facility" means a facility where bulk commodities are unloaded, handled, cleaned, dried, stored, ground, or loaded. "Dry bulk agricultural commodity facility" does not include a facility located on a family farm or family farm corporation, as defined in Minnesota Statutes, section 116B.02, which handles commodities from the farm or used on the farm.
Subp. 6. **Grain.** "Grain" means corn, wheat, sorghum, rice, rye, oats, barley, flax, soybeans, and sunflower seeds.

Subp. 7. **Grain storage elevator.** "Grain storage elevator" means a grain elevator located at a wheat flour mill, wet corn mill, dry corn mill (human consumption), rice mill, or soybean oil extraction plant that has a permanent grain storage capacity of more than 35,200 cubic meters, which is approximately 1,000,000 bushels.

Subp. 8. **Grain terminal elevator.** "Grain terminal elevator" means a grain elevator that has a permanent storage capacity of more than 88,100 cubic meters, which is approximately 2,500,000 bushels, except a grain elevator located at animal food manufacturers, pet food manufacturers, cereal manufacturers, breweries, and livestock feedlots.

Subp. 9. **Handling operation.** "Handling operation" includes the use of bucket elevators, scale hoppers, conveyors, trippers, and spouts for the distribution and weighing of commodities within a commodity facility.

Subp. 10. **Loading station.** "Loading station" means the part of a commodity facility where the commodities are transferred from the facility to a truck, railcar, barge, or ship.

Subp. 11. **Normal loading procedure.** "Normal loading procedure" means that part of a barge or ship loading operation where the spout and associated dust suppression systems are capable of distributing the commodity in the hold as needed without making modifications to the loading procedure, such as removing the dust suppressor, raising the spout, slowing the loading rate below the design capability of the spout, or attaching equipment at the end of the spout.

Subp. 12. **Rack dryer.** "Rack dryer" means equipment used to reduce the moisture content of grain in which the grain flows from the top to the bottom in a cascading flow around rows of baffles (racks).

Subp. 13. **Reasonably available control technology (RACT).** "Reasonably available control technology (RACT)" means the lowest emission limit that a particular source is capable of meeting by the application of control technology that is reasonably available considering technological and economic feasibility.

Subp. 14. **Throughput.** "Throughput" means the number of tons of commodities received, plus the number of tons of commodities shipped, divided by two, determined on the basis of an average year. An average year is determined by averaging the actual receipts and shipments for the last three consecutive fiscal years. For facilities less than three years old, actual and anticipated receipts and shipments must be used.

Subp. 15. **Topping-off.** "Topping-off" means the placing of grain in the final three feet of void in a barge, nine feet in a ship, between the fore and aft center line of the hatch and the outboard side of the vessel. The depth is determined by vertical measurement along the outboard side of the vessel from the top of the hatch opening.
Subp. 16. **Trimming.** "Trimming" means the part of ship loading that requires the use of spoons, slingers, and other equipment attached to the loading spout to ensure that a ship is loaded to capacity.

Subp. 17. **Unloading station.** "Unloading station" means the part of a commodity facility where the commodities are transferred from a truck, railcar, barge, or ship to a receiving hopper.

Statutory Authority: MS s 116.07
History: 8 SR 1675; 18 SR 614
Published Electronically: February 25, 2008

7011.1005 STANDARDS OF PERFORMANCE FOR DRY BULK AGRICULTURAL COMMODITY FACILITIES.

Subpart 1. **Owner or operator duties.** The owner or operator of a commodity facility must:

A. clean up commodities spilled on the driveway and other facility property as required to minimize fugitive emissions to a level consistent with RACT; and

B. maintain air pollution control equipment in proper operating condition and use the air pollution control systems as designed.

Subp. 2. **Federal requirements.** The owner, operator, or other person who conducts activities at a grain terminal elevator or grain storage elevator, of which construction, modification, or reconstruction commenced, as defined in Code of Federal Regulations, title 40, section 60.2, after August 3, 1978, must meet the requirements of Code of Federal Regulations, title 40, part 60, subpart DD, as amended, entitled "Standards of Performance for Grain Elevators," which is incorporated by reference, except that authorities identified in Code of Federal Regulations, title 40, section 60.302(d)(3), are not delegated to the commissioner and are retained by the administrator.

Subp. 3. **Prohibited discharges.** A commodity facility that is not required to be controlled under subpart 2 must be controlled if the facility meets one of the descriptions listed in part 7011.1015 where the table indicates "control required." For a facility where control is required under part 7011.1015, no owner, operator, or other person who conducts activities at the facility may allow:

A. a discharge of fugitive emissions that exhibit greater than five percent opacity from a truck unloading station, railcar unloading station, railcar loading station, or handling operation;

B. a discharge of fugitive emissions that exhibit greater than ten percent opacity from a truck loading station;

C. a discharge of fugitive emissions that exhibit greater than 20 percent opacity from a ship or barge loading or unloading station, except that during trimming or topping-off, when normal loading procedures cannot be used, no opacity standard applies;

D. a discharge of particulate matter from control equipment that exhibits greater than ten percent opacity; or
E. a discharge of particulate matter from control equipment that has a collection efficiency of less than 80 percent by weight.

Subp. 4. Capture systems and control equipment. The owner or operator of a commodity facility not required to control emissions under subpart 2 or 3 is not required to install capture systems and control equipment but must unload, handle, clean, dry, and load commodities to minimize fugitive emissions to a level consistent with RACT. If a capture system is used, the particulate matter must be conveyed through control equipment that has a collection efficiency of not less than 80 percent by weight.

Subp. 5. Grain dryer specifications. A grain dryer must meet the following design specifications:

A. the perforations of a column dryer screen must not exceed 3/32 inches in diameter; and

B. the emissions from a rack dryer must pass through a 50-mesh screen enclosure before discharge to the atmosphere.

Statutory Authority: MS s 116.07
History: 8 SR 1675; 18 SR 580; 18 SR 614; 23 SR 2224; 32 SR 904; 44 SR 1030
Published Electronically: April 16, 2020

7011.1010 NUISANCE.

Notwithstanding any provisions in parts 7011.1000 to 7011.1015, no owner or operator of a dry bulk agricultural commodity facility may operate or maintain a facility that creates a public nuisance. If the commissioner determines that operation or maintenance of a commodity facility creates a public nuisance, the commissioner may require the owner or operator to take measures necessary to eliminate the nuisance.

Statutory Authority: MS s 116.07
History: 8 SR 1675; L 1987 c 186 s 15; 18 SR 614
Published Electronically: February 25, 2008

7011.1015 CONTROL REQUIREMENTS SCHEDULE.

<table>
<thead>
<tr>
<th>Facility Description</th>
<th>Prior to 1/1/84</th>
<th>After 1/1/84</th>
</tr>
</thead>
<tbody>
<tr>
<td>Facility located in Minneapolis-Saint Paul Air Quality Control Region or located in a city with a population of 7,500 or more or with annual commodity throughput of more than 180,000 tons</td>
<td>Control required</td>
<td>Control required</td>
</tr>
</tbody>
</table>
Facility with annual commodity throughput of 120,000 to 180,000 tons and located in a city with a population of less than 7,500
No control required Control required

Facility with annual commodity throughput and location other than those described above
No control required No control required

Statutory Authority: MS s 116.07
History: 8 SR 1675; 18 SR 614
Published Electronically: February 25, 2008

COAL HANDLING FACILITIES

7011.1100 DEFINITIONS.

Subpart 1. Scope. As used in parts 7011.1100 to 7011.1140, the following words shall have the meanings defined herein.

Subp. 2. Coal. "Coal" means any solid fossil fuel described as anthracite, bituminous, subbituminous, lignite, or coke (as derived from coal).

Subp. 3. Coal handling. "Coal handling" means operations including, but not limited to, operations such as dumping, loading, unloading, storing, reclaiming, transferring, and conveying.

Subp. 4. Coal handling facility. "Coal handling facility" means a facility where coal is handled such as coal transshipment terminals, electric generating plants, boiler plants, or steam plants.

Subp. 5. Coal throughput. "Coal throughput" means the number of tons of coal received plus the number of tons of coal shipped by an owner or operator of a coal transshipment facility in any one calendar year. In the case of facilities where coal is consumed at the same facility where received, such as electric generating plants, boiler plants, or steam plants, coal throughput means the number of tons of coal received at the facility.

Subp. 6. Dust suppression methods. "Dust suppression methods" mean dust control equipment or measures including, but not limited to, hoppers, hoods, screens, enclosures, wetting or chemical agents, foam agents, surfactants, precleaning treatment, utilizing induced draft and air pollution control equipment, watering, and other equivalent methods approved by the commissioner.

Subp. 7. Hauler. "Hauler" means any vehicle engaged in reclaiming, moving, or dumping coal within a coal handling facility.

Subp. 8. Minimize. "Minimize" means, with respect to the control of fugitive emissions, to reduce such emissions to a level consistent with RACT.

Subp. 9. Pneumatic coal-cleaning equipment. "Pneumatic coal-cleaning equipment" means any equipment which classifies coal by size or separates coal from refuse by application of air stream(s).
Subp. 10. **Reasonably available control technology (RACT).** "Reasonably available control technology (RACT)" is the lowest emission limit that a particular source is capable of meeting by the application of control technology that is reasonably available considering technological and economic feasibility.

Subp. 11. **Thermal dryer.** "Thermal dryer" means any device in which the moisture content of coal is reduced by contact with a heated gas stream which is exhausted to the atmosphere.

Statutory Authority: MS s 116.07

History: L 1987 c 186 s 15; 18 SR 614

Published Electronically: February 25, 2008

7011.1105 **STANDARDS OF PERFORMANCE FOR CERTAIN COAL HANDLING FACILITIES.**

The owner or operator of any new coal handling facility, or an existing coal handling facility located within the Minneapolis-St. Paul Air Quality Control Region or within the boundaries of the city of Duluth, must perform the following abatement measures unless otherwise exempt by portions of these parts:

A. Access areas, roads, parking facilities.

 (1) Install asphalt or concrete surfaces or chemical agents on all active truck haul roads of the coal handling facility when the coal throughput by truck is 200,000 tons or greater. All paved roads and areas shall be cleaned to minimize the discharge to the atmosphere of fugitive particulate emissions. Such cleaning shall be accomplished in a manner which minimizes resuspension of particulate matter. Access areas surrounding coal stockpiles and parking facilities which are located within a coal handling facility shall be treated with water, oils, or chemical agents.

 (2) No person shall cause or permit the use of access areas surrounding coal stockpiles and use of all active truck haul roads and parking facilities which are located within a coal handling facility whose coal throughput by truck is less than 200,000 tons unless such areas and roads are treated with water, oils, or chemical agents.

B. Coal loading stations. Control fugitive particulate emissions from the loading of trucks, haulers, and railcars by dust suppression methods so that emissions from such sources are minimized.

C. Truck and hauler unloading stations. Control fugitive particulate emissions from the unloading of trucks or haulers by dust suppression methods so that emissions from such sources are minimized.

D. Barge or vessel loading stations.

When the amount of coal loaded into barges or vessels at a given facility is 200,000 tons per year or greater, conveyor systems shall utilize loadout spouts with remote control capability for movement sideways, up and down, and telescoping so as to decrease as much as practical the vertical free fall of coal at all times during the loadout operation. Choke feeding devices, flood loading, or other equivalent equipment or methods may be installed as alternates on conveyor
systems to control fugitive emissions. Crane and shovels shall be operated so as to minimize the vertical free fall of coal.

When the amount of coal loaded into barges or vessels at a given facility is less than 200,000 tons per year, control fugitive particulate emissions by dust suppression methods so that emissions from such sources are minimized.

E. Barge or vessel unloading station. Cranes, shovels, and conveyors shall be operated in a manner which decreases as much as practical the vertical free fall of coal. Control fugitive particulate emissions during unloading so that fugitive particulate emissions are minimized.

F. Stockpiles, stockpile construction, and reclaiming.

1) Control fugitive particulate emissions by dust suppression methods on such operations so that fugitive particulate emissions are minimized.

2) In the alternative, use an underground bottom feed (plow) of coal to an underground conveyor system provided the exhaust gases from the enclosed spaces do not contain filterable particulate matter in excess of 0.020 grains per dry standard cubic foot (gr/dscf).

G. Enclosed coal handling facilities or emissions units not specifically covered by any other provision in parts 7011.1100 to 7011.1140. If exhaust gases from any enclosed coal handling facility exceed 20 percent opacity, then the owner or operator of the facility must select and implement one of the following further controls:

1) install exhaust air system and control exhaust gases so that filterable particulate emissions in such gases do not exceed 0.020 gr/dscf;

2) control exhaust gases using dust suppression methods so that particulate emissions do not exhibit greater than 20 percent opacity.

H. Railcar unloading. When the amount of coal unloaded by rail is 200,000 tons per year or greater, unload railcars only within a permanent building or structure. If exhaust gases from such building or structure exceed 20 percent opacity, then the owner or operator of such facility shall select and implement one of the following further controls: install an exhaust air system and control exhaust gases so that particulate emissions in such gases do not exceed 0.020 gr/dscf; or control exhaust gases using dust suppression methods so that particulate emissions do not exhibit greater than 20 percent opacity.

When the amount of coal unloaded by rail is less than 200,000 tons per year control fugitive particulate emissions during unloading so that fugitive particulate emissions are minimized.

I. Operating practices. Clean up all coal spilled on roads or access areas as soon as practicable using methods that minimize the amount of dust suspended.

Maintain air pollution control equipment in proper operating condition and utilize air pollution control systems as designed.

Statutory Authority: MS s 115.03; 116.07
7011.1110 STANDARDS OF PERFORMANCE FOR EXISTING OUTSTATE COAL HANDLING FACILITIES.

The owner or operator of an existing coal handling facility which is located outside the Minneapolis-Saint Paul Air Quality Control Region and outside the boundaries of the city of Duluth shall comply with part 7011.0150 for the control of fugitive particulate emissions. For the purposes of this part, "existing coal handling facility" means a coal handling facility on which construction, modification, or reconstruction did not commence after November 17, 1980.

Statutory Authority: MS s 116.07

History: 13 SR 2154; 18 SR 614; 22 SR 1237; 41 SR 763
Published Electronically: January 27, 2017

7011.1115 STANDARDS OF PERFORMANCE FOR PNEUMATIC COAL-CLEANING EQUIPMENT AND THERMAL DRYERS AT ANY COAL HANDLING FACILITY.

Subpart 1. Pneumatic coal-cleaning equipment. The owner or operator of a coal handling facility shall not cause to be discharged into the atmosphere from any pneumatic coal-cleaning equipment any gases that:

A. contain filterable particulate matter in excess of 0.040 g/dscm (0.018 gr/dscf); or
B. exhibit ten percent opacity or greater.

Subp. 2. Thermal dryers. The owner or operator of a coal handling facility shall not cause to be discharged into the atmosphere from any thermal dryer any gases that:

A. contain filterable particulate matter in excess of 0.070 g/dscm (0.031 gr/dscf); or
B. exhibit 20 percent opacity or greater.

Subp. 3. Installation. The owner or operator shall install pneumatic coal-cleaning equipment and thermal dryers in a manner that performance tests for particulate matter can be run in accordance with applicable procedures and methods set forth in parts 7011.1130 to 7011.1135.

Subp. 4. Monitoring. The owner or operator of any coal handling facility that contains a thermal dryer shall install, calibrate, maintain, and continuously operate monitoring devices as follows:

A. A monitoring device for the measurement of the temperature of the gas stream at the exit of the thermal dryer on a continuous basis. The monitoring device shall be certified by the manufacturer to be accurate within three degrees Fahrenheit.
B. In the event venturi scrubber emission control equipment is utilized:
(1) A monitoring device for the continuous measurement of the pressure loss through the venturi constriction of the control equipment. The monitoring device shall be certified by the manufacturer to be accurate within one inch water gauge.

(2) A monitoring device for the continuous measurement of the water supply pressure to the control equipment. The monitoring device shall be certified by the manufacturer to be accurate within five percent of design water supply pressure. The pressure sensor or tap shall be located close to the water discharge point.

C. The owner or operator of a coal handling facility who is required to maintain monitoring devices shall recalibrate each device annually in accordance with the manufacturer's written requirements for checking the operation and calibration of the device.

Statutory Authority: MS s 115.03; 116.07

History: 18 SR 614; 41 SR 763

Published Electronically: January 27, 2017

7011.1120 EXEMPTION.

During freezing temperatures, owners or operators shall not be required to apply water or dust suppressants.

Statutory Authority: MS s 116.07

History: 18 SR 614

Published Electronically: February 25, 2008

7011.1125 CEASING OPERATIONS; WIND.

The owner or operator of a coal handling facility shall not conduct any nonessential coal handling operations that are not shielded from the wind or enclosed in a building when steady wind speeds exceed 30 miles per hour as determined at the nearest official station of the United States Weather Bureau or by wind speed instruments on or adjacent to the site.

Statutory Authority: MS s 116.07

History: 18 SR 614

Published Electronically: April 3, 2019

7011.1130 PERFORMANCE TEST METHOD.

Unless another method is approved by the commissioner, an owner or operator required to submit performance tests for coal handling facilities must use the following test methods to demonstrate compliance:

A. Method 1 for sample and velocity traverses;

B. Method 5 for the concentration of filterable particulate material and moisture content;

C. Method 9 for the visual determination of the opacity of emission from stationary sources.
7011.1135 PERFORMANCE TEST PROCEDURES.

Subpart 1. In general. Performance tests must be conducted according to the requirements of this part and parts 7017.2001 to 7017.2060.

Subp. 2. Special procedures. For Method 5, the sampling time for each run must be at least 60 minutes and the minimum sampling volume must be 0.85 dscm (30 dscf) except that owners or operators may, prior to testing, request approval from the commissioner for smaller sampling times or volumes, when necessitated by process variables or site-specific limitations. Sampling must not be started until at least 30 minutes after start-up and must be terminated before shutdown procedures commence. The owner or operator must eliminate cyclonic flow during performance tests.

7011.1140 DUST SUPPRESSANT AGENTS.

Nothing in these parts shall authorize the use of surface hardening agents, wetting or chemical agents, foam agents, and oils that may cause ground water or surface water contamination in violation of any applicable water pollution law.

7011.1150 INCORPORATION BY REFERENCE; NEW SOURCE PERFORMANCE STANDARDS; COAL PREPARATION AND PROCESSING PLANTS.

WASTE COMBUSTORS

7011.1201 DEFINITIONS.

Subpart 1. Scope. As used in parts 7007.0200, 7007.0250, 7007.0501, 7007.0801, and 7011.1201 to 7011.1294, the following words have the meanings defined in this part.

Subp. 1a. Statutes and other rules. The definitions in Minnesota Statutes, section 116.06, and in part 7001.0010 and chapters 7005, 7007, 7009, 7011, 7017, and 7019 apply to terms in parts 7011.1201 to 7011.1294, unless the terms are specifically otherwise defined in this part.

Subp. 2. [Repealed, 18 SR 2584]

Subp. 3. [Repealed, 18 SR 2584]

Subp. 4. [Repealed, 18 SR 2584]

Subp. 5. Accurate and valid data. "Accurate and valid data" means data which provides the measurement of emissions of an air contaminant from the waste combustor or operating parameters of a component of the waste combustor. For continuously monitored emissions, data shall be considered accurate and valid immediately upon recording. For emissions for which a performance test is conducted, data shall be considered accurate and valid 14 days after the waste combustor owner or operator receives the performance test report, unless the waste combustor owner or operator notifies the commissioner within the same 14 days that the owner or operator can show reason for rejecting the data.

Subp. 6. Air contaminant. "Air contaminant" has the meaning given in Minnesota Statutes, section 116.06, subdivision 2.

Subp. 7. [Repealed, 22 SR 1975]

Subp. 8. Chief facility operator. "Chief facility operator" means the person in direct charge and control of the operation of a waste combustor who is responsible for daily on-site supervision, technical direction, management, and overall performance of the facility.

Subp. 9. Class A waste combustor. "Class A waste combustor" means that the design capacity for a waste combustor unit is 93.75 x 10^6 Btu/hr or more, the waste combustor units combust primarily mixed municipal solid waste or RDF, and construction of the waste combustor was commenced on or before September 20, 1994.

Subp. 10. [Repealed, 22 SR 1975]

Subp. 11. Class C waste combustor. "Class C waste combustor" means that the total of the design capacities for all waste combustor units at a stationary source is 15 x 10^6 Btu/hr or more and less than 93.75 x 10^6 Btu/hr, the waste combustor units combust primarily mixed municipal solid waste or RDF, and construction of the waste combustor was commenced on or before September 20, 1994.

Subp. 12. [Repealed, 39 SR 386]
Subp. 13. **Class I waste combustor.** "Class I waste combustor" means that the design capacity for a waste combustor unit is \(93.75 \times 10^6\) Btu/hr or more, the waste combustor unit burns mixed municipal solid waste, and construction of the unit is commenced after September 20, 1994, or modification or reconstruction is commenced after June 19, 1996.

Subp. 14. **Class II waste combustor.** "Class II waste combustor" means that the design capacity for a waste combustor unit is \(15 \times 10^6\) Btu/hr or more and less than \(93.75 \times 10^6\) Btu/hr, the waste combustor unit burns mixed municipal solid waste, and construction of the unit is commenced after September 20, 1994, or modification or reconstruction is commenced after June 19, 1996.

Subp. 15. **Class III waste combustor.** "Class III waste combustor" means that the design capacity for a waste combustor unit is \(3.0 \times 10^6\) Btu/hr or more and less than \(15 \times 10^6\) Btu/hr, the waste combustor unit burns mixed municipal solid waste or medical waste, and the waste combustor is issued a permit for construction after December 20, 1989.

Subp. 16. **Class IV waste combustor.** "Class IV waste combustor" means that the design capacity for a waste combustor unit is less than \(3.0 \times 10^6\) Btu/hr.

Subp. 16a. **Commercial or industrial solid waste incinerator.** "Commercial or industrial solid waste incinerator" means any distinct operating unit at a commercial or industrial solid waste facility that combusts, or has combusted in the preceding six months, any solid waste as defined in Code of Federal Regulations, title 40, part 241.

Subp. 17. **Cofired unit.** "Cofired unit" means an emissions unit which combusts mixed municipal solid waste or RDF with a fuel that is not mixed municipal solid waste or RDF and 30 percent or less by weight of the total fuel input is comprised in aggregate of mixed municipal solid waste or RDF as measured on a 24-hour basis. The fuel feed stream composition calculation shall be the ratio of the weights of mixed municipal solid waste and RDF to mixed municipal solid waste, RDF, and all other fuels delivered to the combustion chamber.

Subp. 18. **Crematorium.** "Crematorium" means a furnace used to reduce the dead human body to ashes and inorganic bone fragments.

Subp. 19. **Design capacity.** "Design capacity" means the hourly throughput of the waste combustor unit based on heat input from solid waste of the combustion system stated by the manufacturer or designer, based on accepted design and engineering practices. For a noncontinuous feed system, design capacity means the total heat input from solid waste per cycle.

Subp. 20. **Dumpstack.** "Dumpstack" means a stack, chimney, vent, or other functionally equivalent opening by which uncontrolled emissions are vented into the ambient air.

Subp. 21. **Energy recovery facility.** "Energy recovery facility" means an emissions unit or emission facility used to capture the heat value of solid waste for conversion to steam, electricity, or immediate heat value by direct combustion or by burning an intermediate fuel product derived from solid waste. For the purposes of parts 7011.1201 to 7011.1294, this definition does not include landfill facilities that recover methane gases, or facilities processing solid waste to convert the solid waste to an intermediate fuel product.
Subp. 22. **Fluidized bed combustor.** "Fluidized bed combustor" means a classification of combustion systems in which the bed material is maintained in a fluidized state in the primary zone of combustion. Combustion systems included in this classification include bubbling fluidized bed and circulating fluidized bed combustors.

Subp. 23. **Four-hour block average.** "Four-hour block average" means the average of all hourly emission rates when the emissions unit is operating and combusting solid waste measured over six discrete four-hour periods beginning at midnight.

Subp. 24. **Hazardous waste.** "Hazardous waste" has the meaning given in Minnesota Statutes, section 115B.02, subdivision 9.

Subp. 25. **Household batteries.** "Household batteries" has the meaning given in Minnesota Statutes, section 115A.961.

Subp. 26. **Household hazardous waste.** "Household hazardous waste" has the meaning given in Minnesota Statutes, section 115A.96, subdivision 1, paragraph (b).

Subp. 27. **Incinerator.** "Incinerator" means any emissions unit, emission facility, furnace, or other device used for the primary purpose of reducing the volume of solid waste by removing combustible matter.

Subp. 28. **Industrial solid waste.** "Industrial solid waste" has the meaning given in part 7035.0300, subpart 45.

Subp. 29. **Infectious waste.** "Infectious waste" has the meaning given in Minnesota Statutes, section 116.76, subdivision 12.

Subp. 30. **Initial start-up.** "Initial start-up" means the date on which solid waste is first fired in a new, modified, retrofitted, or reconstructed emissions unit.

Subp. 31. **Mass burn.** "Mass burn" means a classification of field-erected combustion systems in which solid waste is combusted that has not been subjected to shredding or size classification. Combustion systems included in this classification are mass burn water wall, mass burn refractory, and mass burn rotary waterwall combustors.

Subp. 32. **Maximum demonstrated capacity.** For waste combustors with heat recovery, "maximum demonstrated capacity" means the maximum four-hour integrated average load for each waste combustor unit achieved during four consecutive hours during the most recent test during which compliance with the PCDD/PCDF limit in part 7011.1225 is achieved, as measured by steam flow or alternative method as approved by the commissioner. For waste combustors without heat recovery, "maximum demonstrated capacity" means the maximum four-hour arithmetic average input rate for each waste combustor unit achieved during the most recent test during which compliance with the PCDD/PCDF limit was achieved. If PCDD/PCDF testing is not required to be conducted, the maximum demonstrated capacity is the capacity achieved during the conduct of the most recent test for which compliance with particulate matter standards and carbon monoxide in part 7011.1225 is demonstrated.
Subp. 33. **Metals recovery incinerator.** "Metals recovery incinerator" means a furnace or incinerator used primarily to recover precious and nonprecious metals by burning the combustible fraction from waste. An aluminum sweat furnace is not a metals recovery incinerator.

Subp. 34. **Mixed municipal solid waste.** "Mixed municipal solid waste" has the meaning given in Minnesota Statutes, section 115A.03, subdivision 21.

Subp. 34a. **Modification or modified municipal waste combustor unit.** "Modification" or "modified municipal waste combustor unit" means a municipal waste combustor unit to which changes have been made after June 19, 1996, if the cumulative cost of the changes, over the life of the unit, exceed 50 percent of the original cost of construction and installation of the unit (not including the cost of any land purchased in connection with such construction or installation) updated to current costs; or any physical change in the municipal waste combustor unit or change in the method of operation of the municipal waste combustor which increases the amount of any air pollutant emitted by the unit for which standards have been established under section 129 or section 111 of the Clean Air Act. Increases in the amount of any air pollutant emitted by the municipal waste combustor unit are determined at 100 percent physical load capability and downstream of all air pollution control devices, with no consideration given for load restrictions based on permits or other nonphysical operational restrictions.

Subp. 35. **Modular waste combustor.** "Modular waste combustor" means a classification of combustion systems that are not field-erected, and have more than one combustion chamber. Combustion systems included in this classification are modular starved air and modular excess air combustors.

Subp. 36. **Normal start-up.**

A. "Normal start-up" means the period of time between the initial start-up of a new, modified, retrofitted, or reconstructed emissions unit of a waste combustor, or emissions unit of a waste combustor that is modified, retrofitted, or reconstructed to meet the requirements of parts 7011.1201 to 7011.1294, and the lesser of 60 days after achieving the maximum production rate at which the emissions unit will operate or 180 days after initial start-up.

B. If no modification, retrofit, or reconstruction of a class D or IV waste combustor is necessary to meet the requirements of parts 7011.1201 to 7011.1294, then normal start-up means the period of time between June 20, 1994, and the applicable date in part 7011.1215, subpart 6.

C. If no modification, retrofit, or reconstruction of a class A or C waste combustor is necessary to meet the requirements of parts 7011.1201 to 7011.1294, then normal start-up means the period of time between May 18, 1998, and the date by which the waste combustor must demonstrate compliance with waste combustor emission standards of part 7011.1225, as allowed in part 7011.1215, subparts 5 and 5a.

Subp. 36a. **One-hour average.** "One-hour average" means the arithmetic mean of all the individual data points collected by a monitor in an hour. Each hourly average begins at the top of the hour and ends at the top of the succeeding hour.
Subp. 37. **Operator supervisor.** "Operator supervisor" means the class IV waste combustor personnel who has direct responsibility for control of the operation of a waste combustor and is responsible for overall on-site supervision, technical direction, management, and performance of the facility. This personnel may also be responsible for operating the waste combustor including start-up, operation, shutdown, and maintenance of the equipment.

Subp. 38. **Paint burn-off oven.** "Paint burn-off oven" means an oven or furnace designed, installed, and operated to burn off paint overspray from hooks and other painting process accessories.

Subp. 39. **Pathological waste.** "Pathological waste" has the meaning given in Minnesota Statutes, section 116.76, subdivision 14.

Subp. 40. **Polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans or PCDD/PCDF.** "Polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans" or "PCDD/PCDF" means the total of tetra-through octa-polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans.

Subp. 41. **Problem material.** "Problem material" has the meaning given in Minnesota Statutes, section 115A.03, subdivision 24a.

Subp. 42. **RDF stoker.** "RDF stoker" means a steam generating unit that combusts RDF in a semisuspension firing mode using air-fed distributors.

Subp. 42a. **Reconstruction.** "Reconstruction" means rebuilding a municipal waste combustor unit for which the reconstruction commenced after June 19, 1996, and the cumulative costs of the construction over the life of the unit exceed 50 percent of the original cost of construction and installation of the unit (not including any cost of land purchased in connection with the construction or installation) updated to current costs (current dollars).

Subp. 43. **Refuse-derived fuel or RDF.** "Refuse-derived fuel" or "RDF" has the meaning given in Minnesota Statutes, section 115A.03, subdivision 25d.

Subp. 43a. [Renumbered subp 43c]

Subp. 43b. **Resinated wood.** "Resinated wood" has the meaning given in Code of Federal Regulations, title 40, section 241.2.

Subp. 43c. **Retrofit.** "Retrofit" means the installation of air pollution control, combustion, or monitoring equipment to a waste combustor for purposes of reducing air pollution emissions. If installing air pollution control equipment, combustion equipment, or monitoring equipment would be a modification as defined in subpart 34a, or reconstruction as defined in subpart 42a, then the activity is not a retrofit.

Subp. 44. **Shift supervisor.** "Shift supervisor" means the person in direct charge and control of the operation of a waste combustor and who is responsible for on-site supervision, technical direction, management, and overall performance of the facility during an assigned shift.

Subp. 45. **Solid waste.** "Solid waste" has the meaning given in Minnesota Statutes, section 116.06, subdivision 22.
Subp. 45a. **Tires.** "Tires" has the meaning given in Minnesota Statutes, section 115A.90, subdivision 7.

Subp. 46. **Waste combustor.** "Waste combustor" means any emissions unit or emission facility where mixed municipal solid waste, solid waste, or refuse-derived fuel is combusted, and includes energy recovery facilities, or other combustion devices. A metals recovery incinerator is a waste combustor. A combustion device combusting resinated wood or dewatered paper mill wastewater treatment plant sludge, is not a waste combustor. A soil treatment facility, paint burn-off oven, wood heater, or residential fireplace is not a waste combustor.

Subp. 47. [Repealed, 22 SR 1975]

Subp. 48. **Wood.** "Wood" means wood, wood residue, bark, or any derivative fuel or residue thereof, in any form, including sawdust, sander dust, wood chips, wood scraps, slabs, millings, shavings, and processed pellets made from wood and other forest residues.

Subp. 49. **Wood heater.** "Wood heater" means an enclosed wood-burning appliance capable of and intended for space heating and domestic water heating. These devices include adjustable burn rate wood heaters, single burn rate wood heaters, and pellet stoves. Wood heaters may or may not include air ducts to deliver some portion of the heat produced to areas other than the space where the wood heater is located. Wood heaters include:

A. freestanding wood heaters: wood heaters that are installed on legs, on a pedestal, or suspended from the ceiling. These products generally are safety listed under UL-1482, UL-737, or ULC-S627;

B. fireplace insert wood heaters: wood heaters intended to be installed in masonry fireplace cavities or in other enclosures. These appliances generally are safety listed under UL-1482, UL-737, or ULC-S628; and

C. built-in wood heaters: wood heaters that are intended to be recessed into the wall. These appliances generally are safety listed under UL-1482, UL-737, UL-127, or ULC-S610.

Subp. 50. **Yard waste.** "Yard waste" means garden wastes, leaves, lawn cuttings, weeds, and prunings.

Statutory Authority: *MS* s 116.07

History: *L 1987 c 186 s 15; 18 SR 614; 18 SR 2584; 22 SR 1975; 39 SR 386; 43 SR 797; 44 SR 1030*

Published Electronically: *September 17, 2020*

7011.1202 [Repealed, 18 SR 2584]
Published Electronically: *February 25, 2008*

7011.1203 [Repealed, 18 SR 2584]
Published Electronically: *February 25, 2008*

7011.1204 [Repealed, 18 SR 2584]
Published Electronically: *February 25, 2008*

Official Publication of the State of Minnesota
Revisor of Statutes
7011.1205 INCORPORATION BY REFERENCE; DOCUMENTS.

For the purpose of parts 7007.0501, 7007.0801, and 7011.1201 to 7011.1294, the documents in items A to C are incorporated by reference. Unless otherwise stated, these documents are not subject to frequent change:

A. Annual Book of American Society for Testing and Materials Standards (ASTM), Volume 05.06, Gaseous Fuels; Coal and Coke; Catalysts; Bioenergy and Industrial Chemicals from Biomass (2017). This publication is available through the Minitex interlibrary loan system;

B. Test Methods for Evaluating Solid Waste, SW-846, United States Environmental Protection Agency. This publication is available at https://www.epa.gov/hw-sw846/sw-846-compendium and is subject to frequent change; and

C. The following material is available from the American Society of Mechanical Engineers (ASME), 345 East 47th Street, New York, New York 10017 or through the Minitex interlibrary loan system:

(1) Standard for the Qualification and Certification of Resource Recovery Facility Operators, ASME QRO-1-2005 (2005, reaffirmed 2015);

(2) Power Test Codes, Steam Generating Units, PTC 4.1-1974 (reaffirmed 1991); and

Statutory Authority: MS s 116.07

History: 18 SR 2584; 22 SR 1975; 39 SR 386; 44 SR 1030

Published Electronically: April 16, 2020

7011.1206 [Repealed, 18 SR 2584]

Published Electronically: February 25, 2008

7011.1207 [Repealed, 18 SR 2584]

Published Electronically: February 25, 2008

7011.1210 NOTIFICATION REQUIRED OF CLASS IV WASTE COMBUSTORS.

Subpart 1. Class IV waste combustors at hospitals. The owner or operator of a class IV waste combuster located at a hospital that was operating on June 20, 1994, shall notify the commissioner by September 19, 1994, of the existence of the waste combuster. The notice submitted by owners and operators of these waste combustors shall contain:

A. the name of the owner and operator, and the address of the waste combuster installation;

B. a schedule showing that the waste combuster will meet the requirements of parts 7011.1201 to 7011.1285 on January 30, 1996, or upon expiration of a current permit for those waste combustors to which permits were issued between December 1, 1992, and June 20, 1994; and
Subp. 2. **Waste combustors at hospitals.** The owner or operator of a class IV waste combustor located at a hospital and installed after June 20, 1994, shall notify the commissioner 90 days prior to the installation of the waste combustor. The notice submitted by the owner or operator of this class IV waste combustor shall contain the information in items A to H.

A. The name of the owner and operator, and the address of the waste combustor installation.

B. The results of a current fractional analysis and the heat value of the solid waste stream. The fractional analysis shall be conducted according to part 7007.0501, subpart 2, item A, subitem (1). Published data may be used to determine heat value of the solid waste stream. If published data is unavailable, the owner or operator shall use the methods described in part 7007.0501, subpart 2, item A, subitem (4), to determine heat value of the solid waste stream.

C. The waste combustor manufacturer and model number, the diameter in feet, the exit height of the stack in feet, and the minimum stack height that is required to be installed by part 7011.1235, subpart 1, for the proposed waste combustor.

D. The design capacity of the waste combustor in million Btu's per hour.

E. A plan that describes how solid wastes that contain mercury will be identified, separated, and collected before the waste is combusted in accordance with part 7011.1255.

F. A plan for disposal of the ash generated, as described in part 7007.0501, subpart 7.

G. A schedule for a performance test to demonstrate compliance with emission limits in part 7011.1225, according to the schedule in part 7011.1270. The owner or operator shall use the methods described in part 7011.1265 when conducting compliance tests.

H. The signature of the owner or operator with the following certification:

"I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. Further, the waste combustor complies with the design, installation, and operating requirements of Minnesota Rules, parts 7011.1201 to 7011.1294, applicable to a class IV waste combustor."

Statutory Authority: *MS s 116.07*

History: *18 SR 2584; 22 SR 1975; 39 SR 386*

Published Electronically: *September 17, 2020*
7011.1215 APPLICABILITY OF STANDARDS OF PERFORMANCE FOR WASTE COMBUSTORS.

Subpart 1. Waste combustors. A person who constructs, modifies, reconstructs, or operates a waste combustor shall comply with parts 7011.1201 to 7011.1294, except as provided in subparts 2 to 3.

Subp. 2. Cofired facilities. A person who constructs, modifies, reconstructs, or operates a cofired unit is not a waste combustor under parts 7011.1201 to 7011.1285.

Subp. 2a. Units combusting tires or fuel derived from tires. A waste combustor burning a single-item waste stream of tires or fuel derived from tires is not subject to parts 7011.1201 to 7011.1294 if the owner or operator notifies the commissioner in writing of its intent to combust only tires, and provides data documenting that the unit qualifies for this exemption.

Subp. 2b. Units combusting waste contaminated with used oil. An owner of a solid-fuel-fired indirect or direct heating source burning fossil fuel with only wastes contaminated with used oil generated by the owner is not subject to parts 7011.1201 to 7011.1294.

Subp. 2c. Commercial and industrial solid waste incinerators. A person who constructs, modifies, or reconstructs a waste combustor such that it becomes a commercial or industrial solid waste incinerator is not subject to parts 7011.1225 to 7011.1285 but shall comply with parts 7011.1360 to 7011.1370.

Subp. 3. Exemptions from standards of performance. Crematoria, pathological waste combustors, and waste combustors used solely for the disposal of animal carcasses are exempt from the requirements of parts 7011.1210 to 7011.1294, and shall meet the conditions of this subpart.

A. No owner or operator of a crematorium, pathological waste combustor unit, or waste combustor unit used solely for the disposal of animal carcasses shall cause to be emitted into the atmosphere gases which are greater than 20 percent opacity.

B. Waste combustor owners and operators shall install and operate an afterburner which maintains flue gases at 1,200 degrees Fahrenheit for at least 0.3 seconds.

C. Ash shall be stored and transported in such a manner to prevent avoidable amounts of particulate matter to become airborne.

Subp. 4. Standards.

A. The standards of parts 7011.1227, 7011.1228, 7011.1229, 7011.1230, 7011.1233, 7011.1240, subpart 2, and 7011.1272, subpart 2, apply at all times when waste is being continuously burned, except during periods of start-up, shutdown, or malfunction, provided that the duration of start-up, shutdown, or malfunction does not exceed three hours. Fugitive emissions standards applicable to ash conveying systems do not apply during maintenance and repair of ash conveying systems. "Malfunction" means any sudden and unavoidable failure of air pollution control equipment or process equipment or of a process to operate in a normal or usual manner. Failures that are caused...
entirely or in part by poor maintenance, careless operation, or any other preventable upset condition or preventable equipment breakdown are not considered malfunctions.

B. The start-up period commences when the waste combustor begins the continuous burning of solid waste and does not include any warm-up period when the waste combustor is combusting fossil fuel or other solid fuel.

C. Continuous burning is the continuous, semicontinuous, or batch feeding of solid waste for purposes of waste disposal, energy production, or providing heat to the combustion system in preparation for waste disposal or energy production. The use of solid waste solely to provide thermal protection of the grate or hearth during the start-up period when municipal solid waste is not being fed to the grate is not considered to be continuous burning.

Subp. 5. Transition for class A waste combustors. The application of the waste combustor standards to class A waste combustors is described in this subpart.

A. Class A waste combustors shall demonstrate compliance with parts 7011.1201 to 7011.1290 by July 17, 1998, except that the conditions of part 7011.1240, subpart 1, shall be met according to the schedule in part 7011.1240, subpart 1a.

B. If the class A waste combustor cannot comply with these waste combustor standards by July 17, 1998, the waste combustor shall cease operating on July 17, 1998. If the waste combustor cannot comply by July 17, 1998, and elects to continue operating, the waste combustor owner or operator shall submit to the commissioner by June 17, 1998, a schedule that contains the following items:

1. a compliance schedule that contains the following milestones:
 (a) a final control plan;
 (b) the date that the owner or operator will award contracts for emission control systems or for process modifications, or issue orders for the purchase of component parts to accomplish emission control or process modifications described in the final control plan;
 (c) the date that the owner or operator will initiate on-site construction or installation of emissions control or process changes;
 (d) the date that the owner or operator will complete on-site construction or installation of emissions control or process changes; and
 (e) the date that the owner or operator will demonstrate compliance with the emissions limitations and monitoring requirements of parts 7011.1201 to 7011.1290. This date shall not be any later than December 19, 2000; and

2. for each waste combustor whose compliance schedule shows that the unit will not achieve the emission limits of part 7011.1225 by July 17, 1998, the results of a performance test for PCDD/PCDF emissions from each waste combustor unit. If a facility contains identical waste combustor units, only one of the identical units needs to be tested. The owner or operator shall provide an explanation with the submittal of why the units can be assumed to be identical. The
C. Physical or operational changes made to a class A waste combustor unit primarily for the purpose of complying with the emission limits in parts 7011.1201 to 7011.1290 prior to December 19, 2000, are not considered in determining whether the unit is a modified or reconstructed waste combustor subject to the requirements of Code of Federal Regulations, title 40, part 60, subpart Ea or Eb.

Subp. 5a. **Transition for class C waste combustors.** A class C waste combustor shall demonstrate compliance with parts 7011.1201 to 7011.1290 by July 17, 1998.

Subp. 6. [Repealed, 39 SR 386]

Statutory Authority: MS s 116.07

History: 18 SR 2584; 22 SR 1975; 39 SR 386

Published Electronically: September 17, 2020

7011.1220 PROHIBITIONS.

Subpart 1. **Prohibited waste combustors.** No person shall operate a class IV waste combustor unless that waste combustor is:

A. a waste combustor located at a hospital;

B. a crematorium, pathological waste combustor, or waste combustor used solely for the disposal of animal carcasses; or

C. a metals recovery incinerator.

Subp. 2. **Solid wastes requiring special approval.** No waste combustor shall combust yard waste or tires unless specifically allowed to do so in the air emission permit for the waste combustor.

Statutory Authority: MS s 116.07

History: 18 SR 2584; 22 SR 1975

Published Electronically: September 17, 2020

7011.1225 STANDARDS OF PERFORMANCE FOR WASTE COMBUSTORS.

Subpart 1. **Class A or C waste combustor.**

A. A class A or C waste combustor must not emit gases that exceed the applicable standards of performance in parts 7011.1227 and 7011.1228. Emissions, except opacity, must be calculated under standard conditions corrected to seven percent oxygen on a dry volume basis. An owner or operator of a mixed municipal solid waste or RDF waste combustor may determine compliance with the emission limitations using carbon dioxide measurements corrected to an equivalent of seven percent oxygen.
B. A class A or C waste combustor must not emit visible emissions of combustion ash from an ash conveying system, or buildings or enclosures of ash conveying systems, including conveyor transfer points, that exceed five percent of the observation period (i.e. 9 minutes per three-hour period), as determined by Code of Federal Regulations, title 40, part 60, Appendix A, Method 22, as amended. This limit does not apply to visible emissions discharged inside buildings or enclosures of ash conveying systems.

Subp. 2. **Class I or II waste combustors.** A class I or II waste combustor must not emit gases that exceed the standards of performance shown in part 7011.1230.

Subp. 3. **Class III waste combustors.** A class III waste combustor must not emit gases that contain particulate matter, PCDD/PCDF, mercury, carbon monoxide, or opacity that exceeds the standards of performance in part 7011.1231. Emissions must be calculated under standard conditions, corrected to seven percent oxygen on a dry volume basis. An owner or operator may determine compliance with the emission limitations using carbon dioxide measurements corrected to an equivalent of seven percent oxygen. The relationship between carbon dioxide and oxygen must be established at each compliance test.

Subp. 4. [Repealed, 39 SR 386]

Subp. 5. **Class IV waste combustors.** A class IV waste combustor must not emit gases that contain particulate matter, carbon monoxide, or opacity that exceeds the concentrations in part 7011.1233. Emissions must be calculated under standard conditions, corrected to seven percent oxygen on a dry volume basis. An owner or operator may determine compliance with the emission limitations using carbon dioxide measurements corrected to an equivalent of seven percent oxygen. The relationship between carbon dioxide and oxygen must be established at each compliance test.

Statutory Authority: MS s 116.07

History: 18 SR 2584; 22 SR 1975; 39 SR 386; 44 SR 1030

Published Electronically: September 17, 2020

7011.1227 **TABLE 1.**

The table in this part governs emission limitations for class A and C waste combustor units. For acid gas limitations, either the applicable percent reduction or the parts per million by volume emission limitation, whichever is less stringent, is the emission limitation for the waste combustor.

<table>
<thead>
<tr>
<th>Particulate matter</th>
<th>Class C</th>
<th>Class A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Filterable</td>
<td>0.011 gr/dscf</td>
<td>0.011 gr/dscf</td>
</tr>
<tr>
<td>The sum of filterable and organic condensable</td>
<td>0.020 gr/dscf</td>
<td>0.020 gr/dscf</td>
</tr>
</tbody>
</table>
PCDD/PCDF

<table>
<thead>
<tr>
<th>Description</th>
<th>500 ng/dscm</th>
<th>30 ng/dscm</th>
</tr>
</thead>
</table>

Acid gases:

<table>
<thead>
<tr>
<th>Description</th>
<th>NA</th>
<th>95% control or 29 ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydrogen chloride</td>
<td>NA</td>
<td>75% control or 29 ppm</td>
</tr>
<tr>
<td>Sulfur dioxide</td>
<td>NA</td>
<td></td>
</tr>
</tbody>
</table>

Carbon monoxide

<table>
<thead>
<tr>
<th>Description</th>
<th>50 ppm</th>
<th>50 ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modular starved air</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Modular excess air</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mass burn waterwall</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mass burn refractory</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mass burn rotary refractory</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mass burn rotary waterwall</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bubbling fluidized bed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Circulating fluidized bed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pulverized coal/refuse-derived fuel</td>
<td>NA</td>
<td>150 ppm</td>
</tr>
<tr>
<td>mixed fuel-fired combustor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spreader stoker coal/refuse-derived</td>
<td>NA</td>
<td>200 ppm</td>
</tr>
<tr>
<td>fuel mixed fuel-fired combustor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RDF stoker</td>
<td>150 ppm</td>
<td>200 ppm</td>
</tr>
</tbody>
</table>

Opacity

<table>
<thead>
<tr>
<th>Description</th>
<th>10%</th>
<th>10%</th>
</tr>
</thead>
</table>

Mercury (short-term)

<table>
<thead>
<tr>
<th>Description</th>
<th>100 µg/dscm or 85% removal</th>
<th>50 µg/dscm or 85% removal</th>
</tr>
</thead>
<tbody>
<tr>
<td>For all waste combustors</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Mercury (long-term)

<table>
<thead>
<tr>
<th>Description</th>
<th>60 µg/dscm or 85% removal</th>
<th>50 µg/dscm or 85% removal</th>
</tr>
</thead>
<tbody>
<tr>
<td>For all waste combustors except those</td>
<td></td>
<td></td>
</tr>
<tr>
<td>combusting RDF in spreader stokers</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Waste combustor units combusting RDF in spreader stokers (90-day test interval)

Waste combustor units combusting RDF in spreader stokers (12-month test interval)

Cadmium

Lead

Statutory Authority: MS s 115.03; 116.07

History: 18 SR 2584; 22 SR 1975; 41 SR 763

7011.1228 NITROGEN OXIDES LIMITS FOR CLASS A WASTE COMBUSTORS.

The nitrogen oxides emission limits in Table A apply to each waste combustor unit at a class A waste combustor facility. The owner or operator must use the procedures of part 7011.1260 for determining compliance with the nitrogen oxides emission limits of Table A. Alternatively, an owner or operator may average nitrogen oxide emissions across the waste combustor facility according to the procedures in Code of Federal Regulations, title 40, section 60.33b(d)(1), as amended. Waste combustor units for which emissions averaging is used must not exceed the nitrogen oxide emission limits in Table B.

TABLE A

<table>
<thead>
<tr>
<th>Municipal Waste Combustor Technology</th>
<th>Nitrogen Oxides Emission Limit (parts per million by volume)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mass burn waterwall</td>
<td>205</td>
</tr>
<tr>
<td>Mass burn rotary waterwall</td>
<td>205</td>
</tr>
<tr>
<td>Refuse-derived fuel combustor</td>
<td>250</td>
</tr>
<tr>
<td>Fluidized bed combustor</td>
<td>180</td>
</tr>
</tbody>
</table>

TABLE B

<table>
<thead>
<tr>
<th>Municipal Waste Combustor Technology</th>
<th>Nitrogen Oxides Emission Limit (parts per million by volume)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mass burn waterwall</td>
<td>180</td>
</tr>
</tbody>
</table>
Refuse-derived fuel combustor 230
Fluidized bed combustor 220

Before a waste combustor owner or operator may implement emissions averaging, the owner or operator must identify units that are included in the nitrogen oxides emissions averaging plan in either the compliance report required by part 7017.2035 that contains the results of the units' initial performance tests required by part 7011.1270, item A, subitem (1), or the annual report required in part 7011.1285, as applicable before implementing the averaging plan. The units included in the averaging plan may be redesignated every calendar year. Partial year averaging is allowable upon written commissioner approval.

Statutory Authority: MS s 116.07

History: 22 SR 1975; 44 SR 1030

Published Electronically: September 17, 2020

7011.1229 TABLE 2.

The table in this part governs emission limitations for a class II waste combustor. For acid gas limitations, either the applicable percent reduction or the parts per million by volume emission limitation, whichever is less stringent, is the emission limitation for the waste combustor.

<table>
<thead>
<tr>
<th>Size</th>
<th>Class II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Particulate matter</td>
<td></td>
</tr>
<tr>
<td>Filterable</td>
<td>0.015 gr/dscf</td>
</tr>
<tr>
<td>The sum of filterable and organic condensable</td>
<td>0.020 gr/dscf</td>
</tr>
<tr>
<td>PCDD/PCDF</td>
<td></td>
</tr>
<tr>
<td>(total)</td>
<td>30 ng/dscm</td>
</tr>
<tr>
<td>Acid gases</td>
<td></td>
</tr>
<tr>
<td>HCl</td>
<td>90% control or 25 ppm</td>
</tr>
<tr>
<td>SO₂</td>
<td>80% control or 30 ppm</td>
</tr>
<tr>
<td>Carbon monoxide</td>
<td></td>
</tr>
<tr>
<td>Modular</td>
<td>50 ppm</td>
</tr>
<tr>
<td>Mass burn or fluidized bed</td>
<td>100 ppm</td>
</tr>
<tr>
<td>RDF stoker</td>
<td>150 ppm</td>
</tr>
</tbody>
</table>
Opacity 10%
NOx NA

Mercury (short-term)

<table>
<thead>
<tr>
<th>Type</th>
<th>Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modular</td>
<td>100 µg/dscm or 85% removal</td>
</tr>
<tr>
<td>Mass Burn</td>
<td>100 µg/dscm or 85% removal</td>
</tr>
<tr>
<td>RDF (90-day test interval)</td>
<td>50 µg/dscm or 85% removal</td>
</tr>
<tr>
<td>FBC</td>
<td>100 µg/dscm or 85% removal</td>
</tr>
</tbody>
</table>

Mercury (long-term)

<table>
<thead>
<tr>
<th>Type</th>
<th>Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modular</td>
<td>60 µg/dscm or 85% removal</td>
</tr>
<tr>
<td>Mass burn</td>
<td>60 µg/dscm or 85% removal</td>
</tr>
<tr>
<td>RDF (90-day test interval)</td>
<td>30 µg/dscm or 85% removal</td>
</tr>
<tr>
<td>FBC</td>
<td>60 µg/dscm or 85% removal</td>
</tr>
<tr>
<td>RDF (12-month test interval)</td>
<td>30 µg/dscm or 85% removal</td>
</tr>
</tbody>
</table>

Statutory Authority: MS s 115.03; 116.07

History: 18 SR 2584; 22 SR 1975; 41 SR 763

Published Electronically: September 17, 2020

7011.1230 PERFORMANCE STANDARDS; CLASS I MUNICIPAL WASTE COMBUSTORS.

Subpart 1. Scope. The owner or operator of a class I waste combustor must comply with the emission limits, notification, monitoring, testing, record-keeping, and reporting requirements of the new source performance standards incorporated in parts 7011.1291 to 7011.1294, except as provided in subpart 2. In addition, the owner or operator must comply with:

A. parts 7011.1240, subpart 1; 7011.1281; 7011.1282; 7011.1283; and 7011.1284, if the owner or operator chooses to comply with the operator certification requirements of Code of Federal Regulations, title 40, section 60.54b, as amended, by obtaining certification through the Minnesota Pollution Control Agency;

B. the general waste combustor facility requirements of part 7011.1245;

C. the industrial solid waste management plan requirements of part 7011.1250;

D. the reporting and response requirements to exceedance of continuously monitored emissions in part 7011.1260, subpart 7;
E. the reporting and response requirements in part 7011.1265, subpart 11, if an exceedance is measured during the conduct of a performance test; and

F. the test or monitoring frequency for a waste composition study of part 7011.1270, item E.

Subp. 2. Mercury emission limitations. Instead of the mercury emission limits contained in Code of Federal Regulations, title 40, sections 60.52(b)(a)(5), 60.58b(d)(2)(ix), and 60.58b(d)(2)(x), as amended, the owner or operator of a class I waste combustor must comply with the mercury emission limits described in this subpart and the testing and reporting requirements of parts 7011.1265, subpart 2; and 7011.1270, item E.

Class I

Mercury (short-term)

<table>
<thead>
<tr>
<th>Description</th>
<th>Limitation</th>
</tr>
</thead>
<tbody>
<tr>
<td>For all waste combustors except those combusting RDF in spreader stokers</td>
<td>80 µg/dscm or 85% removal</td>
</tr>
<tr>
<td>Waste combustor units combusting RDF in spreader stokers (90-day test interval)</td>
<td>50 µg/dscm or 85% removal</td>
</tr>
</tbody>
</table>

Mercury (long-term)

<table>
<thead>
<tr>
<th>Description</th>
<th>Limitation</th>
</tr>
</thead>
<tbody>
<tr>
<td>For all waste combustors except those combusting RDF in spreader stokers</td>
<td>60 µg/dscm or 85% removal</td>
</tr>
<tr>
<td>Waste combustor units combusting RDF in spreader stokers (90-day test interval)</td>
<td>30 µg/dscm or 85% removal</td>
</tr>
<tr>
<td>Waste combustor units combusting RDF in spreader stokers (12-month test interval)</td>
<td>30 µg/dscm or 85% removal</td>
</tr>
</tbody>
</table>

Statutory Authority: MS s 116.07

History: 22 SR 1975; 39 SR 386; 44 SR 1030

Published Electronically: September 17, 2020

7011.1231 TABLE 3.

The table in this part governs emission limitations for class III waste combustors.

<table>
<thead>
<tr>
<th>Size</th>
<th>Class III</th>
</tr>
</thead>
<tbody>
<tr>
<td>Particulate matter</td>
<td></td>
</tr>
<tr>
<td>The sum of filterable and organic condensable</td>
<td>0.020 gr/dscf</td>
</tr>
</tbody>
</table>
PCDD/PCDF

Total 60 ng/dscm

Carbon monoxide

Modular 50 ppm

RDF 275 ppm

Opacity 10%

Mercury

Short-term 500 µg/dscm or 85% removal

Long-term 300 µg/dscm or 85% removal

Statutory Authority: MS s 115.03; 116.07

History: 18 SR 2584; 41 SR 763

Published Electronically: September 17, 2020

7011.1233 TABLE 4.

The table in this part governs emissions from class IV waste combustors.

Use Metal Recovery

Particulate matter

The sum of filterable and organic condensable 0.035 gr/dscf

Opacity 20%

Carbon monoxide 50 ppm

Statutory Authority: MS s 115.03; 116.07

History: 18 SR 2584; 41 SR 763

Published Electronically: September 17, 2020

7011.1235 REQUIREMENTS OF CLASS IV WASTE COMBUSTORS.

Subpart 1. Stack height.

A. The exit height of the stack at a class IV waste combustor shall be equal to or greater than H plus 0.5L where H is the building height and L is the lesser of the building height or the maximum projected width of the building.
B. The building which gives the greatest value for H plus $0.5L$ shall determine the stack exit height. All buildings nearby the stack shall be considered in determining stack exit height.

C. Maximum projected width is the longest diagonal distance of the building footprint. The stack is considered to be nearby a building if it is within five times the lesser of the building height or building width.

D. In the alternative, a class IV waste combustor may use a stack with an exit height less than that required by the formula in this subpart, if the facility:

1. Demonstrates that it can achieve the same ambient concentrations achieved with the exit height required by this subpart; and

2. Obtains a permit under parts 7007.0250 and 7007.0501.

Subp. 2. Combustion chamber. The final combustion chamber of a class IV waste combustor shall be designed and operated to maintain combustion gases at a minimum of 1,800 degrees Fahrenheit for one second in a zone after the last overfire air or secondary air has entered the combustion chamber.

Subp. 2a. Using auxiliary fuel. Auxiliary fuel shall be used to maintain the operating temperatures required in subpart 2 from the time the solid waste feed has been discontinued until the combustion chamber is clear of combustible material or active combustion ceases to exist in the combustion chamber.

Subp. 3. Mercury and ash plans. The plans submitted under part 7011.1210, subpart 2, items E and F, within the time provided in part 7011.1215, subpart 6, shall be implemented upon submittal.

Statutory Authority: MS 116.07

History: 18 SR 2584; 22 SR 1975

Published Electronically: September 17, 2020

7011.1240 OPERATING REQUIREMENTS.

Subpart 1. Presence of certified operator. The person described in this subpart shall be present at the waste combustor facility at all times when solid waste is being combusted, except as provided in subpart 1a.

A. For class A, C, I, or II waste combustors, either a chief facility operator or shift supervisor who holds a certificate as described in part 7011.1281, subpart 1.

B. For class D and III waste combustors, either a chief facility operator or shift supervisor who holds a certificate as described in part 7011.1280.

C. For class IV waste combustors, the operator supervisor shall hold a certificate as described in part 7011.1280.

Subp. 1a. Transition period for certifying operators. Notwithstanding subpart 1, operators shall be certified within the time frames described in items A to C.
A. For class A and C waste combustors:

(1) on May 18, 1998, or until the conditions of subitems (2) to (4) are met, chief facility operators and shift supervisors shall hold a certificate as described in part 7011.1280;

(2) within 12 months of May 18, 1998, all chief facility operators and shift supervisors employed on May 18, 1998, shall have obtained full certification as described in part 7011.1281;

(3) notwithstanding subitem (2), within six months of the initial start-up of a waste combustor unit or associated air pollution control equipment, all chief facility operators and shift supervisors shall have obtained full certification as described in part 7011.1281;

(4) notwithstanding subitem (2) or (3), individuals, if assuming the duties of chief facility operator or shift supervisor after May 18, 1998, shall have obtained full certification as described in part 7011.1281 within six months of assuming such duties; and

(5) within 12 months of May 18, 1998, control room operators shall obtain certification as described in part 7011.1280. After 12 months from May 18, 1998, individuals, if assuming the duties of control room operator for the first time, shall obtain certification as described in part 7011.1280 within six months of assuming such duties.

B. For class I and II waste combustors:

(1) within six months of the initial start-up of a waste combustor unit, all chief facility operators and shift supervisors shall have obtained full certification, or have scheduled the exam appropriate to the certification being sought as described in part 7011.1281; and

(2) notwithstanding subitem (1), individuals, if assuming the duties of chief facility operator or shift supervisor after six months after the initial start-up of a waste combustor unit, shall obtain full certification as described in part 7011.1281 within six months of assuming such duties.

Subp. 2. Particulate matter control device; operating temperature. The inlet gas stream to each particulate matter control device on a waste combustor as measured by part 7011.1260, subpart 4, item A, shall have a temperature of no greater than 30 degrees Fahrenheit above the highest four-hour arithmetic mean temperature measured during four consecutive hours for this gas stream during the most recent performance test for polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans that demonstrated compliance, except as allowed in items A and B.

A. For class A, C, and II waste combustors, during the annual PCDD/PCDF performance test and the two weeks preceding the annual PCDD/PCDF performance test, no particulate matter control device temperature limitations are applicable.

B. For class A, C, and II waste combustors, the commissioner shall waive the particulate matter control device temperature limits for the purpose of evaluating system performance, testing new technology or control technologies, diagnostic testing, or related activities for the purpose of improving facility performance or advancing the state-of-the-art for controlling facility emissions, provided a written notification is submitted to the commissioner 30 days prior to undertaking any of the activities identified in this item, with the following information:
(1) a description of the proposed project, and the outcome the project is designed to evaluate;

(2) how the project conforms with the activities described in this subpart for which the temperature limit can be waived; and

(3) the length of time the project will take to complete.

The commissioner shall approve the waiving of the particulate matter control device operating temperature limits provided that the project conforms with the activities described in this subpart for which the temperature limit can be waived, and the project can be accomplished within 14 days.

Subp. 3. Start-up on waste prohibited. During start-up from a cold furnace, auxiliary fuels shall be used to achieve combustion chamber operating temperature. The use of solid waste solely to provide thermal protection of the grate or hearth during the start-up period when solid waste is not being fed to the grate is not considered to be continuous burning.

Subp. 4. [Repealed, 22 SR 1975]

Subp. 5. Range of operation.

A. No owner or operator of a waste combustor shall operate the waste combustor while combusting solid waste at a level above 110 percent of the maximum demonstrated capacity of the combustion system, except as allowed in items B and C, without conducting a performance test under part 7011.1265, which demonstrates compliance with the emission limitations of part 7011.1225 at greater than 110 percent of the maximum demonstrated capacity.

B. For class A, C, and II waste combustors, during the annual PCDD/PCDF performance test and the two weeks preceding the annual PCDD/PCDF performance test, no waste combustor maximum demonstrated capacity is applicable.

C. For class A, C, and II waste combustors, the commissioner shall waive the maximum demonstrated capacity limit for the purpose of evaluating system performance, testing new technology or control technologies, diagnostic testing, or related activities for the purpose of improving facility performance or advancing the state-of-the-art for controlling facility emissions, provided a written notification is submitted to the commissioner 30 days prior to undertaking any of the activities identified in this item, with the following information:

(1) a description of the proposed project, and the outcome the project is designed to evaluate;

(2) how the project conforms with the activities described in this subpart for which the maximum demonstrated capacity limit can be waived; and

(3) the length of time the project will take to complete.

The commissioner shall approve the waiving of the maximum demonstrated capacity limits provided that the project conforms with the activities described in this subpart for which the operating capacity limit can be waived, and the project can be accomplished within 14 days.
Subp. 6. [Repealed, 22 SR 1975]

Subp. 7. **Dumpstack use and reporting requirements.**

A. The dumpstack of a waste combustor must not be used for conducting routine inspection or maintenance on the control equipment or the combustion system without prior approval of the commissioner.

B. A dumpstack shall only be used at a waste combustor when plant or worker safety would be in jeopardy without its use.

C. The owner or operator of a waste combustor shall record in the daily operating record required in part 7011.1285, subpart 2, the date of use of the dumpstack, the length of time the dumpstack was used, the operating conditions of the waste combustor during dumpstack use, and the reason for using the dumpstack.

Subp. 8. **Shutdown or breakdown reporting requirements.** The owner or operator of a waste combustor shall comply with part 7019.1000 and Minnesota Statutes, section 116.85.

Subp. 9. **Notification.** The owner or operator of a waste combustor must notify the commissioner in writing at least ten days before the initial start-up of a waste combustor.

Statutory Authority: MS s 116.07
History: 18 SR 2584; 22 SR 1975
Published Electronically: September 17, 2020

7011.1245 GENERAL WASTE COMBUSTOR FACILITY REQUIREMENTS.

The owner or operator of a waste combustor shall design, construct, and operate the facility in compliance with the solid waste management requirements as set forth in items A to H. Plans required in the items in this part shall identify those required portions of the plan which are not applicable.

A. security requirements in part 7035.2535, subpart 3;

B. general inspection requirements in part 7035.2535, subpart 4;

C. household hazardous waste management requirements of part 7035.2535, subpart 6;

D. emergency preparedness and prevention plans and emergency procedures shall be prepared in accordance with parts 7035.2595 and 7035.2605;

E. contingency action plans in part 7035.2615;

F. closure plans in part 7035.2625 and closure procedures in part 7035.2635;

G. solid waste transfer facility requirements as required in part 7035.2870; and

H. for waste combustors accepting infectious wastes, infectious waste management requirements of parts 7035.9100 to 7035.9150.
7011.1250 INDUSTRIAL SOLID WASTE MANAGEMENT PLAN.

Subpart 1. Preparing industrial waste management plan. The waste combustor owner or operator shall prepare a plan for the management of industrial solid wastes in accordance with part 7035.2535, subpart 5, items A and B. The plan must also include the contents listed in subpart 2. The owner or operator shall submit the plan to the commissioner with the waste combustor's permit application.

Subp. 2. Contents of plan. The plan must address how the following additional categories of solid waste will be managed to comply with the requirements of part 7035.2535, subpart 5, item A, subitems (2) to (4), as well as state whether each of the following solid wastes will be accepted at the facility:

A. spilled fossil fuels and the sorbents used to collect the spilled fossil fuels;
B. infectious and pathological wastes;
C. media contaminated with oil;
D. problem materials as defined in Minnesota Statutes, section 115A.03, subdivision 24a; and
E. any other solid wastes that can be identified that would adversely impact waste combustor operations or result in environmental and health problems if combusted.

Subp. 3. Modification. The owner or operator shall modify the industrial waste management plan whenever the management practices or solid wastes identified in the plan have changed. The owner or operator shall submit the amended plan to the commissioner for approval.

7011.1255 PLAN TO SEPARATE SOLID WASTES CONTAINING MERCURY.

Subpart 1. Preparing mercury waste separation plan. If a mercury waste separation plan is required by part 7007.0501 or 7011.1210, the waste combustor owner or operator must prepare a plan to identify, separate, and collect before combustion solid wastes which contain mercury.

Subp. 2. Contents of plan. The plan shall, at a minimum, include the collection of household batteries, electrical devices and switches, electric lighting components, and solid wastes from laboratories where mercury is used, and shall include a plan to identify, separate, and collect before combustion other significant sources of mercury.
The plan shall also contain:

A. the name and title of the person responsible for implementing the plan;

B. an identification of solid waste streams and generators targeted under the plan;

C. a description of the methods that will be used to separate and dispose of mercury-containing solid wastes, including the name of the person or persons responsible for identifying, separating, collecting, transporting, recycling, and disposing of the separated mercury-containing solid waste stream;

D. an estimate of the number of pounds per year of mercury that will be removed from the solid waste stream when the plan is implemented; and

E. a description of the methods to be used to generate public awareness of the mercury separation plan and to generate public participation and cooperation.

Subp. 3. Periodically revising plan. Except for class C waste combustors, in each application for reissuance of a permit, or every five years for class IV waste combustors, the plan shall be revised to improve identification, separation, and collection before combustion of mercury from the solid waste stream. The class C waste combustor owner or operator must submit an updated plan to the commissioner every year after initial issuance of a permit under chapter 7007. The updated plan must identify improvements that have been made to the plan to increase identification, separation, and collection before combustion of mercury from the solid waste stream. If no changes are being made, the class C waste combustor operator must state that no changes are being made for that year.

Statutory Authority: MS s 116.07

History: 18 SR 2584

Published Electronically: September 17, 2020

7011.1260 CONTINUOUS MONITORING.

Subpart 1. Combustion chamber temperature monitor. The owner or operator of a class D, III, or IV waste combustor must install and operate temperature monitors that continuously read and record the temperature at the point in the combustion unit one second downstream of the entrance of the last overfire or secondary air injection. The owner or operator may elect to place temperature monitors at another point downstream from the entrance of the last overfire or secondary air injection if the owner or operator conducts mapping of the operating combustion chambers to develop temperature isopleths and correlates these temperatures to the downstream temperature monitors. The averaging period for combustion chamber temperatures must be four-hour arithmetic block averages calculated from four one-hour arithmetic averages. Each one-hour arithmetic average must consist of at least ten data points equally spaced in time.

Subp. 2. Particulate matter control device; temperature monitors. The owner or operator of a waste combustor must install, calibrate, maintain, and operate temperature monitors that
continuously read and record the temperatures of the flue gas at the inlet of each particulate matter control device.

Subp. 3. **Continuous monitors.** The owner or operator of a waste combustor must install, calibrate, maintain, and operate a continuous monitoring system when burning solid waste. Monitoring systems that continuously read and record the following outputs must be installed:

A. in class III, A, C, or D waste combustors:

 (1) for carbon monoxide at the waste combustor outlet;

 (2) for steam flow or an alternative unit load measurement parameter as described in part 7011.1265, subpart 4a, in waste combustors that recover heat with a boiler;

 (3) for flue gas opacity, at a location after which the flue gas has exited the air pollution control equipment; and

 (4) for oxygen or carbon dioxide at each location where carbon monoxide, sulfur dioxide, or nitrogen oxides emissions are monitored, to report corrected concentrations of regulated pollutants;

B. in all classifications of waste combustors subject to nitrogen oxides emission limits for nitrogen oxides; and

C. in all classifications of waste combustors subject to sulfur dioxide emission limits for sulfur dioxide. For those facilities for which compliance is determined by the percent reduction of emissions, monitors must be installed at the inlets and outlets of the air pollution control system.

Subp. 4. **Averaging periods.** Except as provided in this subpart and subparts 4a and 5, parts 7017.1002 to 7017.1220 apply to continuous monitoring data collection, reduction, and averaging periods.

A. For particulate matter control device inlet temperature monitoring, four-hour arithmetic block averages calculated from four consecutive one-hour arithmetic averages.

B. For steam flow or alternative unit load measurement parameter as described in part 7011.1265, subpart 4a, four-hour arithmetic block averages.

C. At waste combustors other than mass burn rotary waterwall combustors or RDF waste combustors for carbon monoxide, a four-hour block average. For mass burn rotary waterwall combustors or RDF stokers, the averaging period for carbon monoxide must be a daily 24-hour arithmetic average measured between 12 midnight and the following midnight. The four-hour and 24-hour average must be calculated from one-hour arithmetic averages. At least four points equally spaced in time shall be used to calculate each one-hour average. During periods of calibration, quality assurance audits, and routine maintenance, only two data points during the hour, at least 15 minutes apart, are required to calculate an hourly average. Each one-hour average must be corrected to seven percent oxygen on an hourly basis using the one-hour arithmetic average of the oxygen or carbon dioxide continuous emissions monitoring system.
D. For sulfur dioxide, the geometric average of the one-hour arithmetic average emission concentration during each 24-hour daily period measured from midnight to midnight. At least four data points equally spaced in time shall be used to calculate each one-hour arithmetic average. During periods of calibration, quality assurance audits, and routine maintenance, only two data points during the hour, at least 15 minutes apart, are required to calculate an hourly average. Each one-hour average must be corrected to seven percent oxygen on an hourly basis using the one-hour arithmetic average of the oxygen or carbon dioxide continuous emissions monitoring system.

E. For nitrogen oxides, the arithmetic average of the one-hour arithmetic average emission concentration during each 24-hour daily period measured from midnight to midnight. At least four data points equally spaced in time must be used to calculate each one-hour arithmetic average. During periods of calibration, quality assurance audits, and routine maintenance, only two data points during the hour, at least 15 minutes apart, are required to calculate an hourly average. Each one-hour average must be corrected to seven percent oxygen on an hourly basis using the one-hour arithmetic average of the oxygen or carbon dioxide continuous emissions monitoring system.

F. For opacity, a six-minute average, calculated using 36 or more data points equally spaced over a six-minute period.

G. For oxygen or carbon dioxide, a one-hour average.

Subp. 4a. Calculating sulfur dioxide and nitrogen oxide emissions.

A. Compliance with the sulfur dioxide emission limit and percent reduction must be determined by using a continuous emission monitor to measure sulfur dioxide and calculating a 24-hour daily geometric mean emission concentration and daily geometric mean percent reduction using Code of Federal Regulations, title 40, part 60, Appendix A, Method 19, section 5.4, as amended, to determine the daily geometric average percent reduction in the potential sulfur dioxide emission concentration. For waste combustors that do not operate continuously, compliance must be determined using a daily geometric mean of all hourly average values for the hours during the day that the facility is operated.

B. Compliance with the nitrogen oxides emission standards must be determined by using a continuous emission monitor for measuring nitrogen oxides and calculating a 24-hour daily arithmetic average emission concentration using Code of Federal Regulations, title 40, part 60, Appendix A, Method 19, section 4.1, as amended. For waste combustors that do not operate continuously, compliance must be determined using an arithmetic mean of all hourly average values for the hours during the day that the facility is operated.

Subp. 5. Installing and operating continuous monitors. The owner or operator of a waste combustor with continuous monitors must comply with parts 7017.1002 to 7017.1220, except as provided in items A to I.

A. Following the initial compliance test as required under part 7011.1270, the owner or operator of a waste combustor must submit the initial compliance report required under part 7011.1285, subpart 5.
B. Continuous monitors must be operated to measure and record data for at least 75 percent of the hours per day for 90 percent of the days of the calendar quarter that the waste combustor is operating and combusting solid waste.

C. All valid monitoring data must be used to calculate emission rates, emission reductions, and operating parameters, even if the conditions of item B are not met.

D. When continuous emissions data for sulfur dioxide removal efficiency, sulfur dioxide or nitrogen oxide emission rates, or carbon monoxide are not obtained because of monitor breakdowns, repairs, calibration checks, and zero and span adjustments, emission data calculations to determine compliance must be made using the following methods:

 (1) for sulfur dioxide removal efficiency or sulfur dioxide or nitrogen oxide emission concentrations, Code of Federal Regulations, title 40, part 60, Appendix A, Method 19, as amended, to provide valid emission data to meet the requirements of item B. Other monitoring systems or other data collection methods may be used as approved by the commissioner; and

 (2) for carbon monoxide, Code of Federal Regulations, title 40, part 60, Appendix A, Method 10, as amended, to provide valid emission data to meet the requirements of item B. Other monitoring systems or other data collection methods may be used as approved by the commissioner.

E. Zero drift and span drift checks of emission monitoring systems must be conducted in accordance with Code of Federal Regulations, title 40, section 60.13, as amended.

F. Span values for continuous monitors must be as described in subitems (1) to (4). Dual scale monitors may be used to monitor emissions beyond the ranges specified in subitems (1) to (4).

 (1) The span value of the sulfur dioxide continuous monitors at the inlet to the sulfur dioxide control device must be 125 percent of the maximum estimated hourly potential sulfur dioxide emissions of the waste combustor unit, and the span value of the monitor at the outlet of the sulfur dioxide control device must be 50 percent of the maximum estimated hourly potential sulfur dioxide emissions of the waste combustor unit.

 (2) The span value of the nitrogen oxides continuous monitors must be 125 percent of the maximum estimated hourly potential nitrogen oxides emissions of the waste combustor unit.

 (3) The span value of the oxygen or carbon dioxide monitor must be 25 percent oxygen or carbon dioxide.

 (4) The span value of the carbon monoxide monitor must be 125 percent of the maximum estimated hourly potential carbon monoxide emissions of the waste combustor unit.

G. Quarterly accuracy determinations, daily calibration drift tests, and annual relative accuracy test audits must be performed according to Code of Federal Regulations, title 40, part 60, Appendix F, as amended, for sulfur dioxide, nitrogen oxides, carbon monoxide, and oxygen or carbon dioxide, except that section 5.1.1 (relative accuracy test audit) does not apply to the oxygen monitor.
H. The procedures under Code of Federal Regulations, title 40, section 60.13, as amended, must be followed for installation, evaluation, and operation of continuous emissions monitoring systems for sulfur dioxide, nitrogen oxides, opacity, and oxygen or carbon dioxide.

I. The oxygen or carbon dioxide monitor must conform to Performance Specification 3 in Code of Federal Regulations, title 40, part 60, Appendix B, as amended, except that section 2.3 does not apply.

Subp. 6. **Recording data from continuous monitoring.** The owner or operator of a waste combustor must maintain a permanent record of continuously measured parameters. The record of monitoring must contain:

A. the calendar date;

B. the following measurements recorded in a manner that allows the data to be immediately accessed upon inspection by the commissioner:

 (1) all six-minute opacity readings;

 (2) all one-hour average sulfur dioxide emission concentrations at the inlet and outlet of the acid gas control device if compliance is based on a percent reduction, or at the outlet only if compliance is based on the outlet emission limit; and

 (3) all one-hour average carbon monoxide and nitrogen oxide emission concentrations, steam flow or alternative unit load measurement parameter as described in part 7011.1265, subpart 4a, combustion chamber temperature, and particulate matter control device temperatures; and

C. the following average concentrations and parameters:

 (1) all 24-hour daily geometric average percent reductions in sulfur dioxide emissions or all 24-hour daily geometric average sulfur dioxide emission concentrations, as applicable;

 (2) all 24-hour daily arithmetic average nitrogen oxides emission concentrations;

 (3) all four-hour block or 24-hour daily arithmetic average carbon monoxide emission concentrations, as applicable; and

 (4) all four-hour block arithmetic average unit load levels and particulate matter control device inlet temperatures.

Subp. 7. **Exceeding continuously monitored emission limits.** If accurate and valid data results collected from continuous monitors for sulfur dioxide, nitrogen oxides, or carbon monoxide data exceed emission limits established in part 7011.1225 or in the waste combustor's permit after normal start-up, the waste combustor owner or operator must take the following actions:

A. The exceedance must be reported to the commissioner as soon as reasonably possible, giving consideration to matters of plant or worker safety or access to communications.

B. Appropriate repairs or modifications to return the waste combustor to compliance must be commenced within 72 hours of the exceedance.
C. If the waste combustor cannot be returned to compliance within 72 hours of the exceedance occurring, the waste combustor must be shut down. If the modifications to return the waste combustor to compliance require amending the air emission facility permit, the waste combustor must shut down within 72 hours of the exceedance.

D. When repairs or modifications have been completed, the waste combustor owner or operator must demonstrate to the commissioner that the waste combustor is in compliance. The waste combustor may be started up after the owner or operator notifies the commissioner in writing of the date the owner or operator plans to start up the waste combustor and the date that compliance testing is scheduled. Notification must be given at least ten days in advance of the compliance test date.

Statutory Authority: MS s 116.07
History: 18 SR 2584; 22 SR 1975; 23 SR 1764; 28 SR 1482; 44 SR 1030
Published Electronically: September 17, 2020

7011.1265 REQUIRED PERFORMANCE TESTS, METHODS, AND PROCEDURES.

Subpart 1. Performance test methods and procedures. An owner or operator of a waste combustor required to conduct performance tests for a waste combustor must use the performance test methods and procedures specified in parts 7017.2001 to 7017.2060 except as modified in this part. Not operating a sorbent injection system for the sole purpose of testing to demonstrate compliance with the percent reduction standards for sulfur dioxide and hydrogen chloride is not a modification under part 7007.0100, subpart 14.

Subp. 2. Performance test methods for criteria pollutants. An owner or operator of a waste combustor required to conduct performance tests for particulate matter, sulfur dioxide, or nitrogen oxides must use the test methods under items A to D.

A. For particulate matter, except for class I, II, A, and C waste combustors, the minimum sample volume must be 1.7 dscm, and the probe and filter holder heating systems in the sample train must be set to provide a gas temperature no greater than 160 degrees Celsius, plus or minus 14 degrees. For class III and IV waste combustors, the minimum sample volume must be 0.85 dscm. Owners or operators may request approval for smaller sampling times or volumes from the commissioner before testing, when necessitated by process variables or site-specific limitations. An oxygen or carbon dioxide measurement must be obtained simultaneously with each Method 5 test run for particulate matter. Particulate matter emissions, expressed in gr/dscf, must be corrected to seven percent oxygen by using the following formula:

\[
c_7 = \frac{c}{(21-%O_2)}
\]

where: \(c_7\) is the concentration of particulate matter corrected to seven percent oxygen;
c is the concentration of particulate matter as measured by Code of Federal Regulations, title 40, part 60, Appendix A-3, Method 5, and Code of Federal Regulations, title 40, part 51, Appendix M, Method 202, and

\[\%O_2 \] is the percentage of oxygen as measured by Code of Federal Regulations, title 40, part 60, Appendix A-2, Method 3, as amended.

(1) Filterable particulate matter emission is the concentration of particulate matter as measured by Code of Federal Regulations, title 40, part 60, Appendix A-3, Method 5, as amended.

(2) The sum of filterable and organic condensable particulate matter is the concentration of particulate matter as described in part 7017.2060, subpart 3, item B.

For each sample run employing Method 5 as provided in Appendix A-3 of Code of Federal Regulations, title 40, part 60, as amended, the emission rate must be determined using:

(a) oxygen or carbon dioxide measurements;

(b) dry basis F factor; and

(c) dry basis emission rate calculation procedures in Code of Federal Regulations, title 40, part 60, Appendix A-7, Method 19, as amended.

B. For opacity emissions, Code of Federal Regulations, title 40, part 60, Appendix A, Method 9, as amended, must be used to determine compliance with opacity limits.

C. For class IV waste combustors carbon monoxide emissions, compliance with the emission limit must be determined by using Code of Federal Regulations, title 40, part 60, Appendix A, Method 10, as amended.

D. For fugitive ash emissions, Code of Federal Regulations, title 40, part 60, Appendix A, Method 22, as amended, must be used. The minimum observation time is a series of three one-hour observations. The observation period must include times when the facility is transferring ash from the waste combustor unit to the area where ash is stored or loaded into containers or trucks. The average duration of visible emissions per hour must be calculated from the three one-hour observations. The average must be used to determine compliance with the emission limit.

Subp. 3. Performance test methods for other air contaminants. If not specified in this subpart, the owner or operator must use test methods in Code of Federal Regulations, title 40, part 60, Appendix A, or part 61, Appendix B, as amended, or other methods determined by the commissioner in writing to be equivalent. For class A waste combustors, other methods used for performance testing must be approved by the Environmental Protection Agency.

A. For hydrogen chloride, the percentage reduction in the potential hydrogen chloride emissions (\(\%P_{HCl} \)) is computed using the following formula:
where E_i is the potential hydrogen chloride emission rate measured at the control device inlet, corrected to seven percent O_2, and E_o is the hydrogen chloride emission rate measured at the outlet of the acid gas control device, corrected to seven percent O_2.

Code of Federal Regulations, title 40, part 60, Appendix A, Method 26 or 26A, as amended, must be used for determining the hydrogen chloride emission rate. The minimum sampling time is one hour. An oxygen or carbon dioxide measurement must be obtained simultaneously with each Method 26 test run for hydrogen chloride. The average of the hydrogen chloride emission concentration or percent reduction is used to determine compliance.

B. For PCDD/PCDF emissions, Code of Federal Regulations, title 40, part 60, Appendix A, Method 23, as amended, must be used to determine compliance with the PCDD/PCDF emission limits. For class II and A facilities, the minimum sample time is four hours per test run. For class III, C, and D facilities, the minimum sample time is three hours per test run. An oxygen or carbon dioxide measurement must be obtained simultaneously with each Method 23 test run for PCDD/PCDF. The average of the PCDD/PCDF test runs is used to determine compliance.

C. For mercury, lead, and cadmium emissions, Code of Federal Regulations, title 40, part 60, Appendix A, Method 29, as amended, must be used for measuring emissions of lead, cadmium, and mercury. The minimum sample volume is 1.7 dscm. An oxygen or carbon dioxide measurement must be obtained simultaneously with each Method 29 test run for lead and cadmium. The average of the lead or cadmium emission concentrations from three test runs or more must be used to determine compliance. The procedures in item D must be used to determine compliance with the mercury emission limits.

D. To determine the mercury concentration, the arithmetic average of three or more samples at the outlet of the air pollution control device must be used. The minimum sample volume is 1.7 dscm. The maximum sample run time is two hours. An oxygen or carbon dioxide measurement must be obtained simultaneously with each Method 29 test run for mercury.

To determine the percent reduction of mercury, concurrent sampling for mercury at the inlet and outlet of the air pollution control system must be performed at each occurrence of mercury emissions performance testing.

Owners and operators of RDF combustors may choose to conduct mercury emissions testing either every 90 days or every 12 months. If the owner or operator of an RDF combustor chooses to conduct testing every 90 days, the requirements of subitems (1) and (2) apply. If the RDF combustor chooses to test every 12 months, the requirements of subitem (3) apply.
Procedures to determine compliance with the short-term mercury emission concentration limit are described in unit (a). If the waste combustor does not show compliance as determined in unit (a), compliance must be determined as described in units (b) and (c).

(a) The waste combustor is in compliance with the mercury concentration limit if the arithmetic average of three or more samples is less than or equal to the applicable short-term mercury emission concentration limit.

(b) If the average computed in unit (a) exceeds the short-term mercury emission concentration limit, the removal efficiency for each run must be computed as follows:

\[
\%\text{Hg removal efficiency} = \frac{[\text{Hg}_{\text{in}} - \text{Hg}_{\text{out}}]}{\text{Hg}_{\text{in}}} \times 100
\]

Where: \(\text{Hg}_{\text{removal efficiency}}\) is the removal efficiency of each sample run, \(\text{Hg}_{\text{in}}\) is the mercury concentration measured at the inlet of the air pollution control device, and \(\text{Hg}_{\text{out}}\) is the mercury concentration measured at the outlet.

(c) The waste combustor is in compliance with the short-term mercury emission limit if the arithmetic average of each of the removal efficiencies as computed in unit (b) is greater than or equal to 85 percent.

(2) Procedures to determine compliance with the long-term mercury emission concentration limit are described in unit (a). If the waste combustor does not show compliance as determined in unit (a), compliance must be determined as described in unit (b).

(a) To determine compliance with the mercury emission concentration limit, the arithmetic average of all mercury emission concentrations measured in a compliance test available for the previous calendar year must be used. Initial compliance with the long-term mercury concentration limit must be determined upon completion of the first calendar year. Subsequent compliance must be determined at each occurrence of mercury emission performance testing.

(b) If the average that was computed in unit (a) exceeds the long-term mercury emission concentration, the removal efficiency for each run must be computed by the equation in subitem (1), unit (b). The waste combustor is in compliance with the long-term mercury emission limit if the arithmetic average of each of the removal efficiencies is greater than or equal to 85 percent.

(3) Owners or operators of waste combustors combusting RDF who choose to conduct mercury emission testing every 12 months must use the procedures in this subitem to determine compliance with mercury emission limits.

(a) The waste combustor is in compliance with the 12-month mercury emission concentration limit if the arithmetic average of three or more samples is less than the 12-month test interval mercury emission concentration limit.

(b) If the average computed in unit (a) exceeds the 12-month mercury emission concentration limit, the removal efficiency for each run must be computed by the equation in subitem
(1), unit (b). The waste combustor is in compliance with the 12-month mercury emission limit if the arithmetic average of the removal efficiencies is greater than 85 percent.

Subp. 4. **Steam flow measurement method.** The method contained in ASME PTC 4.1, section 4, incorporated by reference in part 7011.1205, must be used for calculating the steam flow required under part 7011.1260, subpart 3, item A, subitem (2). The recommendations of Application: Part II of Fluid Meters, Interim Supplement 19.5 on Instruments and Apparatus, chapter 4, incorporated by reference in part 7011.1205, must be followed for design, construction, installation, calibration, and use of nozzles and orifices, except that measurement devices such as flow nozzles and orifices are not required to be recalibrated after they are installed. All signal conversion elements associated with steam flow measurements must be calibrated according to the manufacturer's instructions before each PCDD/PCDF test, and at least once per year. This annual calibration must be recorded in the daily operating record as described in part 7011.1285, subpart 2.

Subp. 4a. **Alternative methods for measuring unit load.** Alternative continuous measuring methods in place of steam flow may be installed and operated, provided that the method continuously measures the waste combustor unit load, is equivalent to results obtained when using the method in subpart 4, and the use of the method is approved by the commissioner.

Subp. 4b. **Procedures for correlating carbon dioxide and oxygen concentrations.** If carbon dioxide is selected for use in diluent corrections, the relationship between oxygen and carbon dioxide levels must be established during the initial performance test according to the procedures and methods under items A to E.

A. The fuel factor equation in Code of Federal Regulations, title 40, part 60, Appendix A, Method 3B, must be used to determine the relationship between oxygen and carbon dioxide at a sampling location. Method 3, 3A, or 3B must be used to determine the oxygen concentration at the same location as the carbon dioxide monitor.

B. Samples must be taken for at least 30 minutes in each hour.

C. Each sample must represent a one-hour average.

D. A minimum of three runs must be performed.

E. The relationship between carbon dioxide and oxygen concentrations that is established must be submitted as part of the initial performance test report.

Subp. 5. **Performance tests required.** Performance tests must be conducted on waste combustors to determine the emission concentrations of the following air contaminants:

A. lead;

B. cadmium;

C. mercury; and
D. any other air contaminant for which an emission limitation applies to the waste combustor, except for opacity and those contaminants for which compliance is demonstrated by using a continuous monitor.

Subp. 6. **Operation during performance testing.** The owner or operator of a waste combustor must report operating conditions to the commissioner, including operating parameters of the air pollution control equipment, flue gas temperatures, air flow rates, and pressure drop across the combustion system.

Subp. 7. **Maximum demonstrated capacity.** For class I, II, III, A, C, and D waste combustors, maximum demonstrated capacity of each waste combustor unit must be determined during the initial performance test for PCDD/PCDF and each subsequent performance test during which compliance with the PCDD/PCDF emission limit in part 7011.1225 is achieved. For class IV waste combustors, maximum demonstrated capacity must be determined during the initial performance test and each subsequent performance test during which compliance with emission limits is demonstrated.

Subp. 8. **Particulate matter control; device temperature.** The owner or operator of a waste combustor with postcombustion particulate matter control must determine and record the four-hour arithmetic average gas stream temperature as measured at the inlet to each particulate matter control device during the initial and each subsequent performance test for PCDD/PCDFs demonstrating compliance with the PCDD/PCDF emission limit in part 7011.1225.

Subp. 9. [Repealed, 22 SR 1975]

Subp. 10. **Solid waste composition.** Solid waste composition studies must be conducted as described in part 7007.0501, subpart 2.

Subp. 11. **Exceeding emission limits.** If accurate and valid data results of a performance test demonstrate an exceedance of a standard of performance under part 7011.1225 or in the waste combustor's air emission facility permit after normal start-up, the waste combustor owner or operator must take the actions in items A to D.

A. The owner or operator must immediately report the exceedance to the commissioner and comply with the applicable reporting provisions of part 7007.0800, subpart 6.

B. The owner or operator must take appropriate steps to return the waste combustor to compliance and must demonstrate compliance within 60 days of the initial report of the exceedance.

C. If the commissioner determines that compliance has not been achieved within 60 days of the initial report of exceedance, the waste combustor must be shut down.

D. If shutdown was required under item C, the waste combustor may be restarted under the conditions specified by the commissioner. The owner or operator must notify the commissioner in writing of the date on which the owner or operator plans to start up and to begin compliance testing. Notification must be at least ten days in advance of the compliance test date.

Statutory Authority: *MS s 115.03; 116.07*
7011.1270 PERFORMANCE TEST, WASTE COMPOSITION STUDY, AND ASH SAMPLING FREQUENCY.

The owner or operator of a waste combustor shall conduct the performance tests required in part 7011.1265, subpart 5, based on the schedules in items A to E.

A. Class A waste combustors shall conduct performance tests as described in subitems (1) to (6).

(1) Once within the normal start-up.

(2) Once annually after the test in subitem (1), but not more than 12 months following the initial performance test, except that fugitive emissions from ash handling need only to be tested once within normal start-up as required in subitem (1).

(3) If all PCDD/PCDF performance tests for all units for a two-year period indicate that PCDD/PCDF emissions are less than or equal to 15 ng/dscm corrected to seven percent O\textsubscript{2} from each unit, then the owner or operator may choose to test one unit for PCDD/PCDF once annually after the test in subitem (2), but not more than 12 months following the previous performance test. Thereafter, the owner or operator may continue to test a different unit for PCDD/PCDF each year, in sequence (e.g. unit 1, unit 2, etc.). If any annual performance test demonstrates a PCDD/PCDF concentration greater than 15 ng/dscm corrected to seven percent O\textsubscript{2}, performance tests thereafter shall be conducted annually on all units until all annual performance tests for all units for a two-year period indicate a PCDD/PCDF emission concentration less than or equal to 15 ng/dscm.

(4) The owner or operator will specify what the PCDD/PCDF performance testing schedule is each time a pretest notification is given under the conditions of part 7017.2030.

(5) From class A waste combustors that are not burning RDF, for mercury emissions every three months.

The facility may implement testing for mercury not less than once every 12 months under the following conditions: the facility has demonstrated that mercury emissions have been below 50 percent of the facility's permitted long-term limit for three consecutive years.

Waste combustors combusting RDF may choose to conduct performance tests for mercury every 12 months. If a test shows that an emission limit for mercury from a waste combustor combusting RDF is exceeded, the commissioner shall require testing every three months thereafter until compliance with the standard is demonstrated.

(6) A waste composition study every five years.

B. Class II and C waste combustors shall conduct performance tests as described in subitems (1) to (4).

Official Publication of the State of Minnesota
Revisor of Statutes
Once within the normal start-up, except as provided in subitem (3).

Once annually after the test in subitem (1), but not more than 12 months following the initial performance test, except as provided in subitem (3). Also, fugitive emissions from ash handling do not need to be tested more frequently than the initial test required in subitem (1). If three annual performance tests for a three-year period show compliance with standards in part 7011.1225, the owner or operator may continue to conduct annual testing, or may choose to conduct performance tests every 2-1/2 years, except as required by subitem (3). At a minimum, a performance test shall be conducted every 2-1/2 years, but no more than 30 months following the previous compliance test. If a performance test indicates noncompliance with applicable standards, the owner or operator shall resume annual testing for three years for that pollutant for which noncompliance was demonstrated. If three annual performance tests for the three-year period show compliance with standards in part 7011.1225, the owner or operator may again conduct performance testing every 2-1/2 years.

For mercury emissions, class C waste combustors shall commence testing June 20, 1995, and continue testing every 90 days until August 1, 1997. Thereafter, class C waste combustors that are not burning RDF shall conduct mercury emissions testing every three months.

The facility may implement testing for mercury not less than once every three years or according to federal applicable requirements, whichever is more stringent, under the following conditions: the facility has demonstrated that mercury emissions have been below 50 percent of the facility's permitted long-term limit for three consecutive years.

If a facility is granted testing for mercury not less than once every three years or according to federal applicable requirements, whichever is more stringent, and a mercury performance test shows mercury emissions greater than 50 percent of the facility's permitted mercury limit, the facility shall conduct annual mercury stack sampling until emissions are below 50 percent of the facility's permitted mercury limit. Once the facility demonstrates that mercury emissions are again below 50 percent of the facility's permitted limit, the facility may resume testing every three years, upon notifying the commissioner in writing.

Waste combustors combusting RDF may choose to conduct performance tests for mercury emissions every 12 months. If a test shows that emission limits for mercury from a waste combustor combusting RDF are exceeded, the commissioner shall require performance testing every three months until compliance is demonstrated.

A waste composition study every five years.

C. Class III and D waste combustors shall conduct performance tests as described in subitems (1) to (6).

Once within the normal start-up.

Every 2-1/2 years after the test in subitem (1), but not more than 30 months following the initial performance test.

For class III waste combustors, emissions of mercury, every three months.
The facility may implement testing for mercury not less than once every three years or according to federal applicable requirements, whichever is more stringent, under the following conditions: the facility has demonstrated that mercury emissions have been below 50 percent of the facility's permitted long-term limit for three consecutive years.

If a facility is granted testing for mercury not less than once every three years or according to federal applicable requirements, whichever is more stringent, and mercury performance test shows mercury emissions greater than 50 percent of the facility's permitted mercury limit, the facility shall conduct annual mercury stack sampling until emissions are below 50 percent of the facility's permitted mercury limit. Once the facility demonstrates that mercury emissions are again below 50 percent of the facility's permitted limit, the facility may resume testing every three years, upon notifying the commissioner in writing.

(4) For Class D waste combustors, emissions of mercury every 2-1/2 years.

(5) For ash, in accordance with part 7045.0131 every 30 months for toxicity by toxic characteristic leach procedure for arsenic, barium, cadmium, chromium, lead, mercury, selenium, and nickel.

(6) A waste composition study every five years.

D. Class IV waste combustors shall conduct performance tests:

(1) once within the normal start-up;

(2) every five years after the test in subitem (1), but not more than 60 months following the initial performance test; and

(3) for ash, in accordance with part 7045.0131 every 60 months for toxic characteristic leach procedure for arsenic, barium, cadmium, chromium, lead, mercury, selenium, and nickel.

E. Class I waste combustors shall conduct performance tests for mercury emissions every three months for waste combustors that are not burning RDF.

The facility may implement testing for mercury not less than once every 12 months under the following conditions: the facility has demonstrated that mercury emissions have been below 50 percent of the facility's permitted long-term limit for three consecutive years.

Waste combustors combusting RDF may choose to conduct performance tests for mercury every 12 months. If a test shows that an emission limit for mercury from a waste combusting RDF is exceeded, the commissioner shall require testing every three months thereafter until compliance with the standard is demonstrated.

Class I waste combustors shall conduct a waste composition study every five years.

Statutory Authority: MS s 115.03; 116.07

History: 18 SR 2584; 22 SR 1975; 41 SR 763

Published Electronically: September 17, 2020
Subpart 1. **Mercury or PCDD/PCDF removal equipment operation.** The owner or operator of a waste combustor using additives for the control of mercury or PCDD/PCDF shall determine and record the average additive mass feed rate, in pounds-per-hour, during the initial and at each subsequent performance test for mercury or PCDD/PCDF. The owner or operator shall correlate this feed rate to an operating parameter of the additive injection system.

The owner or operator shall submit the calculations supporting the correlation with the results of the mercury or PCDD/PCDF performance test.

Subp. 2. **Mercury or PCDD/PCDF additive feed rate monitor.** The owner or operator of a waste combustor using additives for the control of mercury or PCDD/PCDF shall install, maintain, and operate at all times a system for monitoring the additive injection system's operating parameter that is the primary indicator of the additive's mass feed rate, as determined by the requirements of subpart 1.

The monitored condition must equal or exceed that determined during the most recent mercury or PCDD/PCDF performance test that demonstrated compliance with the emission limit.

Subp. 3. **Record keeping and recording of additive use.**

A. The owner or operator shall maintain a record of the average additive mass feed rate for each hour of operation, as measured by the operating parameter required in subpart 2. If the operating parameter is not a direct measurement of the mass feed rate of the additive, then the record shall contain the calculations supporting the correlation between the mass feed rate and the measured operating parameter.

The record shall be maintained on site in a form suitable for immediate inspection.

B. During each calendar quarter, the owner or operator shall estimate the total additive used at the waste combustor in pounds or kilograms by two independent means as described in subitems (1) and (2):

 (1) the weight of additive delivered to the plant; and

 (2) estimate the average additive mass feed rate in pounds per hour, or kilograms per hour, for each hour of operation for each unit, based on the parameters measured in subpart 2. Sum the results of the mass feed rates for all waste combustor units at the plant for the total number of hours of operation during the calendar quarter.

Statutory Authority: MS s 116.07

History: 22 SR 1975

Published Electronically: February 25, 2008
7011.1275 PERSONNEL TRAINING.

Subpart 1. **General.** Waste combustor facility personnel described in subpart 2 must complete a program of instruction and on-the-job training based on the operating manual described in subpart 3. The program must train facility personnel to maintain compliance with parts 7011.1201 to 7011.1294. Individual training shall be specific to the position held and shall, at a minimum, address the items in subpart 3.

For personnel described in subpart 2, the training program shall require:

A. initial review of the operating manual prior to assumption of any job-related activities affecting air emissions, except that those hired prior to June 20, 1994, must complete the review by June 20, 1995;

B. review of the operating manual relevant to a newly assigned position before assumption of new job-related activities affecting air emissions;

C. that those without waste combustor or boiler operation experience, initially review the operating manual and work under the direct supervision of a certified operator or a certified operator's designee before assumption of job-related activities affecting air emissions for the following duration:

 (1) for class I, II, III, A, C, or D waste combustor personnel, 40 hours; and

 (2) for class IV waste combustor personnel, 12 hours; and

D. annual review of the operating manual.

Subp. 2. **Required training.** The training program shall train waste combustor personnel who have responsibilities which affect the operation of the waste combustor, including, but not limited to, chief facility operators, shift supervisors, operator supervisors, control room personnel, ash handlers, maintenance personnel, and crane/load handlers.

Subp. 3. **Operating manual requirements.** The owner or operator of a waste combustor shall develop and update on a yearly basis a site specific operating manual that shall, at a minimum, address the following elements of waste combustor unit operation:

A. a summary of the applicable state rules and federal regulations to the activities described in the facility's air emissions permit;

B. a description of basic combustion theory applicable to the facility's waste combustor unit;

C. procedures for receiving, handling, and feeding solid waste;

D. waste combustor unit start-up, shutdown, and malfunction procedures;

E. procedures for maintaining proper combustion air levels;

F. procedures for operating the waste combustor within the standards established in parts 7011.1201 to 7011.1294;
G. procedures for responding to periodic upset or off-specification conditions;
H. procedures for minimizing particulate matter carryover;
I. procedures for monitoring the degree of solid waste burnout;
J. procedures for handling ash;
K. procedures for monitoring waste combustor emissions;
L. procedures for reporting and record keeping;
M. timetables and procedures for routine inspection and maintenance of equipment affecting air emissions;
N. procedures for activating communications and alarm systems; and
O. procedures to implement the facility's industrial waste management plan.

The operating manual shall be kept in a location easily accessed by the personnel described in subpart 2.

Subp. 4. Personnel identity. The owner or operator must maintain as a part of the operating record required by part 7011.1285, subpart 2, a record of the identity of all personnel who have received training and the number of training hours. The records shall be provided to the commissioner on demand.

Statutory Authority: MS s 116.07
History: 18 SR 2584; 22 SR 1975; 39 SR 386
Published Electronically: September 17, 2020

7011.1280 OPERATOR CERTIFICATION.

Subpart 1. Scope. The commissioner shall certify a person provided the person can demonstrate the completion of:

A. ASME provisional certification as described in Standard for the Qualification and Certification of Resource Recovery Facility Operators, American Society of Mechanical Engineers (ASME) QRO-1-1994, incorporated by reference in part 7011.1205, for chief facility operators, shift supervisors, and control room operators of municipal waste combustors; or

B. the coursework and examination program set forth in subpart 3.

Subp. 2. Required certification. The following personnel shall be certified through the process established in this part:

A. for Class I, II, III, A, C, or D waste combustors, the chief facility operator and shift supervisors; and

B. for Class IV waste combustors, the operator supervisor.
Subp. 3. **Requirements for operator certification.** To be certified, a person must demonstrate the skill, knowledge, and experience necessary to operate a waste combustor, by meeting the criteria of item A or B.

A. A certified operator of a Class IV waste combustor shall:

(1) hold a high school diploma or equivalent, or demonstrate five years of experience in incinerator operation, general industry, industrial process, or power plant operation;

(2) complete at least 16 hours of training approved by the commissioner which are designed to ensure competency to operate a Class IV waste combustor;

(3) complete the certification process described in subpart 4; and

(4) pass the examination described in subpart 5.

B. A certified operator of a Class I, II, III, A, C, or D waste combustor shall comply with the requirements in subitem (1) or (2).

(1) Persons who possess a Minnesota Department of Labor and Industry boiler license of at least second class engineer, Grade B, shall:

 (a) have one year of experience operating a steam generation plant or Class I, II, III, A, C, or D waste combustor at the licensure level of at least second class engineer, Grade B, and complete at least 24 hours of training approved by the commissioner which are designed to ensure competency to operate a Class I, II, III, A, C, or D waste combustor;

 (b) complete the certification process described in subpart 4; and

 (c) pass the examination described in subpart 5.

(2) Persons who do not meet the qualifications of subitem (1), unit (a), shall:

 (a) have three years of experience operating a Class I, II, III, A, C, or D waste combustor or in power generation and complete at least 24 hours of training approved by the commissioner which are designed to ensure competency to operate a Class I, II, III, A, C, or D waste combustor;

 (b) complete the certification process described in subpart 4; and

 (c) pass the examination described in subpart 5.

Subp. 4. **Certification process.**

A. Application for certification shall be made in writing on a form provided by the commissioner.

B. Within 15 days of receipt, the commissioner shall review the application for certification and determine the adequacy of the information included in the application. If the commissioner determines that additional information or documentation is necessary to assess the eligibility of the
applicant, the commissioner shall notify the applicant. The application shall be considered incomplete until the applicant provides the required information.

C. The commissioner shall notify an applicant of eligibility for certification.

Subp. 5. Examinations.

A. The commissioner must approve an examination for the different classes of waste combustors and must not delegate this responsibility. The examination must be administered as a written closed book examination.

B. For certification of a person to operate a Class I, II, III, A, C, or D waste combustor, the examination shall be in three areas, divided as follows:

(1) 25 percent of the questions on solid waste collection, transfer, and management covering, but not limited to, solid waste composition, collection techniques, seasonal and industrial impact on the character of solid waste, ash disposal, landfills, composting, environmental regulations and requirements, and public perceptions;

(2) 25 percent of the questions on theory covering combustion, chemistry, thermodynamics, material science, waste combustor design principles, mechanical and electrical operation and technology, air pollution control technology theory, and air emission stack monitoring;

(3) 50 percent of the questions on the operation of a waste combustor covering material handling equipment, ash handling and disposal operations within the facility, waste combustor design applications, general operations and maintenance procedures and techniques, control room operations and troubleshooting, operation of pollution control devices, and continuous emissions monitors and their calibration.

C. For certification of a person to operate a Class IV waste combustor, the examination shall be as follows:

(1) 30 percent of the questions shall cover basic principles, including principles of combustion, products of combustion, solid waste characteristics, and air pollutants;

(2) 30 percent of the questions shall cover equipment including incineration equipment characteristics, automatic control equipment, and emission monitoring equipment; and

(3) 40 percent of the questions shall cover incinerator and monitoring equipment operation including typical operating problems and solutions, maintenance procedures, incinerator operation, ash handling, and solid waste feed management systems.

D. A minimum grade of 70 percent shall be required to pass.

E. An applicant who fails to pass the examination shall be eligible to retake the examination whenever it is next offered by an institution approved by the commissioner.

Subp. 6. Certificates. Within ten days of the examination date, the institution administering the certification examination shall provide to the commissioner a list of individuals who completed the training and those who successfully passed the examination.
The commissioner shall issue a certificate when the applicant has met all necessary conditions prescribed in subpart 1. Certificates are valid for three years.

Subp. 7. **Renewal.**

A. A certified individual shall apply for certificate renewal no later than 30 days prior to certificate expiration. The application for renewal must include evidence that the person has, during the preceding three years, earned credit for attending training courses in the direct operation and maintenance of and environmental compliance for a waste combustor, including personnel training described in part 7011.1275, for the number of hours as identified as follows:

1. Class I, II, III, A, or C, 24 hours; and
2. Class IV, eight hours.

An individual whose certificate has expired must comply with item B or C to renew the certificate.

B. If an individual applies for certificate renewal within one year following the expiration of the certificate, the individual must meet the training requirements of item A or subpart 3 at the time of application for renewal before the certificate will be renewed without an examination.

C. If an individual applies for certificate renewal more than one year following the expiration of the certificate, the individual is eligible for recertification when the individual complies with subpart 3.

Subp. 8. [Repealed, 41 SR 763]

Subp. 9. **Sanctions.**

A. Criteria. The commissioner shall refuse to issue, renew, or reinstate a certificate, suspend or revoke a certificate, or use any lesser remedy against an individual for any of the following reasons:

1. submittal of false or misleading information or credentials in order to obtain or renew a certificate;
2. failure to meet the requirements for renewal certification; or
3. incompetency, negligence, or inappropriate conduct in the performance of duties as a certified operator.

B. Investigation. Upon receiving a signed written complaint which alleges the existence of grounds for sanctions against a certified operator, the commissioner may initiate an investigation. No revocation, suspension, or other sanction shall be imposed before notice is given to the certified operator and an opportunity for a contested case hearing is provided.

C. Procedures. Procedures for contested case hearings shall comply with the provisions of the Administrative Procedure Act, Minnesota Statutes, chapter 14.
D. Recertification. An individual whose certificate has been revoked shall not be entitled to apply for recertification until at least one year following the effective date of revocation or for any longer period of time specified in the revocation order.

E. Reinstatement after suspension. The commissioner shall reinstate a suspended certificate if the individual whose certificate has been suspended fulfills the terms of the suspension order and meets all applicable requirements of the rules for obtaining a certificate.

Subp. 10. Certification deadlines. All individuals employed on June 20, 1994, who require certification as described in this part shall obtain certification by June 20, 1996, or on completion of the normal start-up of a waste combustor, whichever is later.

Subp. 11. Record keeping. A waste combustor owner or operator shall maintain a record of personnel who complete either the Environmental Protection Agency municipal waste combustor operator training course, or an equivalent course. The record shall include documentation of training completion.

Statutory Authority: MS s 115.03; 116.07
History: 18 SR 2584; 22 SR 1975; 41 SR 763
Published Electronically: April 3, 2019

7011.1281 FULL OPERATOR CERTIFICATION.

Subpart 1. Fully certified operator defined. A "fully certified operator" means:

A. a person who has obtained "certified municipal waste combustor examiner" certification as described in part 7011.1282;

B. a person who has obtained both "provisional certification" and "operator certification" according to ASME QRO-1-1994, incorporated by reference in part 7011.1205; or

C. a person who is a "fully certified operator" as described in part 7011.1284.

Subp. 2. Changes at a facility. If changes are made in equipment and/or operating procedures which the initial certification did not address, certificate holders shall demonstrate detailed knowledge of these changes according to the conditions of the certificate held. A change in the name or ownership of a facility shall not invalidate the operator certificate.

Statutory Authority: MS s 116.07
History: 22 SR 1975
Published Electronically: February 25, 2008

7011.1282 CERTIFIED MUNICIPAL WASTE COMBUSTOR EXAMINER CERTIFICATE.

Subpart 1. Criteria; certified municipal waste combustor examiner. To be certified as a certified municipal waste combustor examiner, employment claimed on the individual's application for certification must be verified by the individual's supervisor or personnel officer and the individual must:
A. hold a current certificate as defined in part 7011.1280, subpart 1;

B. document a total of 60 months satisfactory employment experience in general industry, of which 36 months were at the level of a chief facility operator or shift supervisor, as defined in part 7011.1201, subparts 8 and 44, at a municipal waste combustor;

C. be currently employed by a municipal waste combustor owner;

D. possess a bachelor degree in engineering or a related field, or a Minnesota Department of Labor and Industry boiler license of chief engineer, Grade A or B;

E. pass an oral examination as described in subpart 3; and

F. identify the waste combustor facility for which the applicant seeks certification as a certified municipal waste combustor examiner.

Subp. 2. **Certification process; certified municipal waste combustor examiner.**

A. When the commissioner determines that the applicant has submitted a complete application, and has determined that the applicant has demonstrated a satisfactory compliance history as an operator at a municipal waste combustor, the commissioner shall schedule an oral examination of the applicant.

B. The commissioner shall issue a certificate to the applicant who successfully completes the examination process of subpart 3. The certified municipal waste combustor examiner's certificate is site-specific, and is not transportable. The certificate shall expire five years after its issue date unless renewed. Each certificate shall contain the following information:

 (1) identification as a certified municipal waste combustor examiner certificate;

 (2) the certified individual's full name; and

 (3) the name and location of the facility for which certification is given.

Subp. 3. **Examination; certified municipal waste combustor examiner.**

A. The commissioner shall convene a board of examiners to conduct an oral examination of a certified municipal waste combustor examiner applicant.

B. The examination for certified municipal waste combustor examiner shall:

 (1) test understanding of the content and procedures described in the waste combustor's operating manual that is required to be prepared for the facility by part 7011.1275, subpart 3;

 (2) test comprehensive understanding of the duties of a certified examiner described in part 7011.1283 and how the applicant is prepared to carry out these duties; and

 (3) require the applicant to describe the waste combustor facility's program for examining and awarding full certification, and describe how this program incorporates the requirements of parts 7011.1283 and 7011.1284.
The board of examiners shall evaluate applicants for certified municipal waste combustor examiner based on the applicant's technical knowledge and understanding of integrated plant operations. An applicant's responses shall be graded as pass or fail. All members of the board of examiners must pass the applicant if the certification is to be granted.

C. The board of examiners consists of three members. The three members are a member of the municipal waste combustor industry, a member who is or has been employed at a power operation facility using combustion or air pollution control technologies comparable to the facility where the applicant is employed, and a member able to discharge the functions of the board of examiners, under the conditions specified by the commissioner.

The commissioner may appoint additional board members if the facility for which the applicant seeks certification is complex and the commissioner determines that additional examiners will help the board determine the applicant's technical knowledge, problem-solving ability, and understanding of plant operations.

Additional Pollution Control Agency representatives, a representative from the facility, a representative of an industry trade group, or a member of the public shall be allowed by the commissioner to observe the examination.

Subp. 4. **Renewal.** The commissioner shall issue renewal certified examiner certificates when an individual submits a written request to renew the certificate at least 30 days before the expiration of the certificate.

If changes are made in equipment and/or operating procedures which the initial certification did not address, the individual shall submit written evidence that the change has been made, the individual has been trained, and the on-site certification program has been amended to include the changes. The individual shall also submit evidence that the individual has, during the life of the certified municipal waste combustor operator certificate, maintained the individual's certification as required in part 7011.1280. If the individual applies for certificate renewal after the certified municipal waste combustor examiner certificate has expired, the commissioner shall schedule an examination according to part 7011.1282, subpart 3.

Subp. 5. **Sanctions.** The conditions of part 7011.1280, subpart 9, apply to any sanctions taken by the commissioner.

Statutory Authority: MS s 115.03; 116.07

History: 22 SR 1975; 41 SR 763

Published Electronically: April 3, 2019

7011.1283 **DUTIES OF CERTIFIED MUNICIPAL WASTE COMBUSTOR EXAMINER.**

A certified municipal waste combustor examiner shall be responsible for the development, implementation, monitoring, and updating of an operator certification program specific to the municipal waste combustor for which the examiner has been certified. The operator certification program shall be designed as a system of training and written and/or oral examination on the duties, knowledge, and responsibilities of municipal waste combustor unit operations, as described in the
operating manual required in part 7011.1275, subpart 3. The certified examiner shall administer the examination of full operator candidates.

Statutory Authority: MS s 116.07

History: 22 SR 1975

Published Electronically: April 3, 2019

7011.1284 FULLY CERTIFIED OPERATOR.

Subpart 1. Scope. A certified municipal waste combustor examiner may award the status of fully certified operator to an individual at a municipal waste combustor facility, provided the conditions of this part are met.

Subp. 2. Criteria; fully certified operator. To be eligible as a fully certified operator, an individual must maintain a provisional certificate from ASME or a certificate described in part 7011.1280, and pass an examination administered by the waste combustor's certified municipal waste combustor examiner.

The examination shall test comprehensive understanding of the content and procedures described in the waste combustor's operating manual that is required to be prepared for the facility by part 7011.1275, subpart 3.

If changes are made in equipment and/or operating procedures which the initial certification did not address, certificate holders shall demonstrate to the facility's certified examiner detailed knowledge of these changes within six months after the change is made. If the demonstration of knowledge has not been made within six months, the certificate shall expire.

Subp. 3. Record of certified operators. The waste combustor owner or operator shall maintain at the waste combustor facility for five years a record of the names of all personnel that the examiner has certified.

This record shall contain the examination dates, the nature or content of the examination, the full name of the individual certified, the date of certification, and the signature of the certified examiner for that facility with the following certification:

"I certify under penalty of law that, based on my examination of these persons, these persons have demonstrated the knowledge and skills that qualify these persons to be fully certified operators at (name of waste combustor facility) in accordance with the procedures of Minnesota Rules, parts 7011.1280 to 7011.1284."

Subp. 3a. Record of ASME certified operators. The waste combustor owner or operator shall maintain at the waste combustor facility for five years a record of the names of all personnel who have obtained provisional and/or full certification by ASME.

Subp. 4. Reviewing records. The owner or operator shall allow the commissioner to review all records related to the certification of operators, including the facility's program for the examination and certification of operators, the record required in subpart 3, the content of examinations, and the results of an individual's examination.
7011.1285 OPERATING RECORDS AND REPORTS.

Subpart 1. Scope. The owner or operator of a waste combustor shall maintain records and submit reports as required in this part. The owner or operator of a waste combustor required to obtain a permit under part 7007.0200, subpart 4, or 7007.0250, subpart 5, are also subject to the record-keeping and reporting requirements in part 7007.0800, subparts 5 and 6. Class A, C, I, and II waste combustors shall maintain on site all submittals required by this part as paper copies for five years. All other waste combustors shall retain records for a minimum of five years.

Subp. 2. Daily operating record. The owner or operator shall maintain a daily record of the operation of the waste combustor. The record shall contain:

A. the calendar date;
B. the hours of operation;
C. the weight of solid waste combusted;
D. the weight of solid waste requiring disposal at a solid waste land disposal facility, including separated noncombustibles, excess solid waste, and ash;
E. the amount and description of industrial solid waste received each day, the generator's name, and the method of handling;
F. the measurements and determination of emissions averages as required in part 7011.1260, subpart 6;
G. results of performance tests conducted on waste combustor units as required in part 7011.1270;
H. instances of dumpstack use;
I. the names of persons who have completed initial review or subsequent annual review of the operating manual;
J. the reasons for exceeding any of the average emission rates, percent reductions, or operating parameters specified under part 7011.1260, subpart 6, item C, or the opacity limit and a description of corrective actions taken;
K. reasons for not obtaining the minimum number of hours of sulfur dioxide or nitrogen oxides emissions or operational data (carbon monoxide emissions, steam flow or alternative unit load measurement parameter as described in part 7011.1265, subpart 4a, particulate matter control device temperature) and a description of corrective actions taken;
L. the date of the calibration of all signal conversion elements associated with steam flow monitoring as required in part 7011.1265, subpart 4;

M. for waste combustors using an additive to comply with mercury or PCDD/PCDF emission limits, reasons for not maintaining the additive system operating parameter as determined in part 7011.1272, subpart 2, and descriptions of corrective actions taken; and

N. for waste combustors using an additive to comply with mercury or PCDD/PCDF emission limits, reasons for not maintaining the additive mass feed rates as determined in part 7011.1272, subpart 1, and descriptions of corrective actions taken.

Subp. 3. Quarterly reports. The owner or operator of a class I, II, III, A, C, or D waste combustor shall submit quarterly reports to the commissioner within 30 days after the quarter ending December 30, March 30, June 30, and September 30 of each year. The quarterly report may be submitted as a bound, paper copy or in an alternative format such as computer disk or CD-ROM. The commissioner shall accept the submittal in the alternative format provided that the commissioner has given prior approval for the use of the alternative format in order that compatibility between the software and hardware configurations of the commissioner and the owner or operator of the waste combustor can be assured. The report shall contain the following items:

A. calendar date;

B. sulfur dioxide, nitrogen oxide, and carbon monoxide emissions, the maximum waste combustor unit load level, and particulate matter control device temperatures as recorded by part 7011.1260, subpart 6, item C, and the daily maximum opacity reading as recorded by part 7011.1260, subpart 6, item B, subitem (1). The facility may choose to provide this information in tabular or graphic form. The graphs shall be prepared as follows:

(1) the graph shall represent one operating parameter or pollutant;

(2) the applicable limit of the parameter or pollutant shall be indicated on the graph; and

(3) data shall be expressed in the same units as the applicable operating parameter or emissions limit;

C. instances of dumpstack use;

D. the identification of operating days when any of the average emission concentrations, percent reductions, operating parameters specified under part 7011.1260, subpart 6, item C, or 7011.1272, subpart 2, or the opacity level exceeded the applicable limits. The report shall include the emission levels recorded during the exceedance, reasons for such exceedances as well as a description of corrective actions taken;

E. the percent of the operating time for the quarter that the opacity CEMS was operating and collecting valid data;

F. the identification of operating days for which the minimum number of hours that emission concentrations, percent reductions, operating parameters specified under part 7011.1260, subpart
6, item C, or 7011.1272, subpart 2, or the opacity level have not been obtained, including reasons for not obtaining sufficient data and a description of corrective actions taken;

G. the results of daily sulfur dioxide, nitrogen oxides, and carbon monoxide CEMS drift tests and accuracy assessments as required in part 7011.1260, subpart 5;

H. the information required in subpart 2, items C, D, and E, summarized to reflect quarterly totals;

I. a compliance certification as required in part 7007.0800, subpart 6, item D; and

J. if an additive is used to comply with mercury or PCDD/PCDF emission limits, the total additive used during the calendar quarter, as specified in part 7011.1272, subpart 3, item B, with supporting calculations.

Subp. 4. **Annual reports.** By April 30 of each year, the owner or operator of a class IV waste combustor shall submit the following information to the commissioner in an annual report:

A. the information required in subpart 2 summarized to reflect annual totals;

B. a summary report of any excess emissions that occurred during the year; and

C. a compliance certification as required in part 7007.0800, subpart 6, item D.

Subp. 4a. [Repealed, 22 SR 1975]

Subp. 5. **Initial compliance report.** Following the initial compliance test as required under part 7011.1270, the owner or operator of a waste combustor shall submit the initial compliance test data, the performance evaluation of the CEMS using the applicable performance specifications in part 7017.1070, subpart 1, and the maximum demonstrated capacity and particulate matter control device temperature established during the PCDD/PCDF testing.

Subp. 6. **Performance test reports.** The owner or operator shall submit a report containing the results of performance tests conducted to determine compliance with waste combustor unit emission limits whenever performance testing is conducted. The report shall be submitted according to the conditions of part 7017.2035.

Statutory Authority: MS s 116.07

History: 18 SR 2584; 22 SR 1975; 23 SR 1764

Published Electronically: September 17, 2020

7011.1290 [Repealed, 39 SR 386]

Published Electronically: October 1, 2014

7011.1291 **INTEGRATION BY REFERENCE; NEW SOURCE PERFORMANCE STANDARDS; LARGE MUNICIPAL WASTE COMBUSTORS.**

Subpart 1. **Incorporation by reference.** Code of Federal Regulations, title 40, part 60, subpart Eb, as amended, entitled "Standards of Performance for Large Municipal Waste Combustors for
Which Construction is Commenced After September 20, 1994 or for Which Modification or Reconstruction is Commenced After June 19, 1996," is incorporated by reference.

Subp. 2. **Exceeding emission limits.** Owners and operators of a new large municipal waste combustor must comply with part 7011.1340.

Statutory Authority: MS s 116.07

History: 39 SR 386; 44 SR 1030

Published Electronically: September 17, 2020

7011.1292 INCORPORATION BY REFERENCE; NEW SOURCE PERFORMANCE STANDARDS; HOSPITAL/MEDICAL/INFECTIOUS WASTE INCINERATORS.

Subp. 2. **Exceeding emission limits.** Owners and operators of a new hospital/medical/infectious waste incinerator must comply with part 7011.1340.

Statutory Authority: MS s 116.07

History: 39 SR 386; 44 SR 1030

Published Electronically: September 17, 2020

7011.1293 INCORPORATION BY REFERENCE; NEW SOURCE PERFORMANCE STANDARDS; SMALL MUNICIPAL WASTE COMBUSTORS.

Subpart 1. **Incorporation by reference.** Code of Federal Regulations, title 40, part 60, subpart AAAA, as amended, entitled "Standards of Performance for Small Municipal Waste Combustion Units for Which Construction is Commenced After August 30, 1999 or for Which Modification or Reconstruction is Commenced After June 6, 2001" is incorporated by reference.

Subp. 2. **Exceeding emission limits.** Owners and operators of a new small municipal waste combustor must comply with part 7011.1340.

Statutory Authority: MS s 116.07

History: 39 SR 386

Published Electronically: September 17, 2020

7011.1294 INCORPORATION BY REFERENCE; NEW SOURCE PERFORMANCE STANDARDS; OTHER SOLID WASTE INCINERATION UNITS.

Subpart 1. **Incorporation by reference.** Code of Federal Regulations, title 40, part 60, subpart EEEE, as amended, entitled "Standards of Performance for Other Solid Waste Incineration Units for Which Construction is Commenced After December 9, 2004, or for Which Modification or Reconstruction is Commenced on or After June 16, 2006," is incorporated by reference.
Subp. 2. **Exceeding emission limits.** Owners and operators of a new other solid waste incineration unit must comply with part 7011.1340.

Statutory Authority: *MS s 116.07*

History: 39 SR 386; 44 SR 1030

Published Electronically: September 17, 2020

INCINERATORS

7011.1299 INCORPORATION BY REFERENCE; NEW SOURCE PERFORMANCE STANDARDS; INCINERATORS.

Statutory Authority: *MS s 116.07*

History: 32 SR 904

Published Electronically: September 17, 2020

7011.1300 DEFINITIONS.

Subpart 1. **Scope.** As used in parts 7011.1300 to 7011.1325, the following words shall have the meanings defined herein.

Subp. 2. **Burning capacity.** "Burning capacity" means the manufacturer's or designer's maximum rate or such other rate that is considered good engineering practice and accepted by the commissioner.

Subp. 3. **Sewage sludge incinerator.** "Sewage sludge incinerator" means any furnace or other device used in the process of burning sludge produced by a sewage treatment facility.

Statutory Authority: *MS s 116.07*

History: L 1987 c 186 s 15; 18 SR 614

Published Electronically: February 25, 2008

7011.1305 STANDARDS OF PERFORMANCE FOR EXISTING SEWAGE SLUDGE INCINERATORS.

No owner or operator of an existing sewage sludge incinerator shall allow to be discharged into the atmosphere from the sewage sludge incinerator any gases that:

A. contain filterable particulate matter in excess of 0.3 gr/dscf corrected to 12 percent CO₂ if the incinerator has a burning capacity of less than 200 pounds per hour;

B. contain filterable particulate matter in excess of 0.2 gr/dscf corrected to 12 percent CO₂ if the incinerator has a burning capacity of 200 to 2,000 pounds per hour;
C. contain filterable particulate matter in excess of 0.1 gr/dscf corrected to 12 percent CO₂ if the incinerator has a burning capacity of greater than 2,000 pounds per hour.

No owner or operator of an existing sewage sludge incinerator shall cause to be discharged into the atmosphere from the incinerator any gases that exhibit greater than 20 percent opacity, except for one six-minute period per hour of not more than 33 percent opacity. An exceedance of this opacity standard occurs whenever any one-hour period contains two or more six-minute periods during which the average opacity exceeds 20 percent or whenever any one-hour period contains one or more six-minute periods during which the average opacity exceeds 33 percent.

No owner or operator of an existing sewage sludge incinerator shall operate the incinerator unless the incinerator uses auxiliary fuel burners that maintain a minimum temperature of 1,200 degrees Fahrenheit for a minimum retention time of 0.3 second or other method of odor control as approved by the commissioner.

For the purposes of this part, "existing sewage sludge incinerator" means a sewage sludge incinerator on which construction, modification, or reconstruction did not commence after June 11, 1973.

Statutory Authority: MS s 115.03; 116.07
History: L 1987 c 186 s 15; 18 SR 614; 22 SR 1237; 23 SR 145; 41 SR 763
Published Electronically: January 27, 2017

7011.1310 STANDARDS OF PERFORMANCE FOR NEW SEWAGE SLUDGE INCINERATORS.

No owner or operator of a new sewage sludge incinerator shall allow to be discharged into the atmosphere from the incinerator any gases that:

A. contain filterable particulate matter in excess of 0.65 g/kg dry sludge input (1.30 lb/ton dry sludge input); or

B. exhibit 20 percent opacity or greater.

No owner or operator of a new sewage sludge incinerator shall operate the incinerator unless the incinerator uses auxiliary fuel burners that maintain a minimum temperature of 1,200 degrees Fahrenheit for a minimum retention time of 0.3 second or other method of odor control as approved by the commissioner.

For the purposes of this part, "new sewage sludge incinerator" means a sewage sludge incinerator on which construction, modification, or reconstruction commenced after June 11, 1973.

Statutory Authority: MS s 115.03; 116.07
History: L 1987 c 186 s 15; 18 SR 614; 22 SR 1237; 41 SR 763
Published Electronically: January 27, 2017
7011.1315 MONITORING OPERATIONS.

The owner or operator of any sewage sludge incinerator shall:

A. install, calibrate, maintain, and operate a flow measuring device which can be used to
determine either the mass or volume of sludge charged to the incinerator. The flow measuring
device shall have an accuracy of plus or minus five percent over its operating range; and

B. provide access to the sludge charged so that a well-mixed representative grab sample
of the sludge can be obtained.

Statutory Authority: MS s 116.07
History: 18 SR 614
Published Electronically: April 3, 2019

7011.1320 PERFORMANCE TEST METHODS.

Unless another method is approved by the commissioner, an owner or operator required to
submit performance tests for a sewage sludge incinerator must use the following test methods to
demonstrate compliance:

A. Method 1 for sample and velocity traverses;
B. Method 2 for volumetric flow rate;
C. Method 3 for gas analysis; and
D. Method 5 for concentration of filterable particulate matter and associated moisture
content.

Statutory Authority: MS s 115.03; 116.07
History: 18 SR 614; 41 SR 763
Published Electronically: April 16, 2020

7011.1325 PERFORMANCE TEST PROCEDURES.

Subpart 1. In general. Performance tests shall be conducted according to the requirements of
this part and parts 7017.2001 to 7017.2060.

Subp. 2. Sampling time for Method 5. For Method 5, the sampling time for each run shall
be at least 60 minutes and the sampling rate shall be at least 0.015 dscm/min (0.53 dscf/min), except
that shorter sampling times, when necessitated by process variables or other factors, may be approved
by the commissioner.

Subp. 3. Dry sludge charging rate. Dry sludge charging rate shall be determined as follows:

A. Determine the mass \(S_m \) or volume \(S_v \) of sludge charged to the incinerator during
each run using a flow measuring device meeting the requirements of part 7011.1315, item A. If
total input during a run is measured by a flow measuring device, such readings shall be used.
Otherwise, record the flow measuring device readings at five-minute intervals during a run. Determine the quantity charged during each interval by averaging the flow rates at the beginning and end of the interval and then multiplying the average for each interval by the time for each interval. Then add the quantity for each interval to determine the total quantity charged during the entire run, \(S_m \) or \(S_v \).

B. Collect samples of the sludge charged to the incinerator in nonporous collecting jars at the beginning of each run and at approximately one-hour intervals thereafter until the test ends, and determine for each sample the dry sludge content (total solids residue) in accordance with "224 G. Method for Solid and Semisolid Samples," Standard Methods for the Examination of Water and Wastewater, Thirteenth Edition, American Public Health Association, Inc., New York, N.Y., 1971, pp. 539-41, except that:

1. evaporating dishes shall be ignited to at least 103 degrees Celsius rather than the 550 degrees Celsius specified in step 3(a)(1);

2. determination of volatile residue, step 3(b) may be deleted;

3. the quantity of dry sludge per unit sludge charged shall be determined in terms of either \(R_{dv} \) (metric units: mg dry sludge/liter sludge charged or English units: lb/ft\(^3\)) or \(R_{dm} \) (metric units: mg dry sludge/mg sludge charged or English units: lb/lb).

C. Determine the quantity of dry sludge per unit sludge charged in terms of either \(R_{dv} \) or \(R_{dm} \):

1. If the volume of sludge charged is used:

\[
S_d = \frac{R_{dv} S_v}{(60 \times 10^{-3})} \quad \text{(Metric Units)}
\]

or

\[
S_d = \frac{R_{dv} S_v}{(8.021)} \quad \text{(English Units)}
\]

where:

\(S_d \) = average dry sludge charging rate during the run, kg/hr (English units: lb/hr);

\(R_{dv} \) = average quantity of dry sludge per unit volume of sludge charged to the incinerator, mg/l (English units: lb/ft\(^3\));

\(S_v \) = sludge charged to the incinerator during the run, m\(^3\) (English units: gal);
T = duration of run, min (English units: min);

60x10^{-3} = metric units conversion factor, 1-kg-min/m^3-mg-hr;

8.021 = English units conversion factor, ft^3-min/gal-hr.

(2) If the mass of sludge charged is used:

\[
R_{dm}S_m
\]

\[
S_d = (60) \frac{R_{dm}S_m}{T} \quad \text{(Metric or English Units)}
\]

where:

\(S_d \) = average dry sludge charging rate during the run, kg/hr (English units: lb/hr);

\(R_{dm} \) = average ratio of quantity of dry sludge to quantity of sludge charged to the incinerator, mg/mg (English units: lb/lb);

\(S_m \) = sludge charged during the run, kg (English units: lb);

\(T \) = duration of run, min (metric or English units);

60 = conversion factor, min/hr (metric or English units).

Subp. 4. **Particulate emission rate.** Particulate emission rate shall be determined by:

\[
C_{aw} = C_sQ_s
\]

where:

\(C_{aw} \) = Particulate matter mass emissions, mg/hr (English units: lb/hr).

\(C_s \) = Particulate matter concentration, mg/m^3 (English units: lb/dscf).

\(Q_s \) = Volumetric stack gas flow rate, dscm/hr (English units: dscf/hr). \(Q_s \) and \(C_s \) shall be determined using methods 2 and 5, respectively.

Subp. 5. **Compliance with standards.** Compliance with part 7011.1310 shall be determined as follows:

\[
C_{aw}
\]

\[
C_{ds} = (10^{-3}) \frac{C_{aw}}{S_d} \quad \text{(Metric Units)}
\]

or
\[C_{aw} = \frac{C_{ds}}{(2000) \times 10^{-3}} \]
\[\text{S}_d \]

where:

\[C_{ds} = \text{particulate emission discharge}, \, \text{g/kg dry sludge (English units: lb/ton dry sludge)}. \]

\[10^{-3} = \text{Metric conversion factor, g/mg}. \]

\[2,000 = \text{English conversion factor, lb/ton}. \]

Statutory Authority:
MS s 116.07

History:
18 SR 614; 18 SR 1412

Published Electronically: April 16, 2020

7011.1340 EMISSION LIMITS; EXCEEDANCE REQUIREMENTS.

Subpart 1. **Applicability.** The owners or operators of an emissions unit subject to parts 7011.1291, 7011.1292, 7011.1293, 7011.1294, 7011.1350, 7011.1355, 7011.1360, and 7011.1370 must comply with this part.

Subp. 2. **Definitions.** The terms used in this part have the meanings given them in this subpart.

A. "Accurate and valid data" means data that provides the measurement of emissions of an air contaminant from the incinerator or of operating parameters of a component of the incinerator. For continuously monitored emissions, data is accurate and valid immediately upon recording. For emissions for which a performance test is conducted, data is accurate and valid 14 days after the incinerator owners or operators receive the performance test report, unless the incinerator owners or operators notify the commissioner in writing within the same 14 days that the owners or operators can show reason for rejecting the data.

B. "Normal start-up" means the period of time between the initial start-up of a new, modified, retrofitted, or reconstructed emissions unit of an incinerator or an emissions unit of an incinerator that is modified, retrofitted, or reconstructed to meet the requirements of parts 7011.1360 to 7011.1370 and the lesser of 60 days after achieving the maximum production rate at which the emissions unit will operate or 180 days after initial start-up.

Subp. 3. **Exceeding continuously monitored emission limits.** If, after normal start-up, accurate and valid data results collected from continuous emission monitors exceed emission limits established in part 7011.1350, item B; 7011.1355, subpart 2; 7011.1365; or 7011.1370, subpart 1, or in the permit for the incinerator, the incinerator owner or operator must:

A. report the exceedance to the commissioner as soon as reasonably possible, giving consideration to matters of plant or worker safety or access to communications;
B. commence appropriate repairs or modifications to return the incinerator to compliance within 72 hours of the exceedance;

C. shut down the incinerator if the modification or repairs cannot be completed within 72 hours of the exceedance; and

D. when repairs or modifications have been completed, demonstrate to the commissioner that the incinerator is in compliance. The incinerator may be started up after the owner or operator has notified the commissioner in writing of the date the owner or operator plans to start up the incinerator. Notification must be given at least 24 hours before resuming operation. Compliance is demonstrated by providing to the commissioner written results from the continuous monitor showing compliance with the emission limits.

Subp. 4. **Exceedance determined by performance testing.**

A. If, after normal start-up, accurate and valid data results of a performance test demonstrate an exceedance of an emissions limit established in part 7011.1355, subpart 2; 7011.1365; or 7011.1370, subpart 1, or in the facility air emissions permit, the owners or operators of an incinerator must:

 (1) report the exceedance to the commissioner according to part 7019.1000;

 (2) undertake appropriate steps to return the incinerator to compliance and demonstrate compliance within 60 days of the initial report to the commissioner of the exceedance; and

 (3) shut down the incinerator if the commissioner determines that compliance has not been achieved within 60 days of the initial report of exceedance.

B. If shutdown was required under item A, subitem (3), the owner or operator may restart the incinerator under the conditions specified by the commissioner. The owners or operators must notify the commissioner in writing of the date on which the owners or operators plan to start up and to begin compliance testing. Notification must be received at least ten days in advance of the compliance test date.

Statutory Authority: MS s 116.07

History: 39 SR 386

Published Electronically: September 17, 2020

7011.1350 INCORPORATION BY REFERENCE; NEW SOURCE PERFORMANCE STANDARDS; SEWAGE SLUDGE INCINERATORS.

Subpart 1. **Incorporation by reference.** The following new source performance standards are incorporated by reference:

A. Code of Federal Regulations, title 40, part 60, subpart O, as amended, entitled "Standards of Performance for Sewage Treatment Plants," is incorporated by reference; and

Subp. 2. **Exceeding emission limits.** Owners and operators of a new sewage sludge incineration unit must comply with part 7011.1340.

Statutory Authority: *MS s 116.07*

History: 18 SR 580; 39 SR 386; 44 SR 1030

Published Electronically: September 17, 2020

7011.1355 **INCORPORATION BY REFERENCE; EMISSION GUIDELINES AND COMPLIANCE TIMES; EXISTING SEWAGE SLUDGE INCINERATOR UNITS.**

Subpart 1. **Applicability.** The owners or operators of each sewage sludge incineration unit as defined in Code of Federal Regulations, title 40, section 60.5250, for which construction commenced on or before October 14, 2010, must comply with this part, except:

A. combustion units that incinerate sewage sludge, as defined under Code of Federal Regulations, title 40, section 60.5250, and are not located at a wastewater treatment facility designed to treat domestic sewage sludge are exempt from this part. The owners or operators of the combustion unit must notify the United States Environmental Protection Agency and the commissioner of an exemption claim under this item;

B. if the owners or operators of a sewage sludge incineration unit make changes that meet the definition of modification incorporated in subpart 2 after September 21, 2011:

 (1) the sewage sludge incineration unit becomes subject to Code of Federal Regulations, title 40, part 60, subpart LLLL; and

 (2) this part no longer applies to the sewage sludge incineration unit; and

C. physical or operational changes made to a sewage sludge incineration unit for which construction commenced on or before September 21, 2011, primarily to comply with this part:

 (1) are not considered modifications or reconstructions; and

 (2) do not result in a sewage sludge incineration unit becoming subject to Code of Federal Regulations, title 40, part 60, subpart LLLL.

Subp. 2. **Incorporation by reference of federal emission guidelines and compliance times for existing sewage sludge incinerators.**

A. The following requirements from Code of Federal Regulations, title 40, part 60, subpart MMMM, as amended, entitled "Emission Guidelines and Compliance Times for Existing Sewage Sludge Incineration Units," are incorporated by reference:

 (1) increments of progress: Code of Federal Regulations, title 40, sections 60.5085 to 60.5125. The deadlines for each increment of progress are found in Table 1 of Code of Federal Regulations, title 40, part 60, subpart MMMM, and are as follows:
(a) owners or operators must submit the final control plan to the commissioner by one year after September 29, 2014; and

(b) owners or operators of an affected unit must demonstrate compliance with the emission guidelines adopted under this part by March 21, 2016;

(2) operator training and qualification: Code of Federal Regulations, title 40, sections 60.5130 to 60.5160;

(3) emission limits, emission standards, and operating limits and requirements: Code of Federal Regulations, title 40, sections 60.5165 to 60.5180;

(4) initial compliance requirements: Code of Federal Regulations, title 40, sections 60.5185 to 60.5200;

(5) continuous compliance requirements: Code of Federal Regulations, title 40, sections 60.5205 to 60.5215;

(6) performance testing, monitoring, and calibration requirements: Code of Federal Regulations, title 40, sections 60.5220 to 60.5225;

(7) record keeping and reporting: Code of Federal Regulations, title 40, sections 60.5230 to 60.5235; and

(8) definitions: Code of Federal Regulations, title 40, section 60.5250.

B. For purposes of this subpart, the terms used in Code of Federal Regulations, title 40, sections 60.5085 to 60.5250, are defined as follows:

(1) "administrator" means the commissioner; and

(2) "you" means the owner or operator of an affected sewage sludge incineration unit.

Subp. 3. Exceeding emission limits. Owners and operators of an existing sewage sludge incinerator must comply with part 7011.1340.

Statutory Authority: MS s 116.07
History: 39 SR 386; 44 SR 1030
Published Electronically: September 17, 2020

COMMERCIAL AND INDUSTRIAL SOLID WASTE INCINERATORS

7011.1360 EXISTING COMMERCIAL AND INDUSTRIAL SOLID WASTE INCINERATORS; COMPLIANCE REQUIREMENTS.

Subpart 1. Applicability. Except as provided in items A to K, the owners or operators of a commercial or industrial solid waste incineration unit as defined in Code of Federal Regulations, title 40, section 60.2875, that commenced construction on or before June 4, 2010, or modification
or reconstruction on or before August 7, 2013, must comply with this part and part 7011.1365. The following units are not commercial and industrial solid waste incineration units:

A. pathological waste units, provided that the owner or operator complies with the notification and record-keeping requirements of Code of Federal Regulations, title 40, section 60.2555;

B. units subject to Code of Federal Regulations, title 40, part 60, subparts Ea, Eb, Cb, AAAA, and BBBB, standards of performance for existing or new municipal waste combustors or a federal plan for municipal waste incinerators;

C. units subject to Code of Federal Regulations, title 40, part 60, subpart Ec or Ce, standards of performance for existing or new medical waste incinerators or a federal plan for medical waste incinerators;

D. small power production units, if:

 (1) the unit is a qualifying small power production facility under section 3(17)(C) of the Federal Power Act, United States Code, title 16, section 796(17)(C);

 (2) the unit burns homogeneous wastes, not including refuse-derived fuel, to produce electricity; and

 (3) the administrator approves a determination that the qualifying small power production facility is combusting homogeneous wastes, as defined in Code of Federal Regulations, title 40, section 60.2875. The owner or operator must maintain the records required under Code of Federal Regulations, title 40, section 60.2740(v). The request for a determination must include sufficient information to document that the unit meets the criteria of a qualifying small power production facility and that the waste material the unit is proposing to burn is homogeneous;

E. cogeneration facility units, if:

 (1) the unit is a qualifying cogeneration facility under section 3(18)(B) of the Federal Power Act, United States Code, title 16, section 796(18)(B);

 (2) the unit burns homogeneous waste, not including refuse-derived fuel, to produce electricity and steam or other forms of energy used for industrial solid waste, commercial, heating, or cooling purposes; and

 (3) the administrator approves a determination that the qualifying cogeneration facility is combusting homogeneous waste, as defined in Code of Federal Regulations, title 40, section 60.2875. The owner or operator must maintain the records required under Code of Federal Regulations, title 40, section 60.2740(v). The request for a determination must include sufficient information to document that the unit meets the criteria of a qualifying cogeneration facility and that the waste material the unit is proposing to burn is homogeneous;

F. hazardous waste incineration units that are required to obtain a permit under section 3005 of the Solid Waste Disposal Act, United States Code, title 42, section 6925;
G. material recovery units that combust waste for the primary purpose of recovering metals, such as primary and secondary smelters;

H. air curtain incinerators, as defined under Code of Federal Regulations, title 40, section 60.2875, provided that the incinerators meet the requirements of Code of Federal Regulations, title 40, sections 60.2810 to 60.2870, and burn only 100 percent wood waste, 100 percent clean lumber, or 100 percent mixture of clean lumber, wood waste, or yard waste;

I. sewage treatment plants with incinerators subject to Code of Federal Regulations, title 40, part 61, subpart O;

J. sewage sludge incinerators subject to Code of Federal Regulations, title 40, part 60, subpart LLLL or MMMM; and

K. other solid waste incinerators subject to Code of Federal Regulations, title 40, part 60, subpart EEEE or FFFF.

Subp. 2. Compliance deadline. The owners or operators of a commercial or industrial solid waste incinerator shall demonstrate compliance with part 7011.1365 no later than March 16, 2016, or three years after the United States Environmental Protection Agency approves a 111(d) plan incorporating this part, whichever is earlier. Commercial and industrial solid waste incinerators operating on September 29, 2014, shall submit a control plan to the commissioner within 180 days after September 29, 2014.

Subp. 3. Modifications. If the owners or operators of a commercial or industrial solid waste incineration unit make changes after June 4, 2010, that meet the definition of modification in Code of Federal Regulations, title 40, section 60.2875:

A. the commercial or industrial solid waste incineration unit becomes subject to part 7011.1370; and

B. this part no longer applies to the commercial or industrial solid waste incineration unit.

Subp. 4. Physical or operational changes. Physical or operational changes made by owners or operators to a commercial or industrial solid waste incineration unit for which construction commenced on or before June 4, 2010, or reconstruction or modification commenced on or before August 7, 2013, to comply with this part:

A. are not considered modifications or reconstructions; and

B. do not result in a commercial or industrial solid waste incineration unit becoming subject to part 7011.1370.

Subp. 5. Exceeding emission limits. Owners and operators of a commercial or industrial solid waste incineration unit must comply with part 7011.1340.

Statutory Authority: MS s 116.07
History: 39 SR 386
Published Electronically: September 17, 2020
7011.1365 INCORPORATION BY REFERENCE; EMISSION GUIDELINES AND COMPLIANCE TIMES; EXISTING COMMERCIAL AND INDUSTRIAL SOLID WASTE INCINERATORS.

Code of Federal Regulations, title 40, part 60, subpart DDDD, as amended, entitled "Emissions Guidelines and Compliance Times for Commercial and Industrial Solid Waste Incineration Units," is incorporated by reference with the following exceptions:

A. sections 60.2500 to 60.2570 are not incorporated by reference;

B. the deadlines for each increment of progress provided for in Table 1 of Code of Federal Regulations, title 40, part 60, subpart DDDD, are:

(1) by September 29, 2015, for owners or operators to submit a final control plan to the commissioner; and

(2) by September 29, 2017, for owners or operators of an affected unit to demonstrate compliance with the emission guidelines adopted under this part;

C. owners or operators of commercial and industrial solid waste incineration units that do not hold Title V operating permits must submit an application for a Title V permit by September 29, 2015; and

D. "you" means the owner or operator of an affected commercial and industrial solid waste incineration unit.

Statutory Authority: MS s 116.07

History: 39 SR 386; 44 SR 1030

Published Electronically: April 16, 2020

7011.1370 INCORPORATION BY REFERENCE; NEW SOURCE PERFORMANCE STANDARDS; NEW COMMERCIAL AND INDUSTRIAL SOLID WASTE INCINERATORS.

Subp. 2. Exceeding emission limits. Owners and operators of a new commercial or industrial solid waste incinerator must comply with part 7011.1340.

Statutory Authority: MS s 116.07

History: 39 SR 386; 44 SR 1030

Published Electronically: September 17, 2020
PETROLEUM REFINERIES

7011.1400 DEFINITIONS APPLICABLE TO PETROLEUM REFINERIES.

Subpart 1. Scope. The definitions in this part apply to parts 7011.1400 to 7011.1430.

Subp. 2. Coke burn-off. "Coke burn-off" means the coke removed from the surface of the fluid catalytic cracking unit catalyst by combustion in the catalyst regenerator. The rate of coke burn-off is calculated by the formula in part 7011.1430, subpart 5.

Subp. 2a. Existing. "Existing" means equipment on which construction, modification, or reconstruction did not begin after June 11, 1973.

Subp. 3. Fossil fuel. "Fossil fuel" means natural gas, petroleum, coal, and wood and any form of solid, liquid, or gaseous fuel derived from such materials.

Subp. 4. Fuel gas. "Fuel gas" means any gas that is generated by a petroleum refinery process unit and that is combusted, including any gaseous mixture of a natural gas and fuel gas that is combusted.

Subp. 5. Fuel gas combustion device. "Fuel gas combustion device" means any equipment, such as process heaters, boilers, and flares, used to combust fuel gas but does not include fluid coking units and fluid catalytic cracking unit incinerator-waste heat boilers or facilities in which gases are combusted to produce sulfur or sulfuric acid.

Subp. 6. Heat input. "Heat input" means the number of Btu per hour (cal/hr) determined by multiplying the high heating value (Btu/lb) (cal/gm) of each fossil fuel or fuel gas that is fired in the indirect heating equipment or fuel gas combustion device (at the time of determining the heat input) times the rate of each fuel burned (lb/hr) (gm/hr).

Subp. 7. High heating value. "High heating value" means the number of (Btu/lb) (cal/gm) of a fossil fuel as determined by the A.S.T.M. test methods described in part 7011.0500, subpart 8.

Subp. 8. Indirect heating equipment. "Indirect heating equipment" means a furnace, boiler, or other unit of combustion equipment used in burning fossil fuel to produce steam, hot water, hot air, or other hot liquid, gas, or solid, where the products of combustion do not have direct contact with the heated medium. Indirect heating equipment includes all fuel gas combustion devices that burn a liquid or solid fossil fuel but does not include fluid catalytic cracking unit incinerator-waste heat boilers, fluid coking units, or facilities in which gases are combusted to produce sulfur or sulfuric acid.

Subp. 9. Petroleum. "Petroleum" means the crude oil removed from the earth and the oils derived from tar sands, shale, and coal.

Subp. 10. Petroleum refinery. "Petroleum refinery" means a facility engaged in producing gasoline, kerosene, distillate fuel oils, residual fuel oil, lubricants, or other products by distilling...
petroleum or by redistilling, cracking, or reforming unfinished petroleum derivatives. Petroleum refinery includes fluid catalytic cracking unit catalyst regenerators, fluid catalytic cracking unit incinerator-waste heat boilers, fuel gas combustion devices, and all indirect heating equipment associated with the refinery.

Subp. 11. **Process gas.** "Process gas" means any gas generated by a petroleum refinery process unit, except fuel gas.

Subp. 12. [Repealed, 41 SR 763]

Subp. 13. **Refinery process unit.** "Refinery process unit" means any segment of the petroleum refinery in which a specific processing operation is conducted.

Subp. 14. **Steam generating unit.** "Steam generating unit" means indirect heating equipment used to produce steam.

Statutory Authority: MS s 115.03; 116.07

History: 18 SR 614; 41 SR 763; 44 SR 1030

Published Electronically: April 16, 2020

7011.1405 PERFORMANCE STANDARDS; EXISTING AFFECTED FACILITIES AT PETROLEUM REFINERIES.

Subpart 1. **Fluid catalytic cracking unit catalyst regenerator and incinerator-waste heat boiler.** No owner or operator of an existing fluid catalytic cracking unit catalyst regenerator or its incinerator-waste heat boiler at a petroleum refinery shall allow to be discharged into the atmosphere from the regenerator or its incinerator-waste heat boiler any gases that:

A. contain filterable particulate matter in excess of 10.0 lb/1000 lb (10.0 kg/1000 kg) of coke burn-off in the catalyst regenerator; or

B. exhibit greater than 30 percent opacity, except that 30 percent opacity may be exceeded for one six-minute period in any one-hour period. An exceedance of this opacity standard occurs whenever any one-hour period contains two or more six-minute periods during which the average opacity exceeds 30 percent.

If auxiliary liquid or solid fossil fuels are burned in the fluid catalytic cracking unit incinerator-waste heat boiler, particulate matter in excess of that permitted by item A may be emitted provided that the incremental rate of particulate emissions shall not exceed 0.4 pounds per million Btu (0.72 grams per million cal) of heat input attributable to such liquid or solid fossil fuel.

Subp. 2. **Fuel gas combustion device and indirect heating equipment.** Flares subject to the conditions of Code of Federal Regulations, title 40, part 60, subpart Ja, are not subject to the limits of this subpart. No owner or operator of existing fuel gas combustion devices and indirect heating equipment at a petroleum refinery shall cause to be discharged into the atmosphere from such devices and equipment any gases which contain sulfur dioxide in excess of 1.75 pounds per million Btu (3.15 grams per million cal) heat input. The total emissions of sulfur dioxide from all existing fuel gas combustion devices and all indirect heating equipment shall be divided by the total heat
input of all such devices and equipment to determine compliance with this section; provided that no owner or operator shall cause to be discharged from any one fuel gas combustion device or any one unit of indirect heating equipment any gases which contain sulfur dioxide in excess of 3.0 pounds per million Btu (5.4 grams per million cal) heat input.

Subp. 3. **Indirect heating equipment.** The standards of performance in parts 7011.0500 to 7011.0530 for indirect heating equipment do not apply to indirect heating equipment at a petroleum refinery. Only the standards of performance for indirect heating equipment in this part apply to indirect heating equipment. No owner or operator of existing indirect heating equipment at a petroleum refinery shall allow to be discharged into the atmosphere from the equipment any gases that:

A. contain filterable particulate matter in excess of 0.4 pounds per million Btu (0.72 grams per million cal) heat input; or

B. exhibit greater than 20 percent opacity, except for one six-minute period per hour of not more than 60 percent opacity. An exceedance of this opacity standard occurs whenever any one-hour period contains two or more six-minute periods during which the average opacity exceeds 20 percent or whenever any one-hour period contains one or more six-minute periods during which the average opacity exceeds 60 percent.

Subp. 4. [Repealed, 44 SR 1030]

Statutory Authority: MSs 115.03; 116.07

History: 18 SR 614; 22 SR 1237; 23 SR 145; 41 SR 763; 44 SR 1030

Published Electronically: September 17, 2020

7011.1410 PERFORMANCE STANDARDS; NEW AFFECTED FACILITIES AT PETROLEUM REFINERIES.

Subpart 1. **Fluid catalytic cracking unit catalyst regenerator and incinerator-waste heat boiler.** No owner or operator of a new fluid catalytic cracking unit catalyst regenerator or its incinerator-waste heat boiler at a petroleum refinery shall allow to be discharged into the atmosphere from the regenerator or incinerator-waste heat boiler any gases that:

A. contain filterable particulate matter in excess of 1.0 lb/1000 lb (1.0 kg/1000 kg) of coke burn-off in the catalyst regenerator; or

B. exhibit greater than 30 percent opacity, except that 30 percent opacity may be exceeded for one six-minute period in any one-hour period. An exceedance of this opacity standard occurs whenever any one-hour period contains two or more six-minute periods during which the average opacity exceeds 30 percent.

If auxiliary liquid or solid fossil fuels are burned in the fluid catalytic cracking unit incinerator-waste heat boiler, particulate matter in excess of that permitted by item A may be emitted provided that the incremental rate of particulate emissions shall not exceed 0.1 pound per million Btu of heat input attributable to such liquid or solid fossil fuel.
No owner or operator of a new fluid catalytic cracking unit catalyst regenerator at a petroleum refinery shall cause to be discharged into the atmosphere from such regenerator any gases which contain carbon monoxide in excess of 0.050 percent by volume.

Subp. 2. **Fuel gas combustion device.** Flares subject to the conditions of Code of Federal Regulations, title 40, part 60, subpart Ja, are not subject to the limits of this subpart. No owner or operator of a new fuel gas combustion device at a petroleum refinery shall burn in any such device any fuel gas which contains H$_2$S in excess of 0.10 gr/dscf, (230 mg/dscm) except as provided herein. The owner or operator may elect to treat the gases resulting from the combustion of fuel gas in a manner which limits the release of SO$_2$ to the atmosphere if it is shown to the satisfaction of the commissioner that this prevents SO$_2$ emissions as effectively as compliance with the H$_2$S restriction set forth above.

Subp. 3. **Indirect heating equipment.** The standards of performance in parts 7011.0500 to 7011.0530 for indirect heating equipment do not apply to indirect heating equipment at a petroleum refinery. Only the standards of performance for indirect heating equipment in this subpart apply to indirect heating equipment.

A. No owner or operator of new indirect heating equipment at a petroleum refinery shall cause to be discharged into the atmosphere from such equipment any gases which contain sulfur dioxide in excess of 1.75 pounds per million Btu (3.15 grams per million cal) heat input. The total emissions of sulfur dioxide from all existing and new fuel gas combustion devices and indirect heating equipment shall be divided by the total heat input of all such devices and equipment to determine compliance with this part; provided that no owner or operator shall cause to be discharged from any one unit of new indirect heating equipment any gases which contain sulfur dioxide in excess of 3.0 pounds per million Btu (5.4 grams per million cal) heat input.

B. No owner or operator of new indirect heating equipment at a petroleum refinery shall allow to be discharged into the atmosphere from the equipment any gases that:

1. contain filterable particulate matter in excess of 0.4 pounds per million Btu (0.72 grams per million cal) heat input; or

2. exhibit greater than 20 percent opacity, except for one six-minute period per hour of not more than 60 percent opacity. An exceedance of this opacity standard occurs whenever any one-hour period contains two or more six-minute periods during which the average opacity exceeds 20 percent or whenever any one-hour period contains one or more six-minute periods during which the average opacity exceeds 60 percent.

C. The owner or operator of a new steam generating unit of more than 250 million Btu per hour (63 million cal per hour) heat input at a petroleum refinery shall comply with the following requirements:

1. No gases shall be discharged from the steam generating unit that contain filterable particulate matter in excess of 0.1 pounds per million Btu (0.18 grams per million cal) heat input.

2. No gases shall be discharged which exhibit greater than 20 percent opacity, except for one six-minute period per hour of not more than 27 percent opacity. An exceedance of this
opacity standard occurs whenever any one-hour period contains two or more six-minute periods during which the average opacity exceeds 20 percent or whenever any one-hour period contains one or more six-minute periods during which the average opacity exceeds 27 percent.

(3) No gases shall be discharged which contain sulfur dioxide in excess of 0.80 pounds per million Btu (1.4 grams per million cal) heat input if a liquid fossil fuel is burned and 1.2 pounds per million Btu (2.2 grams per million cal) heat input if a solid fossil fuel is burned. When different fossil fuels are burned simultaneously in any combination, the applicable standard shall be determined by proration using the following formula:

\[
y(0.8) + z(1.2) \\
\frac{x = \text{ } }{y + z}
\]

where:

- \(x\) is the maximum allowable emissions of sulfur dioxide gases in lbs/per million Btu;
- \(y\) is the percentage of total heat input derived from liquid fossil fuel;
- \(z\) is the percentage of total heat input derived from solid fossil fuel; and

Compliance shall be based on the total heat input from all fossil fuel burned including gaseous fuels.

Subp. 4. [Repealed, 44 SR 1030]

Statutory Authority: MS s 115.03; 116.07

History: L 1987 c 186 s 15; 18 SR 614; 22 SR 1237; 23 SR 145; 41 SR 763; 44 SR 1030

Published Electronically: September 17, 2020

7011.1415 [Repealed, 41 SR 763]

Published Electronically: January 27, 2017

7011.1420 EMISSION MONITORING.

Subpart 1. Fluid catalytic cracking unit catalyst regenerators. Fluid catalytic cracking unit catalyst regenerators:

A. Opacity.

(1) The owner or operator of any new fluid catalytic unit catalyst regenerator and the owner or operator of an existing fluid catalytic cracking unit catalyst regenerator for fluid bed catalyst cracking units of greater than 20,000 barrels per day fresh feed capacity shall install, calibrate, maintain, and operate a continuous monitoring system for the measurement of opacity of emissions discharged into the atmosphere from the regenerator.

(2) The continuous monitoring system shall be spanned at 60, 70, or 80 percent opacity.
B. Coke burn-off. The average coke burn-off rate (thousands of pounds per hour or thousands of kilograms per hour) and hours of operation of any fluid catalytic cracking unit catalyst regenerator shall be recorded daily.

Subp. 2. **Fuel gas combustion devices.** Fuel gas combustion devices:

A. Sulfur dioxide.

(1) The owner or operator of a new fuel gas combustion device at a petroleum refinery shall install, calibrate, maintain, and operate a continuous monitoring system for the measurement of sulfur dioxide in the gases discharged into the atmosphere.

(2) The pollutant gas used to prepare calibration gas mixtures and for calibration checks shall be sulfur dioxide (SO\(_2\)).

(3) The span shall be set at 100 ppm.

(4) Reference Method 6 shall be used for conducting monitoring system performance specifications.

(5) For the purpose of reports under part 7017.1110, subpart 2, periods of excess emissions that shall be reported are defined as any six-hour period during which the average emissions (arithmetic average of six continuous one-hour periods) of sulfur dioxide as measured by a continuous monitoring system exceed the applicable standards of performance in part 7011.1410.

B. Hydrogen sulfide. The owner or operator of a new fuel gas combustion device at a petroleum refinery may elect to install a continuous monitoring system for the measurement of hydrogen sulfide in the fuel gas instead of the sulfur dioxide monitor described in item A. The owner or operator shall notify the commissioner in writing of such election. The owner or operator who elects to install the hydrogen sulfide monitor shall not be required to do so until monitoring requirements for such a system are promulgated; provided, however, the commissioner may require the installation of a sulfur dioxide monitor under the provisions of part 7017.1006.

Subp. 3. **Incinerator waste heat boilers.** The owner or operator of any fluid catalytic cracking unit catalyst regenerator at a petroleum refinery which utilizes an incinerator-waste heat boiler to combust the exhaust gases from the catalyst regenerator shall record daily the rate of combustion of liquid or solid fossil fuels (gallons per hour or liters per hour, pounds per hour or kilograms per hour) and the hours of operation during which liquid or solid fossil fuels are combusted in the incinerator-waste heat boiler.

Statutory Authority: *MS s 116.07*

History: *L 1987 c 186 s 15; 18 SR 614; 23 SR 1764*

Published Electronically: *February 25, 2008*
7011.1425 PERFORMANCE TEST METHODS.

Subpart 1. **In general.** Unless another method is approved by the commissioner, a person required to submit performance tests for a petroleum refinery must use the test methods in this part to demonstrate compliance.

Subp. 2. **Gases released to atmosphere from fluid catalytic cracking unit catalyst regenerator.** For gases released to the atmosphere from the fluid catalytic cracking unit catalyst regenerator:

 A. Method 1 for sample and velocity traverses;
 B. Method 2 for velocity and volumetric flow rate;
 C. Method 5 for the concentration of filterable particulate matter and moisture content;
 D. Method 9 for visual determination of the opacity of emissions from stationary sources;
 E. Method 10 for carbon monoxide.

Subp. 3. **Exhaust gases.** For exhaust gases from the fluid catalytic cracking unit catalyst regenerator prior to the emission control system:

 A. Method 1 for sample and velocity traverses;
 B. Method 2 for velocity and volumetric flow rate;
 C. Method 3 for gas analysis;
 D. Method 4 for moisture content.

Subp. 4. **Determining concentration.** For determining the concentration of H₂S in any fuel gas, Method 11 shall be used.

Subp. 5. **Gases to atmosphere from combustion.** For gases released to the atmosphere from the combustion of fuel gas, fossil fuel, and the combination of fuel gas and fossil fuel:

 A. Method 1 for sample and velocity traverses;
 B. Method 2 for velocity and volumetric flow rate;
 C. Method 5 for the concentration of filterable particulate matter and moisture content;
 D. Method 6 for concentration of SO₂;
 E. Method 9 for visual determination of the opacity of emissions from stationary sources.

Statutory Authority: MS s 115.03; 116.07

History: L 1987 c 186 s 15; 18 SR 614; 41 SR 763

Published Electronically: April 3, 2019
7011.1430 PERFORMANCE TEST PROCEDURES.

Subpart 1. In general. Performance tests shall be conducted according to the requirements of this part and parts 7017.2001 to 7017.2060.

Subp. 2. Sampling time. For Method 5, the sampling time for each run shall be at least 60 minutes and the sampling rate shall be at least 0.015 dscm (0.53 dscf/min), except that shorter sampling times may be approved by the commissioner when process variable or other factors preclude sampling for at least 60 minutes.

Subp. 3. Extraction rate. For Method 10, the sample shall be extracted at a rate proportional to the gas velocity at a sampling point near the centroid of the duct. The sampling time shall not be less than 60 minutes.

Subp. 4. Introducing gases into sampling train. For Method 11, when refinery fuel gas lines are operating at pressures substantially above atmospheric, the gases sampled must be introduced into the sampling train at approximately atmospheric pressure. This may be accomplished with a flow control valve. If the line pressure is high enough to operate the sampling train without a vacuum pump, the pump may be eliminated from the sampling train. The sample shall be drawn from a point near the centroid of the fuel gas line. The minimum sampling time shall be ten minutes and the minimum sampling volume 0.01 dscm (0.35 dscf) for each sample. The arithmetic average of two samples shall constitute one run. Samples shall be taken at approximately one-hour intervals. For most fuel gases, sample times exceeding 20 minutes may result in depletion of the collecting solution, although fuel gases containing low concentrations of hydrogen sulfide may necessitate sampling for longer periods of time.

Subp. 5. Sampling to determine SO$_2$ concentration. The sampling site for determining SO$_2$ concentration by Method 6 shall be the same as for determining volumetric flow rate by Method 2. The sampling point in the duct for determining SO$_2$ concentration by Method 6 shall be at the centroid of the cross section if the cross sectional area is less than 5 m2 (54 ft2) or at a point no closer to the walls than 1 meter (39 inches) if the cross sectional area is 5 m2 or more and the centroid is more than one meter from the wall. The sample shall be extracted at a rate proportional to the gas velocity at the sampling point. The minimum sampling time shall be ten minutes and the minimum sampling volume 0.01 dscm (0.35 dscf) for each sample. The arithmetic average of two samples shall constitute one run. Samples shall be taken at approximately one-hour intervals.

Subp. 6. Coke burn-off rate. Coke burn-off rate shall be determined by the following formula:

$$R_c = 0.2982 \ Q_{re} \ (\%CO_2 + \%CO) + 2.088 \ Q_{ra} - 0.0994 \ Q_{re}$$

($\%CO/2 + \%CO_2 + \%O_2$) (metric units)

$$R_c = 0.0186 \ Q_{re} \ (\%CO_2 + \%CO) + 0.1303 \ Q_{ra} - 0.0062 \ Q_{re}$$

($\%CO/2 + CO_2 + O_2$) (English units)

R_c = coke burn-off rate, kg/hr (English units lb/hr);
0.2982 = metric units material balance factor divided by 100, kg-min/hr-m³;
0.0186 = English units material balance factor divided by 100, lb-min/hr-ft³;

Q_{re} = fluid catalytic cracking unit catalyst regenerator exhaust gas flow rate before entering the emission control system, as determined by Method 2, dscm/min (English units: dscf/min);

%CO₂ = percent carbon dioxide by volume, dry basis, as determined by Method 3;
%CO = percent carbon monoxide by volume, dry basis, as determined by Method 3;
%O₂ = percent oxygen by volume, dry basis, as determined by Method 3;
2.088 = metric units material balance factor divided by 100, kg-min/hr-m³;
0.1303 = English units material balance factor divided by 100, lb-min/hr-ft³;

Q_{ra} = air rate to fluid catalytic cracking unit catalyst regenerator, as determined from fluid catalytic cracking unit control room instrumentation, dscm/min (English units: dscf/min);

0.0994 = metric units material balance factor divided by 100, kg-min/hr-m³;
0.0062 = English units material balance factor divided by 100, lb-min/hr-ft³.

Subp. 7. **Particulate emissions.** Particulate emissions shall be determined by the following equation:

\[R_e = (60 \times 10^{-6}) Q_{rv} C_x \text{ (metric units);} \] or

\[R_e = (8.57 \times 10^{-3}) Q_{rv} C_s \text{ (English units)} \]

where:

\(R_e = \) particulate emission rate, kg/hr (English units: lb-hr);

\(60 \times 10^{-6} = \) metric units conversion factor, min-kg/hr-gr;

\(8.57 \times 10^{-3} = \) English units conversion factor, min-lb/hr.gr;

\(Q_{rv} = \) volumetric flow rate of gases discharged into the atmosphere from the fluid catalytic cracking unit catalyst regenerator following the emission control system, as determined by Method 2, dscm/min (English units: dscf/min);

\(C_s = \) particulate emission concentration discharged in the atmosphere, as determined by Method 5, mg/dscm (English units: gr/dscf).

Subp. 8. **Coke burn-off.** For each run, emissions expressed in kg/1000 kg (lb/1000 lb) of coke burn-off in the catalyst regenerator shall be determined by the following equation:
\[
\frac{R_s}{R_c} = 1000 \quad \text{(Metric or English Units)}
\]

where:

\(R_s\) = particulate emission rate, kg/1000 kg (lb/1000 lb) of coke burn-off in the fluid catalytic cracking unit catalyst regenerator;

1000 = conversion factor, kg to 1000 kg (lb to 1000 lb);

\(R_c\) = particulate emission rate, kg/hr (lb/hr);

\(R_c\) = coke burn-off rate, kg/hr (lb/hr).

Subp. 9. **Particulate matter; rate of emissions permitted.** In those instances in which auxiliary liquid or solid fossil fuels are burned in an incinerator-waste heat boiler, the rate of particulate matter emissions permitted must be determined. Auxiliary fuel heat input, expressed in millions of cal/hr (English units: millions of Btu/hr) shall be calculated for each run by fuel flow rate measurement and analysis of the liquid or solid auxiliary fossil fuels. For each run, the rate of particulate emissions permitted shall be calculated from the following equation:

<table>
<thead>
<tr>
<th>New Affected Facilities</th>
<th>Existing Affected Facilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0.18 \ H)</td>
<td>(0.72 \ H)</td>
</tr>
<tr>
<td>(R_a = 1.0 + \frac{R_c}{R_c})</td>
<td>(R_a = 10.0 + \frac{R_c}{R_c}) (Metric Units)</td>
</tr>
</tbody>
</table>

or

<table>
<thead>
<tr>
<th>New Affected Facilities</th>
<th>Existing Affected Facilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0.10 \ H)</td>
<td>(0.4 \ H)</td>
</tr>
<tr>
<td>(R_a = 1.0 + \frac{R_c}{R_c})</td>
<td>(R_a = 10.0 + \frac{R_c}{R_c}) (English Units)</td>
</tr>
</tbody>
</table>

where:

\(R_a\) = allowable particulate emission rate, kg/1000 kg (English units: lb/1000 lb) of coke burn-off in the fluid catalytic cracking unit catalyst regenerator;

1.0 = emission standard for new affected facilities, 1.0 kg/1000 kg (English units: 1.0 lb/1000 lb) of coke burn-off in the fluid catalytic cracking unit catalyst regenerator;

10.0 = emission standard for existing affected facilities;

0.18 = metric units maximum allowable incremental rate of particulate emissions for new affected facilities gm/million cal;
0.10 = English units maximum allowable incremental rate of particulate emissions for new affected facilities, lb/million Btu;

0.72 = metric units maximum allowable incremental rate of particulate emissions for existing affected facilities gm/million cal;

0.4 = English units maximum allowable incremental rate of particulate emissions for existing affected facilities, lb/million Btu;

\[H = \text{heat input from solid or liquid fossil fuel, million cal/hr (English units: million Btu/hr);} \]

\[R_c = \text{coke burn-off rate, kg/hr (English units: lb/hr).} \]

Statutory Authority: MS s 116.07

History: 18 SR 614; 18 SR 1412

Published Electronically: April 16, 2020

7011.1435 INCORPORATION BY REFERENCE; NEW SOURCE PERFORMANCE STANDARDS; PETROLEUM REFINERIES.

The following new source performance standards are incorporated by reference:

B. Code of Federal Regulations, title 40, part 60, subpart GGG, as amended, entitled "Standards of Performance for Equipment Leaks of VOC in Petroleum Refineries for which Construction, Reconstruction, or ModificationCommenced After January 4, 1983, and on or Before November 7, 2006," except that the authorities identified in Code of Federal Regulations, title 40, section 60.592(c), are not delegated to the commissioner and are retained by the administrator;

D. Code of Federal Regulations, title 40, part 60, subpart Ja, as amended, entitled "Standards of Performance for Petroleum Refineries for Which Construction, Reconstruction, or Modification Commenced After May 14, 2007"; and

Statutory Authority: MS s 115.03; 116.07

History: 18 SR 580; 41 SR 763; 44 SR 1030

Published Electronically: April 16, 2020
LIQUID PETROLEUM AND VOLATILE ORGANIC LIQUID STORAGE VESSELS

7011.1500 DEFINITIONS.

Subpart 1. Scope. As used in parts 7011.1500 to 7011.1515, the following words shall have the meanings defined herein.

Subp. 2. Condensate. "Condensate" means hydrocarbon liquid separated from natural gas which condenses due to changes in the temperature and/or pressure and remains liquid at standard conditions.

Subp. 3. Custody transfer. "Custody transfer" means the transfer of produced petroleum and/or condensate, after processing and/or treating in the producing operations, from storage tanks or automatic transfer facilities to pipelines or any other forms of transportation.

Subp. 4. Drilling and production facility. "Drilling and production facility" means all drilling and servicing equipment, wells, flow lines, separators, equipment, gathering lines, and auxiliary nontransportation related equipment used in the production of petroleum but does not include natural gasoline plants.

Subp. 5. Floating roof. "Floating roof" means a storage vessel cover consisting of a double deck, pontoon single deck, internal floating cover, or covered floating roof, which rests upon and is supported by the petroleum liquid being contained, and is equipped with a closure seal or seals to close the space between the roof edge and tank wall.

Subp. 7. Petroleum. "Petroleum" means the crude oil removed from the earth and the oils derived from tar sands, shale, and coal.

Subp. 8. Petroleum liquids. "Petroleum liquids" means petroleum, condensate, and any finished or intermediate products manufactured in a petroleum refinery but does not mean number 2 through number 6 fuel oils as specified in A.S.T.M. D396-69, gas turbine fuel oils Numbers 2-GT through 4-GT as specified in A.S.T.M. D2880-71, or diesel fuel oils Numbers 2-D and 4-D as specified in A.S.T.M. D975-68.

Subp. 9. Petroleum refinery. "Petroleum refinery" means any facility engaged in producing gasoline, kerosene, distillate fuel oils, residual fuel oils, lubricants, or other products through distillation of petroleum or through redistillation, cracking, or reforming of unfinished petroleum derivatives.
Subp. 10. **Reid vapor pressure.** "Reid vapor pressure" is the absolute vapor pressure of volatile crude oil and volatile nonviscous petroleum liquids, except liquefied petroleum gases, as determined by A.S.T.M.-D-323-58 (reapproved 1968).

Subp. 11. **Storage vessel.** "Storage vessel" means any tank, reservoir, or container used for the storage of petroleum liquids, but does not include:

A. pressure vessels which are designed to operate in excess of 15 pounds per square inch gauge without emissions to the atmosphere except under emergency conditions;

B. subsurface caverns or porous rock reservoirs; or

C. underground tanks if the total volume of petroleum liquids added to and taken from a tank annually does not exceed twice the volume of the tank.

Subp. 12. **Submerged fill pipe.** "Submerged fill pipe" means any fill pipe the discharge opening of which is entirely submerged when the liquid level is six inches above the bottom of the storage vessel. When applied to a storage vessel which is loaded from the side, "submerged fill pipe" means any fill pipe the discharge opening of which is entirely submerged when filling except for filling after the vessel has been emptied for cleaning and repairs.

Subp. 13. **True vapor pressure.** "True vapor pressure" means the equilibrium partial pressure exerted by a petroleum liquid as determined in accordance with methods described in American Petroleum Institute Bulletin 2517, Evaporation Loss from Floating Roof Tanks, 1962.

Subp. 14. **Vapor recovery system.** "Vapor recovery system" means a vapor gathering system capable of collecting all hydrocarbon vapors and gases discharged from the storage vessel and a vapor disposal system capable of processing such hydrocarbon vapors and gases so as to prevent their emission to the atmosphere.

Statutory Authority: MS s 116.07

History: 18 SR 614; 23 SR 2224

Published Electronically: February 25, 2008

7011.1505 STANDARDS OF PERFORMANCE FOR STORAGE VESSELS.

Subpart 1. **Pre-1969 storage vessels.** There are no standards of performance promulgated in this rule for storage vessels for which construction was commenced prior to July 7, 1969.

A. There are no standards of performance promulgated in this rule for storage vessels with a storage capacity of 2,000 gallons (7,571 liters) or less for which construction was commenced after July 7, 1969, but prior to June 11, 1973.

B. The owner or operator of any storage vessel with a storage capacity of greater than 2,000 gallons (7,571 liters) but less than or equal to 65,000 gallons (246,405 liters) for which construction was commenced after July 7, 1969, but prior to June 11, 1973, shall equip the storage vessel with a permanent submerged fill pipe or comply with the requirements of subpart 3, item C.
C. The owner or operator of any storage vessel with a storage capacity of greater than 65,000 gallons (246,405 liters) for which construction was commenced after July 7, 1969, but prior to June 11, 1973, shall comply with the following requirements:

(1) If the true vapor pressure of the petroleum liquid, as stored, is equal to or greater than 128 mm Hg (2.5 psia) but not greater than 642 mm Hg (12.5 psia) the storage vessel shall be equipped with a floating roof, a vapor recovery system or their equivalents.

(2) If the true vapor pressure of the petroleum liquid, as stored, is greater than 642 mm Hg (12.5 psia), the storage vessel shall be equipped with a vapor recovery system or its equivalent.

Subp. 3. Post-June 11, 1973 storage vessels. Post-June 11, 1973:

A. There are no standards of performance promulgated in this part for storage vessels with a storage capacity of 2,000 gallons (7,571 liters) or less for which construction was commenced on or after June 11, 1973.

B. The owner or operator of any storage vessel with a storage capacity of greater than 2,000 gallons (7,571 liters) but less than or equal to 40,000 gallons (151,412 liters) for which construction was commenced on or after June 11, 1973, shall equip the storage vessel with a permanent submerged fill pipe or comply with the requirements of item C.

C. The owner or operator of any storage vessel with a storage capacity of greater than 40,000 gallons (151,412 liters) for which construction was commenced on or after June 11, 1973, shall comply with the following requirements:

(1) If the true vapor pressure of the petroleum liquid, as stored, is equal to or greater than 78 mm Hg (1.5 psia) but not greater than 570 mm Hg (11.1 psia), the storage vessel shall be equipped with a floating roof, a vapor recovery system, or their equivalents.

(2) If the true vapor pressure of the petroleum liquid as stored is greater than 570 mm Hg (11.1 psia), the storage vessel shall be equipped with a vapor recovery system or its equivalent.

Statutory Authority: MS s 116.07
History: 18 SR 614
Published Electronically: February 25, 2008

7011.1510 MONITORING OPERATIONS.

Subpart 1. Records. The owner or operator of any storage vessel, the construction or modification of which began on or after June 11, 1973, that has a storage capacity of greater than 40,000 gallons (151,412 liters) must for each storage vessel:

A. maintain a file of each type of petroleum liquid stored, the typical Reid vapor pressure of each type of petroleum liquid stored, the dates of storage and withdrawals, and the date on which the storage vessel is empty; and

B. determine and record the average monthly storage temperature and true vapor pressure of the petroleum liquid stored at such temperature if:
(1) the petroleum liquid has a true vapor pressure, as stored, greater than 26 mm Hg (0.5 psia) but less than 78 mm Hg (1.5 psia) and is stored in a storage vessel other than one equipped with a floating roof, a vapor recovery system, or their equivalents; or

(2) the petroleum liquid has a true vapor pressure, as stored, greater than 470 mm Hg (9.1 psia) and is stored in a storage vessel other than one equipped with a vapor recovery system or its equivalent.

Subp. 2. Calculation. The average monthly storage temperature is an arithmetic average calculated for each calendar month, or portion thereof if storage is for less than a month, from bulk liquid storage temperatures determined at least once every seven days.

Subp. 3. Vapor pressure determination. The true vapor pressure is determined by the procedure in American Petroleum Institute Bulletin 2517. This procedure is dependent upon determining the storage temperature and the Reid vapor pressure, which requires sampling the petroleum liquids in the storage vessels. Unless the commissioner requires in specific cases that the stored petroleum liquid be sampled, the true vapor pressure may be determined by using the average monthly storage temperature and the typical Reid vapor pressure. For those liquids for which certified specifications limiting the Reid vapor pressure exist, that Reid vapor pressure may be used. For other liquids, supporting analytical data must be made available on request of the commissioner when typical Reid vapor pressure is used.

Statutory Authority: MS s 116.07
History: L 1987 c 186 s 15; 18 SR 614; 44 SR 1030
Published Electronically: April 16, 2020

7011.1515 EXCEPTION.

The provisions of parts 7011.1500 to 7011.1515 do not apply to storage vessels for petroleum or condensate stored, processed, or treated at a drilling and production facility prior to custody transfer.

Statutory Authority: MS s 116.07
History: 18 SR 614
Published Electronically: February 25, 2008

7011.1520 INCORPORATION BY REFERENCE; NEW SOURCE PERFORMANCE STANDARDS; STORAGE VESSELS.

The following new source performance standards are incorporated by reference:

B. Code of Federal Regulations, title 40, part 60, subpart Ka, as amended, entitled "Standards of Performance for Storage Vessels for Petroleum Liquids for Which Construction, Reconstruction,
or Modification Commenced After May 18, 1978, and Prior to July 23, 1984," except that the
authorities identified in Code of Federal Regulations, title 40, section 60.114a, are not delegated
to the commissioner and are retained by the administrator; and

C. Code of Federal Regulations, title 40, part 60, subpart Kb, as amended, entitled "Standards
of Performance for Volatile Organic Liquid Storage Vessels (Including Petroleum Liquid Storage
Vessels) for Which Construction, Reconstruction, or Modification Commenced After July 23,
1984."

Statutory Authority: MS s 116.07
History: 18 SR 580; 44 SR 1030
Published Electronically: April 16, 2020

BULK GASOLINE TERMINALS

7011.1550 INCORPORATION BY REFERENCE; NEW SOURCE PERFORMANCE
STANDARDS; BULK GASOLINE TERMINALS.

Code of Federal Regulations, title 40, part 60, subpart XX, as amended, entitled "Standards of
Performance for Bulk Gasoline Terminals," is incorporated by reference.

Statutory Authority: MS s 116.07
History: 18 SR 580; 44 SR 1030
Published Electronically: April 16, 2020

SULFURIC ACID PLANTS

7011.1600 DEFINITIONS.

As used in parts 7011.1600 to 7011.1700, the following words shall have the meanings defined
herein:

A. Acid mist. "Acid mist" means sulfuric acid mist as measured by Method 8.

B. Sulfuric acid production unit. "Sulfuric acid production unit" means any emission facility
producing sulfuric acid by the contact process by burning elemental sulfur, alkylation acid, hydrogen
sulfide, organic sulfides and mercaptans, or acid sludge, but does not include facilities where
conversion to sulfuric acid is utilized primarily as a means of preventing emissions to the atmosphere
of sulfur dioxide or other sulfur compounds.

C. Existing sulfuric acid production unit. "Existing sulfuric acid production unit" means a
sulfuric acid production unit on which construction, modification, or reconstruction did not
commence after August 17, 1971.

Statutory Authority: MS s 116.07
History: 18 SR 614; 22 SR 1237
Published Electronically: February 25, 2008
7011.1605 STANDARDS OF PERFORMANCE OF EXISTING SULFURIC ACID PRODUCTION UNITS.

Subpart 1. Pre-July 1, 1977, limit. Prior to July 1, 1977, no owner or operator of an existing sulfuric acid production unit shall cause to be discharged into the atmosphere from any sulfuric acid production unit any gases which contain sulfur dioxide in excess of 42 pounds per ton of acid produced (21 kg per metric ton), production being expressed as 100 percent \(\text{H}_2\text{SO}_4 \).

Subp. 2. Post-July 1, 1977, limit. After July 1, 1977, no owner or operator of an existing sulfuric acid production unit shall cause to be discharged into the atmosphere from any sulfuric acid production unit any gases which contain sulfur dioxide in excess of 30 pounds per ton of acid produced (15 kg per metric ton), production being expressed as 100 percent \(\text{H}_2\text{SO}_4 \).

Subp. 3. Acid mist. No owner or operator of an existing sulfuric acid production unit shall cause to be discharged into the atmosphere from any sulfuric acid production unit any gases which contain acid mist, expressed as \(\text{H}_2\text{SO}_4 \), in excess of 1.70 pounds per ton of acid produced (0.85 kg per metric ton), the production being expressed as 100 percent \(\text{H}_2\text{SO}_4 \).

Statutory Authority: MS s 116.07

History: 18 SR 614

Published Electronically: February 25, 2008

7011.1610 [Repealed, 18 SR 580]

Published Electronically: February 25, 2008

7011.1615 CONTINUOUS EMISSION MONITORING.

Subpart 1. Instrumentalities. The owner or operator of a sulfuric acid production unit shall install, calibrate, maintain, and operate an instrument for continuously monitoring and recording emissions of sulfur dioxide.

Subp. 2. Calibration. The pollutant gas used to prepare calibration gas mixtures and for calibration check shall be sulfur dioxide.

Subp. 3. Method 8. When conducting monitoring system performance evaluations only the sulfur dioxide portion of the Method 8 results shall be used.

Subp. 4. Span set. The span shall be set at 1,000 ppm of sulfur dioxide.

Subp. 5. Conversion factor. The owner or operator of a sulfuric acid production unit shall establish a conversion factor for the purpose of converting monitoring data into units of the applicable standard (kg/metric ton, lb/short ton). The conversion factor shall be determined, as a minimum, three times daily by measuring the concentration of sulfur dioxide entering the converter using suitable methods (e.g., the Reich test, National Air Pollution Control Administration Publication No. 999-AP-13) and calculating the appropriate conversion factor for each eight-hour period as follows:
where:

\[CF = k \left[\frac{1,000 - 0.015r}{r - s} \right] \]

CF = conversion factor (kg/metric ton per ppm, lb/short ton per ppm).

k = constant derived from material balance. For determining CF in metric units, \(k = 0.0653 \). For determining CF in English units, \(k = 0.1306 \).

r = percentage of sulfur dioxide by volume entering the gas converter. Appropriate corrections must be made for air injection.

s = percentage of sulfur dioxide by volume in the emissions to the atmosphere determined by the continuous monitoring system required under subpart 1.

Subp. 6. **Record of conversion factors.** The owner or operator of a sulfuric acid production unit shall record all conversion factors and values under subpart 5, i.e., CF, r, and s.

Subp. 7. **Record of production data.** The owner or operator of a sulfuric acid production unit shall record daily the production rate and hours of operation.

Subp. 8. **Periods of excess emissions.** For the purpose of reports under part 7017.1110, subpart 2, periods of excess emissions shall be all three-hour periods (or the arithmetic average of three consecutive one-hour periods) during which the integrated average sulfur dioxide emissions exceed the applicable standards under these parts.

Statutory Authority: MS s 116.07

History: 18 SR 614; 23 SR 1764

Published Electronically: April 16, 2020

7011.1620 PERFORMANCE TEST METHODS.

Unless another method is approved by the commissioner, any person required to submit performance tests for a sulfuric acid production unit shall utilize the following test methods:

A. Method 1 for sample and velocity traverses;

B. Method 2 for velocity and volumetric flow rate;

C. Method 3 for gas analysis; and

D. Method 8 for the concentrations of SO\(_2\) and acid mist.

Statutory Authority: MS s 116.07

History: L 1987 c 186 s 15; 18 SR 614

Published Electronically: February 25, 2008
7011.1625 PERFORMANCE TEST PROCEDURES.

Subpart 1. In general. Performance tests shall be conducted according to the requirements of this part and parts 7017.2001 to 7017.2060.

Subp. 2. Sampling time and volume. In testing for sulfur dioxide and acid mist, the sampling time for each run shall be at least 60 minutes and the minimum sample volume shall be 40.6 dscf (1.15 dscm) except that smaller sampling times or sample volumes, when necessitated by process variables or other factors, may be approved by the commissioner.

Subp. 3. Acid production rate. Acid production rate, expressed in tons per hour of 100 percent H\textsubscript{2}SO\textsubscript{4}, shall be determined during each testing period by a suitable method approved by the commissioner. The commissioner may require the production rate to be confirmed by a material balance over the production system.

Subp. 4. Acid mist and sulfur dioxide emissions. Unless the commissioner approves another method, acid mist and sulfur dioxide emissions, expressed in pounds per ton (kg/metric ton) of 100 percent H\textsubscript{2}SO\textsubscript{4}, shall be determined by dividing the emission rate in lb/hr (kg/hr) by the acid production rate. The emission rate shall be determined by the equation, Q\textsubscript{s} x c = lb/hr (kg/hr), where Q\textsubscript{s} = volumetric flow rate of the effluent in dscf/hr (dscm/hr) as determined in accordance with part 7011.1620, item B, and c = acid mist and sulfur dioxide concentrations in lb/dscf (kg/dscm) as determined in accordance with part 7011.1620, item D.

Statutory Authority: MS s 116.07
History: L 1987 c 186 s 15; 18 SR 614; 18 SR 1412
Published Electronically: April 16, 2020

7011.1630 EXCEPTIONS.

Shutdowns and breakdowns of control equipment at any sulfuric acid production unit shall be governed by the provisions of part 7019.1000.

Statutory Authority: MS s 116.07
History: 18 SR 614; 18 SR 1412
Published Electronically: February 25, 2008

7011.1635 INCORPORATION BY REFERENCE; NEW SOURCE PERFORMANCE STANDARDS; SULFURIC ACID PLANTS.

Statutory Authority: MS s 116.07
History: 18 SR 580; 44 SR 1030
Published Electronically: April 16, 2020
7011.1700 DEFINITIONS.

As used in parts 7011.1700 to 7011.1725, the following words shall have the meanings defined herein:

A. "Nitric acid production unit" means any facility producing weak nitric acid by either the pressure or atmospheric pressure process.

B. "Weak nitric acid" means acid which is 30 to 70 percent in strength.

Statutory Authority: MS s 116.07
History: 18 SR 614
Published Electronically: February 25, 2008

7011.1705 STANDARDS OF PERFORMANCE FOR EXISTING NITRIC ACID PRODUCTION UNITS.

Prior to July 1, 1977, no owner or operator of an existing nitric acid production unit shall cause to be discharged into the atmosphere from any nitric acid production unit any gases which contain nitrogen oxides, expressed as NO\textsubscript{2}, in excess of 50 pounds per ton of acid produced (25 kg per metric ton), the production being expressed as 100 percent nitric acid.

After July 1, 1977, no owner or operator of an existing nitric acid production unit shall cause to be discharged into the atmosphere from any nitric acid production unit any gases which contain nitrogen oxides, expressed as NO\textsubscript{2}, in excess of 40 pounds per ton of acid produced (20 kg per metric ton), the production being expressed as 100 percent nitric acid.

No owner or operator of an existing nitric acid production unit shall cause to be discharged into the atmosphere from any nitric acid production unit any gases which exhibit greater than ten percent opacity.

For the purposes of this part, "existing nitric acid production unit" means a nitric acid production unit on which construction, modification, or reconstruction did not commence after August 17, 1971.

Statutory Authority: MS s 116.07
History: 18 SR 614; 22 SR 1237
Published Electronically: February 25, 2008

7011.1710 [Repealed, 18 SR 580]
Published Electronically: February 25, 2008
7011.1715 EMISSION MONITORING.

The owner or operator of a nitric acid production unit shall install, calibrate, maintain, and operate a continuous monitoring system for the measurement and recording of nitrogen oxides emissions.

The pollutant gas used to prepare calibration gas mixtures and for calibration checks shall be nitrogen dioxide (NO$_2$).

Reference Method 7 shall be used for conducting monitoring system performance evaluations.

The span shall be set at 500 ppm of nitrogen dioxide.

The owner or operator of a nitric acid plant shall establish a conversion factor for the purpose of converting monitoring data into units of the applicable standard (kg/metric ton, lb/ton). The conversion factor shall be established by measuring emissions with the continuous monitoring system concurrent with measuring emissions with the applicable Reference Method tests. Using only that portion of the continuous monitoring emission data that represents emission measurements concurrent with the reference method test periods, the conversion factor shall be determined by dividing the reference method test data averages by the monitoring data averages to obtain a ratio expressed in units of the applicable standards to units of the monitoring data, i.e., (kg/metric ton per ppm, lb/ton per ppm). The conversion factor shall be reestablished during any performance test or any continuous monitoring system performance evaluation.

The owner or operator of a nitric acid production unit shall record the daily production rate and hours of operation.

For the purpose of reports under part 7017.1110, subpart 2, item B, periods of excess emissions that shall be reported are defined as any three-hour period during which the average nitrogen oxides emissions (arithmetic average of three contiguous one-hour periods) are measured by a continuous monitoring system exceed the applicable standards under part 7011.1705.

Statutory Authority: MS s 116.07

History: 18 SR 580; 18 SR 614; 23 SR 1764

Published Electronically: February 25, 2008

7011.1720 PERFORMANCE TEST METHODS.

Unless another method is approved by the commissioner, any person required to submit performance tests for a nitric acid production unit shall utilize the following test methods:

A. Method 1 for sample and velocity traverses;

B. Method 2 for velocity and volumetric flow rate;

C. Method 3 for gas analysis; and

D. Method 7 for the concentration of NO$_2$.
7011.1725 PERFORMANCE TEST PROCEDURES.

Subpart 1. In general. Performance tests shall be conducted according to the requirements of this part and parts 7017.2001 to 7017.2060.

Subp. 2. Special procedures. For Method 7, the same site shall be selected according to Method 1 and the sampling point shall be the centroid of the stack or duct or at a point no closer to the walls than 1 meter (3.28 feet). Each run shall consist of at least four grab samples taken at approximately 15-minute intervals. The arithmetic mean of the samples shall constitute the run value. A velocity traverse shall be performed once per run.

Acid production rate, expressed in metric tons per hour of 100 percent nitric acid, shall be determined during each testing period by suitable methods and shall be confirmed by a material balance over the production system.

For each run, nitrogen oxides, expressed in lb/ton of 100 percent nitric acid (kg/metric ton), shall be determined by dividing the emission rate in lb/hr (kg/hr) by the acid production rate. The emission rate shall be determined by the equation:

\[Q_s \times c = \text{lb/hr (kg/hr)} \]

where \(Q_s \) = volumetric flow rate of the effluent in dscf/hr (dscm/hr), as determined in accordance with part 7011.1720, item B, and \(c = \text{NO}_2 \) concentration in lb/dscf (kg/dscm), as determined in accordance with part 7011.1720, item D.

7011.1730 INCORPORATION BY REFERENCE; NEW SOURCE PERFORMANCE STANDARDS; NITRIC ACID PLANTS.

The following new source performance standards are incorporated by reference:

A. Code of Federal Regulations, title 40, part 60, subpart G, as amended, entitled "Standards of Performance for Nitric Acid Plants"; and

B. Code of Federal Regulations, title 40, part 60, subpart Ga, as amended, entitled "Standards of Performance for Nitric Acid Plants for Which Construction, Reconstruction, or Modification Commenced After October 14, 2011."

Statutory Authority: MS s 116.07
History: L 1987 c 186 s 15; 18 SR 614
Published Electronically: February 25, 2008
LEAD SMELTERS

7011.1820 Incorporation by Reference; New Source Performance Standards; Lead Smelters.

The following new source performance standards are incorporated by reference:

A. Code of Federal Regulations, title 40, part 60, subpart L, as amended, entitled "Standards of Performance for Secondary Lead Smelters"; and

Statutory Authority: MS s 116.07
History: 18 SR 580; 44 SR 1030
Published Electronically: April 16, 2020

COPPER SMELTERS

7011.1840 Incorporation by Reference; New Source Performance Standards; Primary Copper Smelters.

Statutory Authority: MS s 116.07
History: 18 SR 580; 44 SR 1030
Published Electronically: April 16, 2020
ZINC SMELTERS

7011.1880 INCORPORATION BY REFERENCE; NEW SOURCE PERFORMANCE STANDARDS; PRIMARY ZINC SMELTERS.

Statutory Authority: MS s 116.07
History: 18 SR 580; 44 SR 1030
Published Electronically: April 16, 2020

SECONDARY BRASS AND BRONZE INGOT PRODUCTION PLANTS

7011.1900 DEFINITIONS.

Subpart 1. Scope. As used in parts 7011.1900 to 7011.1915, the following words shall have the meanings defined herein.

Subp. 2. Blast furnace. "Blast furnace" means any furnace used to recover metal from slag.

Subp. 3. Brass or bronze. "Brass or bronze" means any metal alloy containing copper as its predominant constituent, and lesser amounts of zinc, tin, lead, or other metals.

Subp. 4. Brass or bronze ingot production plant. "Brass or bronze ingot production plant" means any facility producing brass or bronze from a copper alloy-bearing scrap material by smelting to the metallic form.

Subp. 5. Electric furnace. "Electric furnace" means any furnace which uses electricity to produce over 50 percent of the heat required in the production of refined brass or bronze.

Subp. 6. Reverberatory furnace. "Reverberatory furnace" includes the following types of reverberatory furnaces: stationary, rotating, rocking, and tilting.

Statutory Authority: MS s 116.07
History: 18 SR 614
Published Electronically: February 25, 2008

7011.1905 STANDARDS OF PERFORMANCE FOR SECONDARY BRASS AND BRONZE INGOT PRODUCTION PLANTS.

No owner or operator of a secondary brass or bronze ingot production plant shall allow to be discharged into the atmosphere from a reverberatory furnace any gases that:

A. contain filterable particulate matter in excess of 50 mg/dscm (0.022 gr/dscf);

B. exhibit 20 percent opacity or greater.
No owner or operator of a secondary brass or bronze ingot production plant shall cause to be discharged into the atmosphere from any electric furnace of 1,000 kg (2,205 lbs) or greater production capacity any gases which exhibit ten percent opacity or greater.

No owner or operator of a secondary brass or bronze ingot production plant shall cause to be discharged into the atmosphere from any blast (cupola) furnace of 250 kg/hr (550 lb/hr) or greater production capacity any gases which exhibit ten percent opacity or greater.

No owner or operator of a secondary brass or bronze ingot production plant shall cause to be discharged into the atmosphere from any electric furnace of less than 1,000 kg (2,205 lbs) production capacity or any blast (cupola) furnace of less than 250 kg/hr (550 lb/hr) production capacity any gases which exceed the limits of parts 7011.0700 to 7011.0735 for particulate emissions, and exhibit 20 percent opacity or greater.

Statutory Authority: MS s 115.03; 116.07
History: 18 SR 614; 41 SR 763
Published Electronically: January 27, 2017

7011.1910 PERFORMANCE TEST METHODS.

Unless another method is approved by the commissioner, an owner or operator required to submit performance tests for a brass or bronze ingot production plant must use the following test methods to demonstrate compliance:

A. Method 1 for sample and velocity traverses;
B. Method 2 for velocity and volumetric flow rate;
C. Method 3 for gas analysis;
D. Method 5 for the concentration of filterable particulate matter and the associated moisture content.

Statutory Authority: MS s 115.03; 116.07
History: 18 SR 614; 41 SR 763
Published Electronically: April 16, 2020

7011.1915 PERFORMANCE TEST PROCEDURES.

Subpart 1. In general. Performance tests shall be conducted according to the requirements of this part and parts 7017.2001 to 7017.2060.

Subp. 2. Special procedures. In testing for the concentration of particulate matter and the associated moisture content, the minimum sampling time for each run shall be at least 120 minutes and the sampling rate shall be at least 0.9 dscm/hr (0.53 dscf/min) except that shorter sampling times, when necessitated by process variables or other factors, may be approved by the commissioner. Particulate matter sampling shall be conducted during representative periods of charging and refining, but not during pouring of the heat.
7011.1920 INCORPORATION BY REFERENCE; NEW SOURCE PERFORMANCE STANDARDS; SECONDARY BRASS AND BRONZE PRODUCTION PLANTS.

Statutory Authority: MS s 116.07
History: 18 SR 614; 18 SR 1412
Published Electronically: April 16, 2020

7011.2000 DEFINITIONS.

Subpart 1. Scope. As used in parts 7011.2000 to 7011.2015, the following words shall have the meanings defined herein.

Subp. 2. Basic oxygen process furnace. "Basic oxygen process furnace (BOPF)" means any furnace producing steel by charging scrap metal, hot metal, and flux materials into a vessel and introducing a high volume of an oxygen-rich gas.

Subp. 3. Steel production cycle. "Steel production cycle" means the operations required to produce each batch of steel and includes the following major functions: scrap charging, preheating (when used), hot metal charging, primary oxygen blowing, additional oxygen blowing (when used), and tapping.

Statutory Authority: MS s 116.07
History: 18 SR 614
Published Electronically: February 25, 2008

7011.2005 STANDARDS OF PERFORMANCE FOR IRON AND STEEL PLANTS.

No owner or operator of an iron and steel plant shall allow to be discharged into the atmosphere from any basic oxygen process furnace any gases that contain filterable particulate matter in excess of 50 mg/dscm (0.022 gr/dscf).

Statutory Authority: MS s 115.03; 116.07
History: 18 SR 614; 41 SR 763
Published Electronically: January 27, 2017
7011.2010 PERFORMANCE TEST METHODS.

Unless another method is approved by the commissioner, an owner or operator required to submit performance tests for an iron and steel plant must use the following test methods to demonstrate compliance:

A. Method 1 for sample and velocity traverses;
B. Method 2 for volumetric flow rate;
C. Method 3 for gas analysis;
D. Method 5 for concentration of filterable particulate matter and associated moisture content.

Statutory Authority: MS s 115.03; 116.07
History: 18 SR 614; 41 SR 763
Published Electronically: April 16, 2020

7011.2015 PERFORMANCE TEST PROCEDURES.

Subpart 1. In general. Performance tests shall be conducted according to the requirements of this part and parts 7017.2001 to 7017.2060.

Subp. 2. Special procedures. In testing for the concentration of particulate matter and the associated moisture content, the sampling for each run shall continue for an integral number of steel production cycles with total duration of at least 60 minutes. The sampling rate shall be at least 0.9 dscm/hr (0.53 dscf/min) except that shorter sampling times, when necessitated by process variables or other factors, may be approved by the commissioner. A cycle shall start at the beginning of either the scrap preheat or the oxygen blow and shall terminate immediately prior to tapping.

Statutory Authority: MS s 116.07
History: 18 SR 614; 18 SR 1412
Published Electronically: April 16, 2020

7011.2020 INCORPORATION BY REFERENCE; NEW SOURCE PERFORMANCE STANDARDS; STEEL PLANTS.

The following new source performance standards are incorporated by reference:

C. Code of Federal Regulations, title 40, part 60, subpart AA, as amended, entitled "Standards of Performance for Steel Plants: Electric Arc Furnaces Constructed After October 21, 1974 and On or Before August 17, 1983"; and

Statutory Authority: MS s 116.07
History: 18 SR 580; 44 SR 1030
Published Electronically: April 16, 2020

PRIMARY ALUMINUM REDUCTION PLANTS

7011.2050 INCORPORATION BY REFERENCE; NEW SOURCE PERFORMANCE STANDARDS; PRIMARY ALUMINUM REDUCTION PLANTS.

Statutory Authority: MS s 116.07
History: 18 SR 580; 44 SR 1030
Published Electronically: April 16, 2020

FERROALLOY PRODUCTION FACILITIES

7011.2080 INCORPORATION BY REFERENCE; NEW SOURCE PERFORMANCE STANDARDS; FERROALLOY PRODUCTION FACILITIES.

Statutory Authority: MS s 116.07
History: 18 SR 580; 44 SR 1030
Published Electronically: April 16, 2020

EMISSION STANDARDS FOR INORGANIC FIBROUS MATERIALS

7011.2100 DEFINITIONS.

Subpart 1. Scope. The following definitions of words and phrases are controlling for purposes of parts 7011.2100 and 7011.2105.

Subp. 2. Inorganic fibrous material. "Inorganic fibrous material" means glass fibers, glass wool, rock wool, and aluminum oxide fibers having a length-to-diameter ratio of equal to or greater than three to one.
Subp. 3. **Spraying.** "Spraying" means an operation in which material is conveyed in the form of, or by the means of, a fluid stream from an application device to a receiving surface.

Statutory Authority: MS s 116.07
History: 18 SR 614
Published Electronically: February 25, 2008

7011.2105 SPRAYING INORGANIC FIBROUS MATERIALS.

The spraying on any portion of a building or structure open to the outdoor atmosphere of any acoustical insulating, thermal insulating, or fireproofing product which does not contain asbestos but which contains inorganic fibrous material shall occur only under the following procedures:

A. The entire floor area where the spraying is to occur shall be enclosed with plastic-coated tarpaulins or by other means in a manner which shall prevent the escape of sprayed material from the enclosure. All interior areas, such as elevator shafts and stairwells, shall be enclosed in a manner which shall prevent the escape of sprayed material from the working area.

B. The entire area in which spraying has occurred, including all ledges, surfaces, equipment, and protective tarpaulins within the enclosure, shall be thoroughly cleaned by means of scraping, sweeping, vacuuming, or other acceptable methods upon completion of the spraying operation and before the enclosure is dismantled; provided, however, that all such cleaning procedures shall be followed by thorough vacuuming. The collected material shall be placed in a sealed container or bag strong enough to resist breaking and tearing under normal handling conditions and shall be transported directly to a disposal site approved by the commissioner.

C. All areas for opening containers of the material to be sprayed and for loading the material to be sprayed into hoppers, or other containers shall be enclosed in a manner which shall prevent the escape of the material to be sprayed to the outdoor atmosphere.

Statutory Authority: MS s 116.07
History: L 1987 c 186 s 15; 18 SR 614
Published Electronically: April 3, 2019

7011.2200 [Repealed, 22 SR 1237]
Published Electronically: February 25, 2008

7011.2205 [Repealed, 22 SR 1237]
Published Electronically: February 25, 2008

7011.2210 [Repealed, 22 SR 1237]
Published Electronically: February 25, 2008

7011.2215 [Repealed, 21 SR 693]
Published Electronically: February 25, 2008

7011.2220 Subpart 1. [Repealed, 22 SR 1237]
Subp. 2. [Repealed, 22 SR 1237]

Subp. 3. [Repealed, 22 SR 1237]

Subp. 4. [Repealed, 21 SR 693]

Published Electronically: February 25, 2008

STATIONARY INTERNAL COMBUSTION ENGINES

7011.2300 STANDARDS OF PERFORMANCE FOR STATIONARY INTERNAL COMBUSTION ENGINES.

Subpart 1. Visible air contaminants. No owner or operator of any stationary internal combustion engine shall cause or permit the emission of visible air contaminants from the engine in excess of 20 percent opacity once operating temperatures have been attained.

Subp. 2. Sulfur dioxide.

A. An owner or operator of a stationary internal combustion engine must not allow any gases that contain sulfur dioxide in excess of 0.5 pounds per million Btu actual heat input to be discharged into the atmosphere from the engine unless an alternative emission limit for sulfur dioxide in an air emission permit or other enforceable document is used to demonstrate modeled compliance with the sulfur dioxide standards in parts 7009.0080 and 7009.0090.

B. No later than January 31, 2018, owners or operators of a stationary internal combustion engine must not allow any gases that contain sulfur dioxide in excess of 0.0015 pounds per million Btu actual heat input to be discharged into the atmosphere from the engine unless an alternative sulfur dioxide emission limit in an air emission permit or other enforceable document is used to demonstrate modeled compliance with the sulfur dioxide standards in parts 7009.0080 and 7009.0090.

Subp. 3. Heat input. The actual heat input and rated heat input of an internal combustion engine shall be determined in accordance with the provisions set forth in parts 7011.0500 to 7011.0550.

Statutory Authority: MS s 115.03; 116.07

History: 18 SR 614; 22 SR 1237; 41 SR 763; 43 SR 797

Published Electronically: April 3, 2019

7011.2305 INCORPORATION BY REFERENCE; NEW SOURCE PERFORMANCE STANDARDS; STATIONARY COMPRESSION IGNITION INTERNAL COMBUSTION ENGINES.

Statutory Authority: MS s 116.07
7011.2310 INCORPORATION BY REFERENCE; NEW SOURCE PERFORMANCE STANDARDS; STATIONARY SPARK IGNITION INTERNAL COMBUSTION ENGINES.

Statutory Authority: MS s 116.07
History: 37 SR 991
Published Electronically: September 17, 2020

7011.2350 INCORPORATION BY REFERENCE; NEW SOURCE PERFORMANCE STANDARDS; STATIONARY GAS TURBINES.

Code of Federal Regulations, title 40, part 60, subpart GG, as amended, entitled "Standards of Performance for Stationary Gas Turbines," is incorporated by reference, except that authorities identified in Code of Federal Regulations, title 40, sections 60.332(a)(3) and 60.335(a), are not delegated to the commissioner and are retained by the administrator.

Statutory Authority: MS s 116.07
History: 18 SR 580; 44 SR 1030
Published Electronically: April 16, 2020

7011.2375 INCORPORATION BY REFERENCE; NEW SOURCE PERFORMANCE STANDARDS; STATIONARY COMBUSTION TURBINES.

Statutory Authority: MS s 115.03; 116.07
History: 41 SR 763; 44 SR 1030
Published Electronically: April 16, 2020

PHOSPHATE FERTILIZER INDUSTRY

7011.2400 INCORPORATION BY REFERENCE; NEW SOURCE PERFORMANCE STANDARDS; PHOSPHATE FERTILIZER INDUSTRY.

The following new source performance standards are incorporated by reference:

D. Code of Federal Regulations, title 40, part 60, subpart W, as amended, entitled "Standards of Performance for the Phosphate Fertilizer Industry: Triple Superphosphate Plants"; and

Statutory Authority: MS s 116.07

History: 18 SR 580; 44 SR 1030

Published Electronically: April 16, 2020

KRAFT PULP MILLS

7011.2450 INCORPORATION BY REFERENCE; NEW SOURCE PERFORMANCE STANDARDS; KRAFT PULP MILLS.

The following new source performance standards are incorporated by reference:

A. Code of Federal Regulations, title 40, part 60, subpart BB, as amended, entitled "Standards of Performance for Kraft Pulp Mills"; and

Statutory Authority: MS s 115.03; 116.07

History: 18 SR 580; 41 SR 763; 44 SR 1030

Published Electronically: April 16, 2020

GLASS MANUFACTURING PLANTS

7011.2500 INCORPORATION BY REFERENCE; NEW SOURCE PERFORMANCE STANDARDS; GLASS MANUFACTURING PLANTS.

Statutory Authority: MS s 116.07
SURFACE COATING

7011.2550 INCORPORATION BY REFERENCE; NEW SOURCE PERFORMANCE STANDARDS; SURFACE COATING OF METAL FURNITURE.

Statutory Authority: MS s 116.07
History: 18 SR 580; 44 SR 1030
Published Electronically: April 16, 2020

7011.2555 INCORPORATION BY REFERENCE; NEW SOURCE PERFORMANCE STANDARDS; AUTOMOBILE AND LIGHT-DUTY TRUCK SURFACE COATING OPERATIONS.

Statutory Authority: MS s 116.07
History: 18 SR 580; 44 SR 1030
Published Electronically: April 16, 2020

7011.2560 INCORPORATION BY REFERENCE; NEW SOURCE PERFORMANCE STANDARDS; PRESSURE SENSITIVE TAPE AND LABEL SURFACE COATING OPERATIONS.

Statutory Authority: MS s 116.07
History: 18 SR 580; 44 SR 1030
Published Electronically: April 16, 2020

7011.2565 INCORPORATION BY REFERENCE; NEW SOURCE PERFORMANCE STANDARDS; INDUSTRIAL SURFACE COATING: LARGE APPLIANCES.

Statutory Authority: MS s 116.07
7011.2570 INCORPORATION BY REFERENCE; NEW SOURCE PERFORMANCE STANDARDS; METAL COIL SURFACE COATING.

Statutory Authority: MS s 116.07
History: 18 SR 580; 44 SR 1030
Published Electronically: April 16, 2020

7011.2575 INCORPORATION BY REFERENCE; NEW SOURCE PERFORMANCE STANDARDS; BEVERAGE CAN SURFACE COATING INDUSTRY.

Code of Federal Regulations, title 40, part 60, subpart WW, as amended, entitled "Standards of Performance for the Beverage Can Surface Coating Industry," is incorporated by reference, except that the authorities identified in Code of Federal Regulations, title 40, section 60.496(a)(1), and the last sentence of Code of Federal Regulations, title 40, section 60.493(b)(2)(i)(A), are not delegated to the commissioner and are retained by the administrator.

Statutory Authority: MS s 116.07
History: 18 SR 580; 44 SR 1030
Published Electronically: April 16, 2020

7011.2580 INCORPORATION BY REFERENCE; NEW SOURCE PERFORMANCE STANDARDS; INDUSTRIAL SURFACE COATING: SURFACE COATING OF PLASTIC PARTS FOR BUSINESS MACHINES.

Statutory Authority: MS s 116.07
History: 18 SR 580; 44 SR 1030
Published Electronically: April 16, 2020

LIME MANUFACTURING PLANTS

7011.2600 INCORPORATION BY REFERENCE; NEW SOURCE PERFORMANCE STANDARDS; LIME MANUFACTURING PLANTS.

LEAD-ACID BATTERY MANUFACTURING PLANTS

7011.2650 INCORPORATION BY REFERENCE; NEW SOURCE PERFORMANCE STANDARDS; LEAD-ACID BATTERY MANUFACTURING PLANTS.

METALLIC MINERAL PROCESSING PLANTS

7011.2700 INCORPORATION BY REFERENCE; NEW SOURCE PERFORMANCE STANDARDS; METALLIC MINERAL PROCESSING PLANTS.

PHOSPHATE ROCK PLANTS

7011.2750 INCORPORATION BY REFERENCE; NEW SOURCE PERFORMANCE STANDARDS; PHOSPHATE ROCK PLANTS.

AMMONIUM SULFATE MANUFACTURE

7011.2800 INCORPORATION BY REFERENCE; NEW SOURCE PERFORMANCE STANDARDS; AMMONIUM SULFATE MANUFACTURE.

Statutory Authority: MS s 116.07
History: 18 SR 580; 44 SR 1030
Published Electronically: April 16, 2020

GRAPHIC ARTS INDUSTRY

7011.2850 INCORPORATION BY REFERENCE; NEW SOURCE PERFORMANCE STANDARDS; PUBLICATION ROTOGRAVURE PRINTING.

Statutory Authority: MS s 116.07
History: 18 SR 580; 44 SR 1030
Published Electronically: April 16, 2020

SYNTHETIC ORGANIC CHEMICALS MANUFACTURING INDUSTRY

7011.2900 INCORPORATION BY REFERENCE; NEW SOURCE PERFORMANCE STANDARDS; SYNTHETIC ORGANIC CHEMICAL MANUFACTURING.

The following new source performance standards are incorporated by reference:

A. Code of Federal Regulations, title 40, part 60, subpart VV, as amended, entitled "Standards of Performance for Equipment Leaks of VOC in the Synthetic Organic Chemicals Manufacturing Industry for which Construction, Reconstruction, or Modification Commenced After January 5, 1981, and on or Before November 7, 2006," except that the authorities identified in Code of Federal Regulations, title 40, section 60.482-1(c)(2), are not delegated to the commissioner and are retained by the administrator;

Statutory Authority: MS s 115.03; 116.07
History: 18 SR 580; 41 SR 763; 44 SR 1030
Published Electronically: April 16, 2020

NEW RESIDENTIAL WOOD HEATERS

7011.2950 INCORPORATION BY REFERENCE; NEW SOURCE PERFORMANCE STANDARDS; RESIDENTIAL WOOD HEATERS.

Statutory Authority: MS s 116.07
History: 18 SR 580; 44 SR 1030
Published Electronically: April 16, 2020

HYDRONIC HEATERS AND FORCED-AIR FURNACES

7011.2960 INCORPORATION BY REFERENCE; NEW SOURCE PERFORMANCE STANDARDS; RESIDENTIAL HYDRONIC HEATERS AND FORCED-AIR FURNACES.

Statutory Authority: MS s 116.07
History: 44 SR 1030
Published Electronically: April 16, 2020

RUBBER TIRE MANUFACTURING INDUSTRY

7011.3000 INCORPORATION BY REFERENCE; NEW SOURCE PERFORMANCE STANDARDS; RUBBER TIRE MANUFACTURING INDUSTRY.

Statutory Authority: MS s 116.07
History: 18 SR 580; 44 SR 1030
Published Electronically: April 16, 2020
POLYMER MANUFACTURING INDUSTRY

7011.3050 INCORPORATION BY REFERENCE; NEW SOURCE PERFORMANCE STANDARDS; POLYMER MANUFACTURING INDUSTRY.

Statutory Authority: MS s 116.07
History: 18 SR 580; 44 SR 1030
Published Electronically: April 16, 2020

POLYMERIC COATING OF SUPPORTING SUBSTRATES FACILITIES

7011.3100 INCORPORATION BY REFERENCE; NEW SOURCE PERFORMANCE STANDARDS; POLYMERIC COATING OF SUPPORTING SUBSTRATES FACILITIES.

Statutory Authority: MS s 116.07
History: 18 SR 580; 44 SR 1030
Published Electronically: April 16, 2020

FLEXIBLE VINYL AND URETHANE COATING AND PRINTING

7011.3150 INCORPORATION BY REFERENCE; NEW SOURCE PERFORMANCE STANDARDS; FLEXIBLE VINYL AND URETHANE COATING AND PRINTING.

Statutory Authority: MS s 116.07
History: 18 SR 580; 44 SR 1030
Published Electronically: April 16, 2020
SYNTHETIC FIBER PRODUCTION FACILITIES

7011.3200 INCORPORATION BY REFERENCE; NEW SOURCE PERFORMANCE STANDARDS; SYNTHETIC FIBER PRODUCTION FACILITIES.

Statutory Authority: MS s 116.07
History: 18 SR 580; 44 SR 1030
Published Electronically: April 16, 2020

PETROLEUM DRY CLEANERS

7011.3250 INCORPORATION BY REFERENCE; NEW SOURCE PERFORMANCE STANDARDS; PETROLEUM DRY CLEANERS.

Code of Federal Regulations, title 40, part 60, subpart JJJ, as amended, entitled "Standards of Performance for Petroleum Dry Cleaners," is incorporated by reference, except that the authorities identified in Code of Federal Regulations, title 40, section 60.623, are not delegated to the commissioner and are retained by the administrator.

Statutory Authority: MS s 116.07
History: 18 SR 580; 44 SR 1030
Published Electronically: April 16, 2020

ONSHORE NATURAL GAS PROCESSING PLANTS

7011.3300 INCORPORATION BY REFERENCE; NEW SOURCE PERFORMANCE STANDARDS; ONSHORE NATURAL GAS PROCESSING.

The following new source performance standards are incorporated by reference:

A. Code of Federal Regulations, title 40, part 60, subpart KKK, as amended, entitled "Standards of Performance for Equipment Leaks of VOC From Onshore Natural Gas Processing Plants for Which Construction, Reconstruction, or Modification Commenced After January 20, 1984, and on or Before August 23, 2011," except that authorities identified in Code of Federal Regulations, title 40, section 60.634, are not delegated to the commissioner and are retained by the administrator; and

Statutory Authority: MS s 116.07
CRUDE OIL AND NATURAL GAS PRODUCTION

7011.3325 INCORPORATION BY REFERENCE; NEW SOURCE PERFORMANCE STANDARDS; CRUDE OIL AND NATURAL GAS PRODUCTION, TRANSMISSION AND DISTRIBUTION.

The following new source performance standards are incorporated by reference:

A. Code of Federal Regulations, title 40, part 60, subpart OOOO, as amended through July 1, 2018, entitled "Standards of Performance for Crude Oil and Natural Gas Production, Transmission and Distribution for which Construction, Modification, or Reconstruction Commenced After August 23, 2011, and on or before September 18, 2015"; and

B. Code of Federal Regulations, title 40, part 60, subpart OOOOa, as amended through July 1, 2018, entitled "Standards of Performance for Crude Oil and Natural Gas Facilities for which Construction, Modification or Reconstruction Commenced After September 18, 2015."

Statutory Authority: MS s 116.07

History: 18 SR 580; 44 SR 1030

Published Electronically: April 16, 2020

NONMETALLIC MINERAL PROCESSING PLANTS

7011.3350 INCORPORATION BY REFERENCE; NEW SOURCE PERFORMANCE STANDARDS; NONMETALLIC MINERAL PROCESSING PLANTS.

Statutory Authority: MS s 116.07

History: 44 SR 1030

Published Electronically: April 16, 2020

WOOL FIBERGLASS INSULATION MANUFACTURING PLANTS

7011.3400 INCORPORATION BY REFERENCE; NEW SOURCE PERFORMANCE STANDARDS; WOOL FIBERGLASS INSULATION MANUFACTURING PLANTS.

Statutory Authority: MS s 116.07
VOC EMISSIONS FROM SOCMI REACTOR PROCESSES

7011.3430 INCORPORATION BY REFERENCE; NEW SOURCE PERFORMANCE STANDARDS; VOC EMISSIONS FROM SOCMI REACTOR PROCESSES.

Statutory Authority: MS s 116.07
History: 32 SR 904; 44 SR 1030
Published Electronically: April 16, 2020

MAGNETIC TAPE COATING FACILITIES

7011.3450 INCORPORATION BY REFERENCE; NEW SOURCE PERFORMANCE STANDARDS; MAGNETIC TAPE COATING FACILITIES.

Statutory Authority: MS s 116.07
History: 18 SR 580; 44 SR 1030
Published Electronically: April 16, 2020

GAS EMISSIONS FROM MUNICIPAL SOLID WASTE LANDFILLS

7011.3500 DEFINITIONS.

Subpart 1. Scope. The definitions in Code of Federal Regulations, title 40, subparts Cc, WWW, and XXX, apply to terms in parts 7011.3500 to 7011.3525, unless the terms are otherwise defined in this part.

Subp. 2. [Repealed, 44 SR 1030]

Subp. 3. [Repealed, 44 SR 1030]

Subp. 4. Landfill. "Landfill" means a mixed municipal solid waste land disposal facility as defined in part 7035.0300, subpart 64.

Subp. 5. [Repealed, 23 SR 2224]
Subp. 6. **Solid waste capacity.** "Solid waste capacity" means the design capacity, as defined in Code of Federal Regulations, title 40, section 60.751, that will be in place in the landfill at the time of the expiration of the facility's solid waste permit, or at the time ultimate capacity is reached.

Statutory Authority: *MS 116.07*

History: 21 SR 993; 23 SR 2224; 44 SR 1030

Published Electronically: April 16, 2020

7011.3505 STANDARDS OF PERFORMANCE FOR EXISTING MUNICIPAL SOLID WASTE LANDFILLS EXISTING BEFORE MAY 30, 1991.

Subpart 1. **Scope.** The owner or operator of a landfill must comply with this part and Code of Federal Regulations, title 40, part 60, subpart WWW, as amended, as incorporated by reference in part 7011.3510, if construction, modification, or reconstruction began before May 30, 1991, and:

A. the landfill has accepted solid waste for disposal since November 8, 1987; or

B. the landfill has additional solid waste capacity available for future waste disposal.

Subp. 2. **Operational standards for collection and control systems.** The owner or operator of a landfill that must monitor surface methane concentrations must comply with Code of Federal Regulations, title 40, section 60.755(c)(1), except that the owner or operator must conduct the monitoring at least three times per year, once during each of the following periods: March 14 to May 14, June 21 to September 23, and October 21 to November 21.

Subp. 3. **Monitoring operations.** The owner or operator of a landfill seeking to comply with Code of Federal Regulations, title 40, section 60.752(b)(2)(iii), may confirm that there is no means to bypass the control device in the design plan, submitted in accordance with Code of Federal Regulations, title 40, section 60.752(b)(2)(i), in lieu of complying with the requirements in Code of Federal Regulations, title 40, section 60.756(b)(2) and (c)(2).

Subp. 4. **Reporting requirements.** The owner or operator of a landfill must submit the reports required by Code of Federal Regulations, title 40, sections 60.752(a) and 60.757(a)(1) and (3) and (b)(1)(i), on the following schedule:

A. the owner or operator of an active landfill, and the owner or operator of a closed landfill with a solid waste capacity greater than or equal to 2.5 million megagrams and 2.5 million cubic meters, must submit an initial solid waste capacity report no later than the submittal of the next annual report required by part 7035.2585;

B. the owner or operator of an active landfill that proposes to increase the total solid waste capacity to greater than or equal to 2.5 million megagrams and 2.5 million cubic meters must submit an amended solid waste capacity report no later than the submittal of the solid waste management facility permit application that proposes an increase in permitted capacity; and

C. the owner or operator of a landfill that must submit an NMOC emission rate report to comply with Code of Federal Regulations, title 40, section 60.757(b), must submit the initial NMOC emission rate report no later than the submittal of the next annual report required by part 7035.2585.
or the submittal of the solid waste management facility permit application that proposes an increase in permitted capacity, whichever occurs earlier.

Subp. 5. **Compliance times for equipment installation.**

A. The owner or operator of a landfill that has:

 (1) a solid waste capacity greater than or equal to 2.5 million megagrams and 2.5 million cubic meters; and

 (2) an NMOC emission rate of 50 megagrams per year or more

must complete installation of gas collection and control equipment capable of meeting the conditions in Code of Federal Regulations, title 40, section 60.752(b)(2)(ii), by June 28, 2000.

B. The owner or operator of a landfill that has:

 (1) a solid waste capacity greater than or equal to 2.5 million megagrams and 2.5 million cubic meters; and

 (2) an NMOC emission rate less than 50 megagrams per year on January 28, 1997,

must comply with this part within 30 months of the date of the first NMOC emission rate that equals or exceeds 50 megagrams per year.

Subp. 6. **Exception to standard or compliance schedule.** The owner or operator of a landfill seeking to apply a less stringent emission standard or longer compliance schedule than that specified in this part may submit a written request to the commissioner and the United States Environmental Protection Agency under Code of Federal Regulations, title 40, section 60.24(f).

Subp. 7. **NMOC emission rate estimations.** The owner or operator of a landfill that has a landfill gas collection system in place on January 28, 1997, may comply with Code of Federal Regulations, title 40, section 60.754(a)(5), using the method in Code of Federal Regulations, title 40, section 60.754(b), if the owner or operator can demonstrate to the commissioner that the system effectively collects landfill gas from all gas-producing areas of the landfill and negative pressure can be maintained at each wellhead without excess air infiltration.

Statutory Authority: MS s 116.07

History: 21 SR 993; 23 SR 2224; 44 SR 1030

Published Electronically: April 16, 2020

Subp. 2. **Additional requirements.** The owner or operator of a landfill subject to Code of Federal Regulations, title 40, part 60, subpart WWW, must additionally comply with part 7011.3505, subpart 4.

Statutory Authority: MS s 116.07

History: 21 SR 993; 44 SR 1030

Published Electronically: April 16, 2020

7011.3515 INCORPORATION BY REFERENCE; NEW SOURCE PERFORMANCE STANDARDS; MUNICIPAL SOLID WASTE LANDFILLS EXISTING AFTER JULY 17, 2014.

Subpart 1. **Scope.** The requirements of this part apply to the owner or operator of a landfill that began construction, modification, or reconstruction after July 17, 2014.

Statutory Authority: MS s 116.07

History: 44 SR 1030

Published Electronically: April 16, 2020

7011.3520 [Repealed, 37 SR 991]

Published Electronically: January 24, 2013

7011.3525 INCORPORATION BY REFERENCE; EMISSION GUIDELINES AND COMPLIANCE TIMES; MUNICIPAL SOLID WASTE LANDFILLS EXISTING ON OR BEFORE JULY 17, 2014.

Subpart 1. **Scope.** The requirements of this part apply to the owner or operator of a landfill that began construction, modification, or reconstruction on or before July 17, 2014.

Subp. 2. **Incorporation by reference; federal emission guidelines.** Code of Federal Regulations, title 40, part 60, subpart Cf, as amended, entitled "Emission Guidelines and Compliance Times for Municipal Solid Waste Landfills," is incorporated by reference with the following exceptions:

A. the incorporation of section 60.31f (e) changes the phrase "; 40 CFR part 62, subpart GGG; or a state plan implementing subpart Cc of this part" to "or 40 CFR part 62, subpart GGG,";
B. the incorporation of section 60.32f changes the phrase "Planning, awarding of contracts, installing, and starting up MSW landfill air emission collection and control equipment that is capable of meeting the Emission Guidelines under § 60.33f must be completed." to "The owner or operator must complete planning, awarding of contracts, installing, and starting up MSW landfill air emission collection and control equipment that is capable of meeting the Emission Guidelines under § 60.33f.";

C. the incorporation of section 60.33f (a) does not include the phrase "For approval, a state plan must require" and changes the phrase "to collect and control" to "must collect and control";

D. the incorporation of section 60.33f (b) changes the phrase "For approval, a state plan must include provisions for the installation of" to "The owner or operator must install";

E. the incorporation of section 60.33f (c) changes the phrase "For approval, a state plan must include provisions" to "The owner or operator must provide";

F. the incorporation of section 60.33f (d) changes the sentence "For approval, a state plan must require each owner or operator of an MSW landfill having a design capacity less than 2.5 million megagrams by mass or 2.5 million cubic meters by volume to submit an initial design capacity report to the Administrator as provided in § 60.38f (a)" to "The owner or operator of an MSW landfill having a design capacity less than 2.5 million megagrams by mass or 2.5 million cubic meters by volume must submit an initial design capacity report to the commissioner as provided in § 60.38f (a)";

G. the incorporation of section 60.33 (e) changes the sentence "For approval, a state plan must require each owner or operator of an MSW landfill having a design capacity equal to or greater than 2.5 megagrams and 2.5 million cubic meters to either install a collection and control system as provided in paragraphs (b) and (c) of this section or calculate an initial NMOC emission rate for the landfill using the procedures specified in § 60.35f (a)" to "The owner or operator of an MSW landfill having a design capacity equal to or greater than 2.5 megagrams and 2.5 million cubic meters must either install a collection and control system as provided in paragraphs (b) and (c) of this section or calculate an initial NMOC emission rate for the landfill using the procedures specified in § 60.35f (a)";

H. the incorporation of section 60.34f does not include the sentence "For approval, a state plan must include provisions for the operational standards in this section for an MSW landfill with a gas collection and control system used to comply with the provisions of § 60.33f (b) and (c)";

I. the incorporation of section 60.35f changes the phrase "For approval, a state plan must include" to "The owner or operator must use the";

J. the incorporation of section 60.36f changes the phrase "For approval, a state plan must include" to "The owner or operator must comply with";

K. the incorporation of section 60.37f changes the phrase "For approval, a state plan must include" to "The owner or operator must comply with";

L. the incorporation of section 60.38f:
(1) changes the phrase "For approval, a state plan must include" to "The owner or operator must comply with";

(2) changes the phrase in paragraph (a) "90 days after the effective date of EPA approval of the state's plan under section 111(d) of the Clean Air Act" to "12 months after the effective date of this rule";

(3) changes the phrase in paragraph (c) "90 days after the effective date of EPA approval of the state's plan under section 111(d) of the Clean Air Act" to "12 months after the effective date of this rule";

(4) in paragraph (d), does not include the sentence "The state plan must include a process for state review and approval of the site-specific design plan for each gas collection and control system"; and

(5) in paragraph (e), changes the phrase "; 40 CFR part 62, subpart GGG; or a state plan implementing subpart Cc of this part," to ", or 40 CFR part 62, subpart GGG,;

M. the incorporation of section 60.39f does not include the sentence "For approval, a state plan must include the recordkeeping provisions in this section"; and

N. the incorporation of section 60.40f does not include the sentence "For approval, a state plan must include the specifications for active collection systems in this section."

Statutory Authority: MS s 116.07

History: 44 SR 1030

Published Electronically: April 16, 2020

EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS

7011.7000 [Repealed, 44 SR 1030]

Published Electronically: April 16, 2020

7011.7030 [Repealed, L 2012 c 272 s 98]

Published Electronically: August 3, 2012

7011.7040 INCORPORATION BY REFERENCE; EMISSION STANDARDS; ORGANIC HAZARDOUS AIR POLLUTANTS FROM SYNTHETIC ORGANIC CHEMICAL MANUFACTURING INDUSTRY.

The following national emission standards for hazardous air pollutants are incorporated by reference:

Statutory Authority: MS s 116.07
History: 20 SR 2254(NO. 42); 28 SR 1482; 44 SR 1030
Published Electronically: April 16, 2020

7011.7050 INCORPORATION BY REFERENCE; EMISSION STANDARDS; INDUSTRIAL, COMMERCIAL, AND INSTITUTIONAL BOILERS AND PROCESS HEATERS; MAJOR SOURCES.

Statutory Authority: MS s 115.03; 116.07
History: 39 SR 386; 41 SR 763; 44 SR 1030
Published Electronically: April 16, 2020

7011.7055 INCORPORATION BY REFERENCE; EMISSION STANDARDS; INDUSTRIAL, COMMERCIAL, AND INSTITUTIONAL BOILERS; AREA SOURCES.

Statutory Authority: MS s 116.07
History: 39 SR 386; 44 SR 1030
Published Electronically: April 16, 2020

7011.7060 INCORPORATION BY REFERENCE; EMISSION STANDARDS; ORGANIC HAZARDOUS AIR POLLUTANTS FOR EQUIPMENT LEAKS.

The following national emission standards for hazardous air pollutants are incorporated by reference:

Statutory Authority: MS s 116.07
7011.7080 INCORPORATION BY REFERENCE; EMISSION STANDARDS; COKE OVEN BATTERIES.

Statutory Authority: MS s 116.07

History: 20 SR 2254(NO. 42); 28 SR 1482; 44 SR 1030

Published Electronically: April 16, 2020

7011.7090 INCORPORATION BY REFERENCE; EMISSION STANDARDS; COKE OVENS: PUSHING, QUENCHING, AND BATTERY STACKS.

Statutory Authority: MS s 116.07

History: 20 SR 2254(NO. 42); 28 SR 1482; 44 SR 1030

Published Electronically: April 16, 2020

7011.7100 INCORPORATION BY REFERENCE; EMISSION STANDARDS; PERCHLOROETHYLENE DRY CLEANING FACILITIES.

Statutory Authority: MS s 116.07

History: 20 SR 2254(NO. 42); 28 SR 1482; 44 SR 1030

Published Electronically: April 16, 2020

7011.7120 INCORPORATION BY REFERENCE; EMISSION STANDARDS; CHROMIUM EMISSIONS FROM HARD AND DECORATIVE CHROMIUM ELECTROPLATING AND CHROMIUM ANODIZING TANKS.

Statutory Authority: MS s 116.07

History: 20 SR 2254(NO. 42); 28 SR 1482; 44 SR 1030

Published Electronically: April 16, 2020
7011.7140 INCORPORATION BY REFERENCE; EMISSION STANDARDS; ETHYLENE OXIDE FOR STERILIZERS.

The following national emission standards for hazardous air pollutants are incorporated by reference:

A. Code of Federal Regulations, title 40, part 63, subpart O, as amended, entitled "Ethylene Oxide Emissions Standards for Sterilization Facilities"; and

B. Code of Federal Regulations, title 40, part 63, subpart WWWWW, as amended, entitled "National Emission Standards for Hospital Ethylene Oxide Sterilizers."

Statutory Authority: MS s 116.07
History: 20 SR 2254(NO. 42); 28 SR 1482; 44 SR 1030
Published Electronically: April 16, 2020

7011.7160 INCORPORATION BY REFERENCE; EMISSION STANDARDS; INDUSTRIAL PROCESS COOLING TOWERS.

Statutory Authority: MS s 116.07
History: 20 SR 2254(NO. 42); 28 SR 1482; 44 SR 1030
Published Electronically: April 16, 2020

7011.7180 INCORPORATION BY REFERENCE; EMISSION STANDARDS; GASOLINE DISTRIBUTION.

The following national emission standards for hazardous air pollutants are incorporated by reference:

A. Code of Federal Regulations, title 40, part 63, subpart R, as amended, entitled "National Emission Standards for Gasoline Distribution Facilities (Bulk Gasoline Terminals and Pipeline Breakout Stations)"; and

Statutory Authority: MS s 116.07
History: 20 SR 2254(NO. 42); 28 SR 1482; 44 SR 1030
Published Electronically: April 16, 2020
7011.7185 INCORPORATION BY REFERENCE; EMISSION STANDARDS; GASOLINE DISPENSING FACILITIES.

Statutory Authority: MS s 115.03; 116.07
History: 41 SR 763; 44 SR 1030
Published Electronically: April 16, 2020

7011.7200 INCORPORATION BY REFERENCE; EMISSION STANDARDS; HALOGENATED SOLVENT CLEANING.

Statutory Authority: MS s 116.07
History: 20 SR 2254(NO. 42); 28 SR 1482; 44 SR 1030
Published Electronically: April 16, 2020

7011.7220 [Repealed, 28 SR 1482]
Published Electronically: February 25, 2008

7011.7235 INCORPORATION BY REFERENCE; EMISSION STANDARDS; PRIMARY LEAD SMELTING.

Statutory Authority: MS s 116.07
History: 28 SR 1482; 44 SR 1030
Published Electronically: April 16, 2020

7011.7240 INCORPORATION BY REFERENCE; EMISSION STANDARDS; SECONDARY LEAD SMELTING.

Statutory Authority: MS s 116.07
History: 20 SR 2254(NO. 42); 28 SR 1482; 44 SR 1030
Published Electronically: April 16, 2020
7011.7260 INCORPORATION BY REFERENCE; EMISSION STANDARDS; MARINE TANK VESSEL LOADING OPERATIONS.

Statutory Authority: MS s 116.07
History: 20 SR 2254(NO. 42); 28 SR 1482; 44 SR 1030
Published Electronically: April 16, 2020

7011.7280 INCORPORATION BY REFERENCE; EMISSION STANDARDS; PETROLEUM REFINERIES.

The following national emission standards for hazardous air pollutants are incorporated by reference:

A. Code of Federal Regulations, title 40, part 63, subpart CC, as amended, entitled "National Emission Standards for Hazardous Air Pollutants From Petroleum Refineries"; and

Statutory Authority: MS s 116.07
History: 20 SR 2254(NO. 42); 28 SR 1482; 44 SR 1030
Published Electronically: April 16, 2020

7011.7290 INCORPORATION BY REFERENCE; EMISSION STANDARDS; OIL AND NATURAL GAS PRODUCTION, TRANSMISSION, AND STORAGE.

The following national emission standards for hazardous air pollutants are incorporated by reference:

A. Code of Federal Regulations, title 40, part 63, subpart HH, as amended, entitled "National Emission Standards for Hazardous Air Pollutants From Oil and Natural Gas Production Facilities"; and

Statutory Authority: MS s 116.07
History: 28 SR 1482; 44 SR 1030
Published Electronically: April 16, 2020
7011.7300 INCORPORATION BY REFERENCE; EMISSION STANDARDS; MAGNETIC TAPE MANUFACTURING OPERATIONS.

Statutory Authority: MS s 116.07
History: 20 SR 2254(NO. 42); 28 SR 1482; 44 SR 1030
Published Electronically: April 16, 2020

7011.7320 INCORPORATION BY REFERENCE; EMISSION STANDARDS; AEROSPACE MANUFACTURING AND REWORK FACILITIES.

Statutory Authority: MS s 116.07
History: 20 SR 2254(NO. 42); 28 SR 1482; 44 SR 1030
Published Electronically: April 16, 2020

7011.7340 INCORPORATION BY REFERENCE; EMISSION STANDARDS; WOOD FURNITURE MANUFACTURING OPERATIONS.

Statutory Authority: MS s 116.07
History: 22 SR 1877; 28 SR 1482; 44 SR 1030
Published Electronically: April 16, 2020

7011.7360 INCORPORATION BY REFERENCE; EMISSION STANDARDS; SHIPBUILDING AND SHIP REPAIR OPERATIONS.

Statutory Authority: MS s 116.07
History: 22 SR 1877; 28 SR 1482; 44 SR 1030
Published Electronically: April 16, 2020
7011.7370 INCORPORATION BY REFERENCE; EMISSION STANDARDS; BOAT MANUFACTURING.

Statutory Authority: MS s 116.07
History: 28 SR 1482; 44 SR 1030
Published Electronically: April 16, 2020

7011.7380 INCORPORATION BY REFERENCE; EMISSION STANDARDS; PRINTING AND PUBLISHING INDUSTRY.

Statutory Authority: MS s 116.07
History: 22 SR 1877; 28 SR 1482; 44 SR 1030
Published Electronically: April 16, 2020

7011.7385 INCORPORATION BY REFERENCE; EMISSION STANDARDS; PAPER AND OTHER WEB COATING.

Statutory Authority: MS s 116.07
History: 28 SR 1482; 44 SR 1030
Published Electronically: April 16, 2020

7011.7390 INCORPORATION BY REFERENCE; EMISSION STANDARDS; MUNICIPAL SOLID WASTE LANDFILLS.

Statutory Authority: MS s 116.07
History: 28 SR 1482; 44 SR 1030
Published Electronically: April 16, 2020
7011.7400 INCORPORATION BY REFERENCE; EMISSION STANDARDS; OFF-SITE WASTE OPERATIONS.

The following national emission standards for hazardous air pollutants are incorporated by reference:

B. Code of Federal Regulations, title 40, part 63, subpart OO, as amended, entitled "National Emission Standards for Tanks-Level 1";

D. Code of Federal Regulations, title 40, part 63, subpart QQ, as amended, entitled "National Emission Standards for Surface Impoundments";

E. Code of Federal Regulations, title 40, part 63, subpart RR, as amended, entitled "National Emission Standards for Individual Drain Systems"; and

Statutory Authority: MS s 116.07
History: 22 SR 1877; 28 SR 1482; 44 SR 1030
Published Electronically: April 16, 2020

7011.7410 INCORPORATION BY REFERENCE; EMISSION STANDARDS; HAZARDOUS WASTE COMBUSTION.

Statutory Authority: MS s 116.07
History: 28 SR 1482; 44 SR 1030
Published Electronically: April 16, 2020

7011.7420 INCORPORATION BY REFERENCE; EMISSION STANDARDS; POLYMERS AND RESINS.

The following national emission standards for hazardous air pollutants are incorporated by reference:

Statutory Authority: MS s 116.07
History: 22 SR 1877; 28 SR 1482; 44 SR 1030
Published Electronically: April 16, 2020

7011.7440 [Repealed, 28 SR 1482]
Published Electronically: February 25, 2008

7011.7460 INCORPORATION BY REFERENCE; EMISSION STANDARDS; FERROALLOYS PRODUCTION.

Statutory Authority: MS s 116.07
History: 28 SR 1482; 44 SR 1030
Published Electronically: April 16, 2020

7011.7480 INCORPORATION BY REFERENCE; EMISSION STANDARDS; FLEXIBLE POLYURETHANE FOAM PRODUCTION.

Statutory Authority: MS s 116.07
History: 28 SR 1482; 44 SR 1030
Published Electronically: April 16, 2020

7011.7485 INCORPORATION BY REFERENCE; EMISSION STANDARDS; FLEXIBLE POLYURETHANE FOAM PRODUCTION AND FABRICATION OPERATIONS.

The following national air emission standards for hazardous air pollutants are incorporated by reference:

Statutory Authority: MS s 116.07
History: 28 SR 1482; 44 SR 1030
Published Electronically: April 16, 2020

7011.7520 INCORPORATION BY REFERENCE; EMISSION STANDARDS; MINERAL WOOL PRODUCTION.

Statutory Authority: MS s 116.07
History: 28 SR 1482; 44 SR 1030
Published Electronically: April 16, 2020

7011.7560 INCORPORATION BY REFERENCE; EMISSION STANDARDS; PESTICIDE ACTIVE INGREDIENT PRODUCTION.

Statutory Authority: MS s 116.07
History: 28 SR 1482; 44 SR 1030
Published Electronically: April 16, 2020

7011.7580 INCORPORATION BY REFERENCE; EMISSION STANDARDS; PHARMACEUTICALS PRODUCTION.

Statutory Authority: MS s 116.07
History: 28 SR 1482; 44 SR 1030
Published Electronically: April 16, 2020
The following national emission standards for hazardous air pollutants are incorporated by reference:

A. Code of Federal Regulations, title 40, part 63, subpart AA, as amended, entitled "National Emission Standards for Hazardous Air Pollutants from Phosphoric Acid Manufacturing Plants"; and

Statutory Authority: MS s 116.07
History: 28 SR 1482; 44 SR 1030
Published Electronically: April 16, 2020

Statutory Authority: MS s 116.07
History: 28 SR 1482; 44 SR 1030
Published Electronically: April 16, 2020

Statutory Authority: MS s 116.07
History: 28 SR 1482; 44 SR 1030
Published Electronically: April 16, 2020

7011.7650 INCORPORATION BY REFERENCE; EMISSION STANDARDS; PRIMARY COPPER SMELTING.

Statutory Authority: MS s 116.07
History: 28 SR 1482; 44 SR 1030
Published Electronically: April 16, 2020

7011.7660 INCORPORATION BY REFERENCE; EMISSION STANDARDS; PRIMARY ALUMINUM PRODUCTION.

Statutory Authority: MS s 116.07
History: 28 SR 1482; 44 SR 1030
Published Electronically: April 16, 2020

7011.7665 INCORPORATION BY REFERENCE; EMISSION STANDARDS; SECONDARY ALUMINUM PRODUCTION.

Statutory Authority: MS s 116.07
History: 28 SR 1482; 44 SR 1030
Published Electronically: April 16, 2020

7011.7670 INCORPORATION BY REFERENCE; EMISSION STANDARDS; STEEL PICKLING - HYDROCHLORIC ACID PROCESS.

Statutory Authority: MS s 116.07
7011.7675 INCORPORATION BY REFERENCE; EMISSION STANDARDS; INTEGRATED IRON AND STEEL MANUFACTURING FACILITIES.

Statutory Authority: MS s 116.07

History: 28 SR 1482; 44 SR 1030
Published Electronically: April 16, 2020

7011.7680 INCORPORATION BY REFERENCE; EMISSION STANDARDS; PUBLICLY OWNED TREATMENT WORKS.

Statutory Authority: MS s 116.07

History: 28 SR 1482; 44 SR 1030
Published Electronically: April 16, 2020

7011.7700 INCORPORATION BY REFERENCE; EMISSION STANDARDS; PULP AND PAPER PRODUCTION.

The following national emission standards for hazardous air pollutants are incorporated by reference:

Statutory Authority: MS s 116.07

History: 28 SR 1482; 44 SR 1030
Published Electronically: April 16, 2020
7011.7720 INCORPORATION BY REFERENCE; EMISSION STANDARDS; WET-FORMED FIBERGLASS MAT PRODUCTION.

Statutory Authority: MS s 116.07
History: 28 SR 1482; 44 SR 1030
Published Electronically: April 16, 2020

7011.7730 INCORPORATION BY REFERENCE; EMISSION STANDARDS; WOOL FIBERGLASS MANUFACTURING.

Statutory Authority: MS s 116.07
History: 28 SR 1482; 44 SR 1030
Published Electronically: April 16, 2020

7011.7740 INCORPORATION BY REFERENCE; EMISSION STANDARDS; CELLULOSE PRODUCTS MANUFACTURING.

Statutory Authority: MS s 116.07
History: 28 SR 1482; 44 SR 1030
Published Electronically: April 16, 2020

7011.7760 INCORPORATION BY REFERENCE; EMISSION STANDARDS; LEATHER FINISHING OPERATIONS.

Statutory Authority: MS s 116.07
History: 28 SR 1482; 44 SR 1030
Published Electronically: April 16, 2020
7011.7770 INCORPORATION BY REFERENCE; EMISSION STANDARDS; PRINTING, COATING, AND DYEING OF FABRICS AND OTHER TEXTILES.

Statutory Authority: MS s 116.07
History: 28 SR 1482; 44 SR 1030
Published Electronically: April 16, 2020

7011.7780 INCORPORATION BY REFERENCE; EMISSION STANDARDS; MANUFACTURING NUTRITIONAL YEAST.

Statutory Authority: MS s 116.07
History: 28 SR 1482; 44 SR 1030
Published Electronically: April 16, 2020

7011.7800 INCORPORATION BY REFERENCE; EMISSION STANDARDS; REINFORCED PLASTIC COMPOSITES PRODUCTION.

Statutory Authority: MS s 116.07
History: 28 SR 1482; 44 SR 1030
Published Electronically: April 16, 2020

7011.7820 INCORPORATION BY REFERENCE; EMISSION STANDARDS; POLYVINYL CHLORIDE AND COPOLYMERS PRODUCTION.

Statutory Authority: MS s 116.07
History: 28 SR 1482; 44 SR 1030
Published Electronically: April 16, 2020
7011.7840 INCORPORATION BY REFERENCE; EMISSION STANDARDS; SOLVENT EXTRACTION FOR VEGETABLE OIL PRODUCTION.

Statutory Authority: MS s 116.07
History: 28 SR 1482; 44 SR 1030
Published Electronically: April 16, 2020

7011.7860 INCORPORATION BY REFERENCE; EMISSION STANDARDS; RUBBER TIRE MANUFACTURING.

Statutory Authority: MS s 116.07
History: 28 SR 1482; 44 SR 1030
Published Electronically: April 16, 2020

7011.7880 INCORPORATION BY REFERENCE; EMISSION STANDARDS; FRICTION MATERIALS MANUFACTURING FACILITIES.

Statutory Authority: MS s 116.07
History: 28 SR 1482; 44 SR 1030
Published Electronically: April 16, 2020

7011.7900 INCORPORATION BY REFERENCE; EMISSION STANDARDS; SURFACE COATING OF LARGE APPLIANCES.

Statutory Authority: MS s 116.07
History: 28 SR 1482; 44 SR 1030
Published Electronically: April 16, 2020
7011.7905 INCORPORATION BY REFERENCE; EMISSION STANDARDS; SURFACE COATING OF METAL COIL.

Statutory Authority: MS s 116.07
History: 28 SR 1482; 44 SR 1030
Published Electronically: April 16, 2020

7011.7910 INCORPORATION BY REFERENCE; EMISSION STANDARDS; SURFACE COATING OF METAL FURNITURE.

Statutory Authority: MS s 116.07
History: 28 SR 1482; 44 SR 1030
Published Electronically: April 16, 2020

7011.7920 INCORPORATION BY REFERENCE; EMISSION STANDARDS; REFRATORY PRODUCTS MANUFACTURING.

Statutory Authority: MS s 116.07
History: 28 SR 1482; 44 SR 1030
Published Electronically: April 16, 2020

7011.7930 INCORPORATION BY REFERENCE; EMISSION STANDARDS; BRICK AND STRUCTURAL CLAY PRODUCTS MANUFACTURING.

Statutory Authority: MS s 116.07
History: 28 SR 1482; 44 SR 1030
Published Electronically: April 16, 2020
7011.7935 INCORPORATION BY REFERENCE; EMISSION STANDARDS; CLAY CERAMICS MANUFACTURING.

The following national emission standards for hazardous air pollutants are incorporated by reference:

A. Code of Federal Regulations, title 40, part 63, subpart KKKKK, as amended, entitled "National Emission Standards for Hazardous Air Pollutants for Clay Ceramics Manufacturing"; and

Statutory Authority: MS s 116.07
History: 28 SR 1482; 44 SR 1030
Published Electronically: April 16, 2020

7011.7940 INCORPORATION BY REFERENCE; EMISSION STANDARDS; ASPHALT PROCESSING AND ASPHALT ROOFING MANUFACTURING.

The following national emission standards for hazardous air pollutants are incorporated by reference:

Statutory Authority: MS s 116.07
History: 28 SR 1482; 44 SR 1030
Published Electronically: April 16, 2020

7011.7960 INCORPORATION BY REFERENCE; EMISSION STANDARDS; SEMICONDUCTOR MANUFACTURING.

Statutory Authority: MS s 116.07
History: 28 SR 1482; 44 SR 1030
Published Electronically: April 16, 2020
7011.7980 INCORPORATION BY REFERENCE; EMISSION STANDARDS; ENGINE TEST CELLS/STANDS.

Statutory Authority: MS s 116.07
History: 28 SR 1482; 44 SR 1030
Published Electronically: April 16, 2020

7011.8000 INCORPORATION BY REFERENCE; EMISSION STANDARDS; SURFACE COATING OF WOOD BUILDING PRODUCTS.

Statutory Authority: MS s 116.07
History: 28 SR 1482; 44 SR 1030
Published Electronically: April 16, 2020

7011.8010 INCORPORATION BY REFERENCE; EMISSION STANDARDS; SITE REMEDIATION.

Statutory Authority: MS s 116.07
History: 32 SR 904; 44 SR 1030
Published Electronically: April 16, 2020

7011.8020 INCORPORATION BY REFERENCE; EMISSION STANDARDS; PRIMARY MAGNESIUM REFINING.

Statutory Authority: MS s 116.07
History: 32 SR 904; 44 SR 1030
Published Electronically: April 16, 2020
7011.8030 INCORPORATION BY REFERENCE; EMISSION STANDARDS; TAConITE IRON ORE PROCESSING.

Statutory Authority: MS s 116.07
History: 32 SR 904; 44 SR 1030
Published Electronically: April 16, 2020

7011.8040 INCORPORATION BY REFERENCE; EMISSION STANDARDS; IRON AND STEEL FOUNDRIES.

The following national emission standards for hazardous air pollutants are incorporated by reference:

A. Code of Federal Regulations, title 40, part 63, subpart EEEEE, as amended, entitled "National Emission Standards for Hazardous Air Pollutants for Iron and Steel Foundries"; and

Statutory Authority: MS s 116.07
History: 32 SR 904; 44 SR 1030
Published Electronically: April 16, 2020

7011.8050 INCORPORATION BY REFERENCE; EMISSION STANDARDS; MISCELLANEOUS ORGANIC CHEMICAL MANUFACTURING.

Statutory Authority: MS s 116.07
History: 32 SR 904; 44 SR 1030
Published Electronically: April 16, 2020

7011.8060 INCORPORATION BY REFERENCE; EMISSION STANDARDS; SURFACE COATING OF METAL CANS.

Statutory Authority: MS s 116.07
7011.8070 INCORPORATION BY REFERENCE; EMISSION STANDARDS; MISCELLANEOUS COATING MANUFACTURING.

Statutory Authority: MS s 116.07

History: 32 SR 904; 44 SR 1030

Published Electronically: April 16, 2020

7011.8080 INCORPORATION BY REFERENCE; EMISSION STANDARDS; MERCURY EMISSIONS FROM MERCURY CELL CHLOR-ALKALI PLANTS.

Statutory Authority: MS s 116.07

History: 32 SR 904; 44 SR 1030

Published Electronically: April 16, 2020

7011.8090 INCORPORATION BY REFERENCE; EMISSION STANDARDS; SURFACE COATING OF MISCELLANEOUS METAL PARTS AND PRODUCTS.

Statutory Authority: MS s 116.07

History: 32 SR 904; 44 SR 1030

Published Electronically: April 16, 2020

7011.8100 INCORPORATION BY REFERENCE; EMISSION STANDARDS; LIME MANUFACTURING PLANTS.

Statutory Authority: MS s 116.07

History: 32 SR 904; 44 SR 1030

Published Electronically: April 16, 2020
7011.8110 INCORPORATION BY REFERENCE; EMISSION STANDARDS; ORGANIC LIQUIDS DISTRIBUTION (NONGASOLINE).

Statutory Authority: MS s 116.07
History: 32 SR 904; 44 SR 1030
Published Electronically: April 16, 2020

7011.8120 INCORPORATION BY REFERENCE; EMISSION STANDARDS; STATIONARY COMBUSTION TURBINES.

Statutory Authority: MS s 116.07
History: 32 SR 904; 44 SR 1030
Published Electronically: April 16, 2020

7011.8130 INCORPORATION BY REFERENCE; EMISSION STANDARDS; SURFACE COATING OF PLASTIC PARTS AND PRODUCTS.

Statutory Authority: MS s 116.07
History: 32 SR 904; 44 SR 1030
Published Electronically: April 16, 2020

7011.8140 INCORPORATION BY REFERENCE; EMISSION STANDARDS; SURFACE COATING OF AUTOMOBILES AND LIGHT-DUTY TRUCKS.

Statutory Authority: MS s 116.07
History: 32 SR 904; 44 SR 1030
Published Electronically: April 16, 2020
7011.8150 INCORPORATION BY REFERENCE; EMISSION STANDARDS; STATIONARY RECIROTACATING INTERNAL COMBUSTION ENGINES.

Statutory Authority: MS s 116.07
History: 32 SR 904; 44 SR 1030
Published Electronically: April 16, 2020

7011.8160 INCORPORATION BY REFERENCE; EMISSION STANDARDS; PLYWOOD AND COMPOSITE WOOD PRODUCTS.

Statutory Authority: MS s 116.07
History: 32 SR 904; 44 SR 1030
Published Electronically: April 16, 2020

7011.8170 [Repealed, 44 SR 1030]
Published Electronically: April 16, 2020

7011.8190 INCORPORATION BY REFERENCE; EMISSION STANDARDS; CLOSED VENT SYSTEMS, CONTROL DEVICES, RECOVERY DEVICES AND ROUTING TO FUEL GAS SYSTEM OR PROCESS.

Statutory Authority: MS s 116.07
History: 44 SR 1030
Published Electronically: April 16, 2020

7011.8200 INCORPORATION BY REFERENCE; EMISSION STANDARDS; EQUIPMENT LEAKS.

The following national emission standards for hazardous air pollutants are incorporated by reference:

A. Code of Federal Regulations, title 40, part 63, subpart TT, as amended, entitled "National Emission Standards for Equipment Leaks - Control Level 1"; and

Statutory Authority: MS s 116.07
History: 44 SR 1030
Published Electronically: April 16, 2020

7011.8205 INCORPORATION BY REFERENCE; EMISSION STANDARDS; STORAGE VESSELS (TANKS) - CONTROL LEVEL 2.

Statutory Authority: MS s 116.07
History: 44 SR 1030
Published Electronically: April 16, 2020

7011.8210 INCORPORATION BY REFERENCE; EMISSION STANDARDS; ETHYLENE MANUFACTURING PROCESS UNITS: HEAT EXCHANGE SYSTEMS AND WASTE OPERATIONS.

Statutory Authority: MS s 116.07
History: 44 SR 1030
Published Electronically: April 16, 2020

7011.8215 INCORPORATION BY REFERENCE; EMISSION STANDARDS; ELECTRIC ARC FURNACE STEELMAKING FACILITIES.

Statutory Authority: MS s 116.07
History: 44 SR 1030
Published Electronically: April 16, 2020
7011.8220 INCORPORATION BY REFERENCE; EMISSION STANDARDS; PAINT STRIPPING AND MISCELLANEOUS SURFACE COATING OPERATIONS; AREA SOURCES.

Statutory Authority: MS s 116.07
History: 44 SR 1030
Published Electronically: April 16, 2020

7011.8225 INCORPORATION BY REFERENCE; EMISSION STANDARDS; LEAD ACID BATTERY MANUFACTURING.

Statutory Authority: MS s 116.07
History: 44 SR 1030
Published Electronically: April 16, 2020

7011.8230 INCORPORATION BY REFERENCE; EMISSION STANDARDS; WOOD PRESERVING; AREA SOURCES.

Statutory Authority: MS s 116.07
History: 44 SR 1030
Published Electronically: April 16, 2020

7011.8235 INCORPORATION BY REFERENCE; EMISSION STANDARDS; GLASS MANUFACTURING AREA SOURCES.

Statutory Authority: MS s 116.07
History: 44 SR 1030
Published Electronically: April 16, 2020
7011.8240 INCORPORATION BY REFERENCE; EMISSION STANDARDS; SECONDARY NONFERROUS METALS PROCESSING AREA SOURCES.

Statutory Authority: MS s 116.07
History: 44 SR 1030
Published Electronically: April 16, 2020

7011.8245 INCORPORATION BY REFERENCE; EMISSION STANDARDS; CHEMICAL MANUFACTURING AREA SOURCES.

Statutory Authority: MS s 116.07
History: 44 SR 1030
Published Electronically: April 16, 2020

7011.8250 INCORPORATION BY REFERENCE; EMISSION STANDARDS; AREA SOURCE STANDARDS FOR PLATING AND POLISHING OPERATIONS.

Statutory Authority: MS s 116.07
History: 44 SR 1030
Published Electronically: April 16, 2020

7011.8255 INCORPORATION BY REFERENCE; EMISSION STANDARDS; METAL FABRICATION AND FINISHING.

Statutory Authority: MS s 116.07
History: 44 SR 1030
Published Electronically: April 16, 2020
7011.8260 INCORPORATION BY REFERENCE; EMISSION STANDARDS; FERROALLOYS PRODUCTION FACILITIES.

Statutory Authority: MS s 116.07

History: 44 SR 1030

Published Electronically: April 16, 2020

7011.8265 INCORPORATION BY REFERENCE; EMISSION STANDARDS; ALUMINUM, COPPER, AND OTHER NONFERROUS FOUNDRIES.

Statutory Authority: MS s 116.07

History: 44 SR 1030

Published Electronically: April 16, 2020

7011.8270 INCORPORATION BY REFERENCE; EMISSION STANDARDS; CHEMICAL PREPARATIONS INDUSTRY.

Statutory Authority: MS s 116.07

History: 44 SR 1030

Published Electronically: April 16, 2020

7011.8275 INCORPORATION BY REFERENCE; EMISSION STANDARDS; PAINTS AND ALLIED PRODUCTS MANUFACTURING.

Statutory Authority: MS s 116.07

History: 44 SR 1030

Published Electronically: April 16, 2020
7011.8280 INCORPORATION BY REFERENCE; EMISSION STANDARDS; PREPARED FEEDS MANUFACTURING.

Statutory Authority: MS s 116.07
History: 44 SR 1030
Published Electronically: April 16, 2020

7011.9900 [Repealed, 44 SR 1030]

Published Electronically: April 16, 2020

7011.9910 INCORPORATION BY REFERENCE; EMISSION STANDARDS; ARSENIC.

The following national emission standards for hazardous air pollutants are incorporated by reference:

A. Code of Federal Regulations, title 40, part 61, subpart N, as amended, entitled "National Emission Standard for Inorganic Arsenic Emissions from Glass Manufacturing Plants," except that the authorities identified under Code of Federal Regulations, title 40, section 61.164(a)(2) and (a)(3), are not delegated to the commissioner and are retained by the administrator;

B. Code of Federal regulations, title 40, part 61, subpart O, as amended, entitled "National Emission Standard for Inorganic Arsenic Emissions from Primary Copper Smelters," except that the authorities identified under Code of Federal Regulations, title 40, sections 61.172(b)(2)(ii)(B) and (b)(2)(ii)(C) and 61.174(a)(2) and (a)(3), are not delegated to the commissioner and are retained by the administrator; and

Statutory Authority: MS s 116.07
History: 18 SR 580; 44 SR 1030
Published Electronically: April 16, 2020

7011.9920 INCORPORATION BY REFERENCE; EMISSION STANDARDS; ASBESTOS.

Statutory Authority: MS s 116.07
History: 18 SR 580; 44 SR 1030
Published Electronically: April 16, 2020
7011.9921 DEFINITIONS.

Subpart 1. **Scope.** The terms in this part have the meanings given for the purposes of parts 7011.9921 to 7011.9927.

Subp. 2. **Air flow permeability.** "Air flow permeability" means the volumetric rate of air flow in cfm, produced by a pressure decrease of 0.5 inches water gage across a new, clean filtering fabric, divided by the area of the fabric in ft\(^2\).

Subp. 3. [Repealed, 44 SR 1030]

Subp. 4. **Asbestos.** "Asbestos" means any of six naturally occurring, hydrated mineral silicates: actinolite, amosite, anthophyllite, chrysotile, crocidolite, and tremolite.

Subp. 4a. [Repealed, 44 SR 1030]

Subp. 5. **Debris.** "Debris" means waste produced by demolishing a building or structure.

Subp. 6. [Repealed by amendment, L 1987 c 186 s 15]

Subp. 7. **Local exhaust ventilation system.** "Local exhaust ventilation system" means a system that captures particulate matter generated by a process by applying an air stream induced at the process and that has a device that encloses the process, partially encloses the process, or guides the capturing air flow at the process.

Subp. 8. **Manufacturing operation.** "Manufacturing operation" means the processing of asbestos or the production of a product containing asbestos, with the exception of a process in which an asbestos-containing material is sprayed.

Subp. 9. [Repealed, 44 SR 1030]

Subp. 10. **Spraying.** "Spraying" means any operation in which material is conveyed in the form of, or by the means of, a fluid stream from an application device to a receiving surface.

Subp. 11. **Visible emission.** "Visible emission" means any emission that is visually detectable.

Subp. 12. [Repealed, 44 SR 1030]

Statutory Authority: MS s 116.07

History: L 1987 c 186 s 15; 18 SR 614; 44 SR 1030

Published Electronically: April 16, 2020

7011.9922 MANUFACTURING OPERATIONS.

Subpart 1. **Emissions from local exhaust ventilation system.** Emissions of particulate matter to the atmosphere from a local exhaust ventilation system in a building, structure, facility, or installation within which any manufacturing operation is carried on must not exceed the amount that would be emitted if the emissions were treated in a fabric filter installation as described in part 7011.9925.
Subp. 2. **Other emissions.** All other visible emissions of particulate matter to the atmosphere from a building, structure, facility, or installation within which any manufacturing operation is carried on must not exceed the amount that would be emitted if the emissions were treated in a fabric filter installation as described in part 7011.9925.

Subp. 3. **Emissions externally generated.** Visible emissions of particulate matter to the atmosphere from any manufacturing operation located outside a building, structure, facility, or installation are prohibited.

Subp. 4. **Design and operation requirements.** The design and operation of ventilation devices in ventilation systems must conform with ANSI Z9.2, Fundamentals Governing the Design and Operation of Local Exhaust Ventilation Systems (2012), published by the American National Standards Institute. The standard is incorporated by reference, is not subject to frequent change, and is available through the Minitex interlibrary loan system.

Statutory Authority: MS s 116.07

History: 18 SR 614; 44 SR 1030

Published Electronically: April 16, 2020

7011.9923 SPRAYING.

Subpart 1. **Open area.** The spraying in any area open to the outdoor atmosphere of any acoustical insulating, thermal insulating, or fireproofing product that contains asbestos is prohibited.

Subp. 2. **Emissions to outdoor atmosphere.** Emissions to the outdoor atmosphere of particulate matter from spraying any acoustical insulating, thermal insulating, or fireproofing product that contains asbestos, if the spraying is not otherwise prohibited by law, must not exceed the amounts that would be emitted to the atmosphere if the area containing the emissions were treated by a fabric filter installation as described in part 7011.9925.

Subp. 3. **Detectable amount of asbestos.** A product is deemed to contain asbestos if a detectable amount of asbestos is in the product or in any material that goes into the product. "Detectable amount of asbestos" means an amount detectable by x-ray diffraction, petrographic optical microscopy, or any other method approved by the commissioner.

Statutory Authority: MS s 116.07

History: 18 SR 614; 44 SR 1030

Published Electronically: April 16, 2020

7011.9924 [Repealed, 18 SR 580]

Published Electronically: February 25, 2008

7011.9925 FABRIC FILTER SPECIFICATIONS.

Subpart 1. **Requirements.** Fabric filter collection devices referred to in parts 7011.9922, subparts 1 and 2, and 7011.9923, subpart 2, must be operated at not more than four inches water
gage pressure decrease as measured across the filter fabric. No bypass devices are permitted. The collection devices must be equipped with either of the following classes of fabrics:

A. woven fabrics that have an air flow permeability not exceeding 30 cfm/ft² and that, if constructed of synthetic materials, contain no fill yarn other than spun yarn; or

B. felted fabrics that have an average density of not less than 14 oz/yd², an average thickness of not less than 1/16 inch, and an air flow permeability of not more than 35 cfm/ft².

Subp. 2. **Failure to meet requirements.** Fabric filter devices do not meet the requirements of this part if any of the following conditions exist: leakage of gases that contain particulate matter from the control system before filtration; torn or ruptured bags; improperly positioned bags; badly worn or threadbare bags; or presence of visible emissions of particulate matter when collection hoppers are emptied.

Subp. 3. **Air flow permeability.** Tests of air flow permeability must be performed as specified in ASTM D737-18, Standard Test Method for Air Permeability of Textile Fabrics (2018), published by ASTM International. The test method is incorporated by reference, is not subject to frequent change, and is available through the Minitex interlibrary loan system.

Statutory Authority: MS s 116.07
History: 18 SR 614; 44 SR 1030
Published Electronically: April 16, 2020

7011.9926 SUBSTITUTE DEVICES FOR FABRIC FILTERS.

Subpart 1. **Wet collectors.** Where an owner or operator deems that the use of fabric filter installations for operations subject to parts 7011.9922, subparts 1 and 2 and 7011.9923, subpart 2 would create a fire or explosive hazard, application for approval to use wet collectors shall be made to the commissioner. Such application shall include sufficient information to demonstrate that fabric filters cannot be used. The commissioner shall authorize the use of wet collectors if the commissioner determines that fabric filters cannot be used.

Wet collectors must be operated with a unit contacting energy of not less than 40 inches water gage. Unit contacting energy is the sum of the gas static pressure head decrease across the contact chamber of the collector, the energy per unit weight of gas handled which is required to introduce scrubbing liquid into the contact chamber, and the shaft energy per unit weight of gas handled which is applied to effect contact between the scrubbing liquid and the gas stream. No bypass devices are permitted.

Wet collectors do not meet the requirements of this subpart if either of the following conditions exist:

A. leakage of gases, containing particulate matter, from the control system prior to passage through the wet collector; or

B. operation at a gas static pressure head decrease, a scrubbing medium flow rate, or a mechanical energy level less than specified by the manufacturer for optimum collection efficiency.
Subp. 2. **Other control equipment.** Compliance with any applicable provision of parts 7011.9921 to 7011.9927 which refers to a control equipment specification shall be demonstrated in accordance with this part if the referenced control equipment is not used.

A. The owner or operator of the emissions unit, or vendor of emission control equipment, shall make available to the commissioner sufficient information as may be required to demonstrate that the substitute equipment will provide the degree of emission control which, in the judgment of the commissioner, is at least as stringent as that which would be achieved by using the equipment specified in the applicable standard. To the maximum extent practicable, the determination of equivalent degree of emission control will be based upon operation at the actual conditions at which the substitute device is, or will be, operated on the emissions unit. Factors which will be considered include, but are not limited to, total mass collection efficiency, collection efficiency versus particle size reliability, and maintenance practices associated with proper operation of the substitute device. The method used to determine the total mass collection efficiency and particle size distribution must be approved by the commissioner.

B. The owner or operator of the emissions unit, or vendor of emission control equipment, shall submit to the commissioner performance data including, but not limited to, total mass collection efficiency and collection efficiency versus particle size of the substitute control device under actual operating conditions which are representative of those of the existing or planned operating conditions.

C. In cases for which it is not reasonable, in the judgment of the commissioner, to require an owner or operator, or vendor of emission control equipment, to submit performance data which are based upon actual operating conditions which are representative thereof, the owner or operator, or vendor of emission control equipment, shall submit to the commissioner performance data on comparative tests, using subtle standard test aerosols, of the substitute device and the device specified by the applicable standard. The performance data shall include, but is not limited to, the total mass collection efficiency and the collection efficiency versus particle size of the substitute device and the device specified by the applicable standard.

Subp. 3. **Collection efficiency of substitute devices for fabric filters.** The total mass collection efficiency of any substitute device for a fabric filter shall not be less than 99.9 percent.

The total mass collection efficiency of any substitute device for a wet collector shall not be less than 99.5 percent.
7011.9930 INCORPORATION BY REFERENCE; EMISSION STANDARDS; BENZENE.

The following national emission standards for hazardous air pollutants are incorporated by reference:

A. Code of Federal Regulations, title 40, part 61, subpart J, as amended, entitled "National Emission Standard for Equipment Leaks (Fugitive Emission Sources) of Benzene," except that the authorities identified in Code of Federal Regulations, title 40, section 61.112(c), are not delegated to the commissioner and are retained by the administrator;

B. Code of Federal Regulations, title 40, part 61, subpart L, as amended, entitled "National Emission Standard for Benzene Emissions from Coke By-Product Recovery Plants";

C. Code of Federal Regulations, title 40, part 61, subpart Y, as amended, entitled "National Emission Standard for Benzene Emissions from Benzene Storage Vessels";

D. Code of Federal Regulations, title 40, part 61, subpart BB, as amended, entitled "National Emission Standard for Benzene Emissions from Benzene Transfer Operations"; and

Statutory Authority: MS s 116.07
History: 18 SR 580; 44 SR 1030
Published Electronically: April 16, 2020

7011.9940 INCORPORATION BY REFERENCE; EMISSION STANDARDS; BERYLLIUM.

The following national emission standards for hazardous air pollutants are incorporated by reference:

A. Code of Federal Regulations, title 40, part 61, subpart C, as amended, entitled "National Emission Standard for Beryllium"; and

Statutory Authority: MS s 116.07
History: 18 SR 580; 44 SR 1030
Published Electronically: April 16, 2020

7011.9941 [Repealed, 18 SR 580]
Published Electronically: February 25, 2008

7011.9942 [Repealed, 18 SR 580]
Published Electronically: February 25, 2008
7011.9943 [Repealed, 18 SR 580]
Published Electronically: February 25, 2008

7011.9944 [Repealed, 18 SR 580]
Published Electronically: February 25, 2008

7011.9945 [Repealed, 18 SR 580]
Published Electronically: February 25, 2008

7011.9950 INCORPORATION BY REFERENCE; EMISSION STANDARDS; MERCURY.

Statutory Authority: MS s 116.07
History: 18 SR 580; 44 SR 1030
Published Electronically: April 16, 2020

7011.9951 [Repealed, 18 SR 580]
Published Electronically: February 25, 2008

7011.9952 [Repealed, 18 SR 580]
Published Electronically: February 25, 2008

7011.9953 [Repealed, 18 SR 580]
Published Electronically: February 25, 2008

7011.9954 [Repealed, 18 SR 580]
Published Electronically: February 25, 2008

7011.9955 [Repealed, 18 SR 580]
Published Electronically: February 25, 2008

7011.9960 INCORPORATION BY REFERENCE; EMISSION STANDARDS; RADON.

The following national emission standards for hazardous air pollutants are incorporated by reference:

D. Code of Federal regulations, title 40, part 61, subpart T, as amended, entitled "National Emission Standards for Radon Emissions From the Disposal of Uranium Mill Tailings"; and

Statutory Authority: MS s 116.07
History: 18 SR 580; 44 SR 1030
Published Electronically: September 17, 2020

7011.9970 INCORPORATION BY REFERENCE; EMISSION STANDARDS; RADIONUCLIDES.

The following national emissions standards for hazardous air pollutants are incorporated by reference:

A. Code of Federal Regulations, title 40, part 61, subpart H, as amended, entitled "National Emission Standards for Emissions of Radionuclides Other Than Radon From Department of Energy Facilities";

B. Code of Federal Regulations, title 40, part 61, subpart I, as amended, entitled "National Emission Standards for Radionuclide Emissions From Federal Facilities Other Than Nuclear Regulatory Commission Licensees and Not Covered by Subpart H"; and

Statutory Authority: MS s 116.07
History: 18 SR 580; 44 SR 1030
Published Electronically: September 17, 2020

7011.9980 INCORPORATION BY REFERENCE; EMISSION STANDARDS; VINYL CHLORIDE.

Statutory Authority: MS s 116.07
History: 18 SR 580; 44 SR 1030
Published Electronically: April 16, 2020

7011.9990 INCORPORATION BY REFERENCE; EMISSION STANDARDS; VOLATILE HAZARDOUS AIR POLLUTANTS.

Code of Federal Regulations, title 40, part 61, subpart V, as amended, entitled "National Emission Standard for Equipment Leaks (Fugitive Emission Sources)," is incorporated by reference, except that authorities identified under Code of Federal Regulations, title 40, sections 61.242-1(c)(2) and 61.244, are retained by the administrator.
Statutory Authority: MS s 116.07
History: 18 SR 580; 44 SR 1030
Published Electronically: April 16, 2020